Deep Learning-Based Small Face Detection from Hard Image
DOI:
https://doi.org/10.47392/IRJAEH.2024.0084Keywords:
RetinaNet, Deep Learning, Region Offering Network, Face DetectionAbstract
Facial detection usually comes first in face recognition and face analysis systems. Previously, techniques such as directed gradient histograms and cascades relied on manually-engineered features from particular photos. Nevertheless, the precision with which these techniques could identify faces in uncontrolled environments was restricted. Numerous deep learning-based face recognition frameworks have recently been developed, many of which have significantly increased accuracy, as a result of the rapid progress of deep learning in computer vision. Despite these advancements, detecting small, scaled, positioned, occluded, blurred, and faces that are partially occluded in uncontrolled conditions remains a challenge in face identification. This problem has been studied for many years but has not been completely resolved.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Research Journal on Advanced Engineering Hub (IRJAEH)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.