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Abstract 

Traffic dynamics and autonomous vehicle navigation depend heavily on lane-changing behaviour. This paper 

introduces a machine learning-based method to predict lane-changing intentions using vehicle trajectory data 

and driver behaviour analysis. Our model achieves high accuracy while maintaining computational efficiency 

by utilizing the Gaussian Mixture Model (GMM) for driver behaviour clustering and LightGBM for lane-

change classification. The system incorporates feature engineering, and hyperparameter optimization to 

improve prediction reliability. Our experimental results show that the suggested method significantly 

increases lane-change prediction accuracy, making it appropriate for real-time intelligent transportation 

systems. This project uses Pygame for visualization and LightGBM for decision-making to simulate an 

autonomous lane-changing car in real time. The simulation simulates actual traffic situations, with the 

autonomous car using trained machine learning models to assess the environment and decide whether to 

change lanes. Using factors such vehicle speed, acceleration, time-to-collision, relative velocity, and driving 

style—all of which are categorized using a Gaussian Mixture Model (GMM)—a pre-trained LightGBM model 

powers the decision-making process and forecasts the need for lane changes. This project offers insights into 

the viability and practical implementation issues of automated lane-changing technology. 

Keywords: Autonomous vehicle, Lane change, Gaussian Mixture Model (GMM), LightGBM, Pygame, 

Realtime Simulation. 

 

1. Introduction

1.1. Autonomous Vehicles 

Self-driving automobiles, sometimes referred to as 

autonomous vehicles, are outfitted with sophisticated 

sensors, artificial intelligence, and control systems 

that enable them to travel and function without the 

need for human assistance. These cars sense their 

environment, identify impediments, and make 

judgments while driving in real time by using 

technology like LiDAR, radar, cameras, and GPS. 

Autonomous driving is classified into different levels 

(0-5) based on the extent of automation, ranging from 

driver assistance to full autonomy. By increasing 

mobility, lowering traffic, and improving road safety, 

autonomous vehicle development seeks to increase 

accessibility and efficiency in transportation. 

1.2. Lane Changing in Autonomous Vehicles 

In order to maintain efficiency and safety, lane 

change is a crucial component of autonomous driving 

that calls for exact decision-making. In order to 

identify surrounding traffic, evaluate gaps, and 

anticipate other drivers' intentions, autonomous cars 

rely on sensors like LiDAR, radar, and cameras. On 

the basis of variables including vehicle speed, 

acceleration, Time Headway (THW), and Modified 

Time to Collision (MTTC), machine learning 

models, such as Light GBM and deep learning 

networks, assist in forecasting lane-change 

intentions. Three crucial processes are involved in a 

good lane change: decision-making (figuring out if a 

change is required), trajectory planning (figuring out 
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a safe route), and execution (smoothly switching to 

the new lane without getting into an accident). The 

capacity of autonomous vehicles to make human-like 

lane-change judgments while preserving safety and 

traffic flow is further improved by cutting-edge 

methods like reinforcement learning and driver 

behaviour modeling. [1] 

1.3.Challenges in Lane Changing for 

Autonomous Vehicles 

 Uncertainty in Surrounding Vehicle 

Behavior: It is difficult to predict human 

drivers' intentions (such as abrupt lane 

changes or aggressive driving). Making 

dangerous manoeuvres might result from 

misjudging a vehicle's behaviour. 

 Real-Time Decision Making: Autonomous 

systems need to be able to quickly analyse a 

variety of elements, such as road conditions, 

gaps, acceleration, and vehicle speed. Lane 

changes may not be executed on schedule if 

there are computational delays.  

 Handling Dense and High-Speed Traffic: It 

can be challenging to identify a safe lane 

change in dense traffic. Even little errors in 

judgment can lead to crashes when driving at 

high speeds. 

 Sensor Limitations and Environmental 

Factors: The accuracy of LiDAR, radar, and 

cameras can be impacted by unfavourable 

weather conditions, such as fog, rain, or snow. 

Inaccurate lane detection may result from 

obscured objects (such as big trucks) and poor 

road markers. 

 Ethical and Legal Considerations: Ethical 

issues must be taken into account while 

making decisions in crucial situations, such as 

preventing an accident. varied nations have 

varied laws governing autonomous lane 

changes. 

1.4.Uncertainty in Surrounding Vehicle 

Behavior 

A major obstacle to automated lane change is 

uncertainty in surrounding vehicle behaviour, since 

human drivers behave in unpredictable ways 

depending on their own driving habits, outside 

influences, and road conditions. There are many 

different types of drivers. Some are aggressive and 

change lanes abruptly without signalling, while 

others are extremely careful and slow down before 

changing lanes. Prediction becomes even more 

difficult when turn signals are used inconsistently 

because many drivers don't communicate their 

intentions, which forces autonomous systems to rely 

on indirect indicators such lateral movement, changes 

in acceleration, and possible impediments up ahead. 

Unpredictable or last-minute lane changes brought on 

by impatience, missing exits, or traffic circumstances 

give an autonomous car less time to react, which 

raises the possibility of crashes. Additionally, it is 

challenging for an AI-based system to forecast a 

human driver's next action because human drivers 

respond differently to external inputs including 

weather, pedestrian crossings, and merging traffic. 

Because uncommon or infrequent driving 

behaviours, like road rage or reversing on a highway, 

are hard to measure and predict, modelling human 

behaviour is still a challenging undertaking. 

Autonomous cars employ sophisticated machine 

learning models and driver behaviour analysis to 

forecast driver intent, sensor fusion methods to 

integrate information from LiDAR, cameras, and 

radar, and real-time decision-making algorithms to 

continuously adjust lane-change tactics in order to 

reduce these uncertainties. [4]  

1.5.Real-Time Decision Making 

The ability of autonomous cars to assess their 

surroundings, anticipate any dangers, and carry out 

safe lane changes or manoeuvres in a matter of 

milliseconds is known as real-time decision-making. 

In order to guarantee safe and easy navigation in 

changing traffic situations, this procedure combines 

sensor fusion, artificial intelligence (AI), and control 

algorithms. In order to identify other cars, 

pedestrians, road signs, and lane markings, 

autonomous cars constantly gather information from 

a variety of sensors, including LiDAR, cameras, 

radar, and ultrasonic sensors. AI-based perception 

models are then used to process this sensor data in 

order to categorize objects, calculate their speeds, and 

forecast their future motions. By anticipating the 
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actions of other cars, machine learning algorithms 

and predictive models enable the autonomous system 

to plan lane changes, braking, or acceleration while 

lowering hazards. The car must also make decisions 

based on a number of parameters, including speed 

limits, traffic laws, road curvature, and possible 

impediments. Adapting swiftly to unforeseen 

circumstances, like abrupt lane changes by other 

vehicles, unexpected pedestrian crossings, or 

unfavourable weather conditions that impair sight 

and road traction, is an essential component of real-

time decision-making. Autonomous cars employ 

sophisticated control algorithms, like Reinforcement 

Learning and Model Predictive Control (MPC), to 

make dynamic judgments in order to manage these 

situations. All things considered, autonomous cars 

need real-time decision-making to be safe, effective, 

and dependable. This lowers the chance of accidents 

and enables them to handle challenging traffic 

situations with little assistance from humans. [9] 

2. Related Works 

The research on the Lane Change Safety Prediction 

Model for Automatic Driving a Long Short-Term 

Memory (LSTM) neural network is used in Based on 

LSTM (2024) [1] to forecast vehicle trajectories from 

time-continuous driving behaviour data. By 

improving forecast accuracy, this method guarantees 

safer lane changes under a variety of driving 

circumstances, including emergency braking. Future 

developments will try to increase model accuracy, 

accommodate unforeseen driving circumstances, and 

include increasingly intricate multi-vehicle 

interactions. The Machine Learning-Based Vehicle 

Intention Trajectory Recognition and Prediction for 

Autonomous Driving (Yu, Hanyi, et al. 2024), 

presented at the 7th ICAACE IEEE Conference, 

adopts a CNN-LSTM model [2] to obtain a high 

prediction accuracy of 98.66%. In complex traffic 

situations, this approach outperforms standard 

models and improves decision-making by accurately 

capturing human driving patterns. The model will be 

optimized for real-time systems in the future, and 

real-time data feedback will be incorporated for 

increased accuracy. In order to minimize emergency 

braking, minimize collision likelihood, and optimize 

lane-change requests for a more comfortable driving 

experience, the Directional Lane Change Prediction 

Using Machine Learning Methods [3] (Ardakani, 

Mostafa, and Timothy Bonds.  August 2023) study, 

which was published in the Journal of Applied 

Engineering Science, makes use of K-Nearest 

Neighbour (KNN), Artificial Neural Networks 

(ANN), and Deep Reinforcement Learning (DRL). 

UAV integration for real-time traffic data collection 

and increased judgment accuracy are examples of 

future improvements. Vehicle sensor data and 

machine learning algorithms including KNN, ANN, 

and DRL are used in the Safe Data-Driven Lane 

Change Decision Using Machine Learning in 

Vehicular Networks (Naja R. August 2023) study, 

which was published in the Journal of Sensor and 

Actuator Networks [4], to forecast lane-change 

judgments. By lowering crash rates and emergency 

braking, the study shows increased safety. UAV 

integration for real-time data collecting and 

improving reinforcement learning reward functions 

are examples of future work. The Lane-Exchanging 

Driving Strategy for Autonomous Vehicles via 

Trajectory Prediction and Model Predictive Control 

(Chen, Yimin, et al. May 2022) [5] study, published 

in the Chinese Journal of Mechanical Engineering, 

integrates a Gaussian Mixture Model (GMM) with 

Model Predictive Control (MPC) for trajectory 

prediction. This approach improves safety by taking 

into account the dynamic interactions between 

neighbouring and autonomous vehicles. Expanding 

the study to include multiple vehicle interactions and 

enhancing adaptability to different driving situations 

are the goals of future research. The Integration of 

GNSS and INS In order to estimate vehicle positions 

during GNSS failures, the LightGBM model, which 

is based on Machine Learning LightGBM Model for 

Vehicle Navigation (Li, Bangxin, et al. May 2022) 

[6], published in Applied Sciences, integrates GNSS 

and INS data. The method cuts down on training time 

while increasing position accuracy. Future 

enhancements will include real-time validation for 

dynamic vehicle navigation systems and noise 

reduction in INS data. The Prediction of Driver Lane-

Changing Behaviour According to a Deep Learning 
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(Wei, Cheng, Fei Hui, and Asad J. Khattak.  April 

2021) [7] study that was published in the Journal of 

Advanced Transportation, lane changes may be 

classified with 93.5% accuracy using a hybrid 

Seq2Seq RNN and fully linked network. To increase 

forecast accuracy and flexibility, the study 

recommends adding more variables, such as vehicle 

type and road conditions. The Deep Learning-Based 

Vehicle Behaviour Prediction for Autonomous 

Driving Applications: A Review (Mozaffari, Sajjad, 

et al. August 2020) [8], published in IEEE 

Transactions on Intelligent Transportation Systems, 

examines input representations, machine learning 

techniques, and deep learning advantages. It 

highlights the superior performance of deep learning 

models in predicting vehicle behaviour. Future 

enhancements focus on multimodal prediction, 

environmental awareness, and integrating traffic 

rules into models. Artificial Intelligence for 

Predicting Vehicle Behaviour: A Hybrid Method 

ANN and LSTM networks trained on the NGSIM 

dataset are used to forecast lane shifts 2.2 seconds 

ahead of time, according to Manoeuvre Classification 

and Trajectory Prediction (Benterki, Abdelmoudjib, 

et al. March 2020) [9], published in IEEE Access. 

This technique improves the safety of autonomous 

vehicles by offering high accuracy with few errors. 

The dataset will be enlarged, driver behaviour will be 

examined, and predictions will be applied to urban 

settings in future research. Reproducing Kernel 

Hilbert Space (RKHS) is used in the Continuous 

Behavioural Prediction in Lane-Change for 

Autonomous Driving Cars in Dynamic Environments 

(Dong, Chiyu, and John M. Dolan.  November 2018) 

[10] to continually forecast lane-change trajectories 

while collecting vehicle interactions. When 

compared to baseline techniques, it exhibits reduced 

prediction errors. Future research aims to extend the 

model's applicability to dynamic contexts and 

address problems brought on by a lack of training 

data. 

3. Proposed Model 

The figure 1 illustrates a structured approach to 

predicting lane-changing behaviour using machine 

learning techniques. It begins with a dataset 

containing vehicle movement information, which 

undergoes preprocessing and feature engineering to 

extract key attributes such as speed, acceleration, and 

gap distance. After preprocessing, a Gaussian 

Mixture Model (GMM) is applied to classify driving 

behaviour into different categories like cautious, 

neutral, or aggressive. This behavioural information, 

along with other engineered features, is then fed into 

a LightGBM model, a powerful gradient boosting 

algorithm, to predict whether a vehicle will change 

lanes. By incorporating driver behaviour analysis 

through GMM, the model improves the accuracy of 

lane change prediction, making it more effective for 

autonomous driving applications. Figure 1 shows 

Proposed Model [11] 

 

 

 
Figure 1 Proposed Model 
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3.1.Dataset 

The NGSIM I-80 dataset is a popular traffic dataset 

that offers comprehensive vehicle trajectory 

information gathered from a section of California's 

Interstate 80 (I-80). At high temporal and spatial 

resolutions, it contains data on lane changes, vehicle 

positions, accelerations, and speeds. Research on 

autonomous driving benefits greatly from this 

dataset, which is especially useful for examining 

lane-changing behaviours, vehicle interactions, and 

traffic flow dynamics. Models for lane-change 

prediction, driving behaviour analysis, and intelligent 

transportation systems are developed and assessed by 

researchers using this dataset. The data's real-world 

nature and great precision make it perfect for machine 

learning applications in autonomous car decision-

making. 

3.2. Data Preprocessing 

In the preprocessing stage of the project, the raw 

NGSIM I-80 dataset was first cleaned to ensure data 

quality. This involved removing any missing or 

inconsistent entries and filtering out irrelevant data 

that did not contribute to the analysis. The dataset was 

then sorted and aligned based on vehicle IDs and 

timestamps to maintain temporal consistency. 

Duplicate records were removed, and necessary 

columns were selected for the modeling phase. 

Finally, the data was normalized using standard 

scaling techniques to bring all features to a similar 

scale, which is crucial for improving the performance 

and convergence of machine learning algorithms. 

This cleaned and structured dataset was then ready 

for further analysis and modeling. [13] 

3.3. Feature Engineering 
To increase the performance and interpretability of 

the lane change prediction model, numerous high-

level features were engineered from the pre-

processed NGSIM I-80 dataset. These features are 

critical in representing vehicle interactions, dynamic 

driving behaviour, and temporal movement patterns. 

The following features were derived. [12] 

3.3.1. Gap 

The longitudinal (X-axis) distance between a vehicle 

and the one directly ahead of it in the same lane. 

 

𝐺𝑎𝑝𝑖 =  𝑥{𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔} −  𝑥{𝑠𝑢𝑏𝑗𝑒𝑐𝑡} 
 
The gap helps measure how much free space a 

vehicle has in front. Smaller gaps can imply 

discomfort or a potential safety risk, which often 

leads a driver to consider a lane change to maintain 

speed or avoid tailgating. 

3.3.2. Time Headway (THW) 

The amount of time it would take for the subject 

vehicle to reach the preceding vehicle if it continues 

at its current speed. 

 

𝑇𝐻𝑊 =
𝐺𝑎𝑝

𝑣
 

 
where v is the velocity of the subject vehicle. THW 

is a critical safety metric. A low THW indicates 

aggressive driving and increases the risk of a rear-end 

collision. Vehicles with low THW are more likely to 

change lanes to avoid unsafe following conditions. 

3.3.3. Modified Time to Collision (MTTC) 

An advanced version of Time-To-Collision (TTC) 

that accounts for both the relative velocity and 

relative acceleration between the subject and the 

preceding vehicle. 

 

𝑀𝑇𝑇𝐶 =
−𝛥𝑣 − √(𝛥𝑣)2 + 2 ⋅ 𝛥𝑎 ⋅ 𝐺𝑎𝑝

𝛥𝑎
 

 

𝑣 = 𝑣𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 𝑣𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 

𝛥𝑎 = 𝑎𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 𝑎𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔  

 
Unlike THW, MTTC considers deceleration and 

dynamic conditions, making it more reliable in stop-

and-go traffic or when vehicles are accelerating or 

braking. A smaller MTTC indicates imminent 

collision risk, prompting lane changes. 

3.3.4. Jerk 

The rate of change of acceleration over time. It 

represents how suddenly a vehicle is changing its 

acceleration profile. 

https://irjaeh.com/
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𝐽𝑒𝑟𝑘𝑡 = 𝑎𝑡 − 𝑎𝑡−1 
 
High jerk values are often signs of abrupt manoeuvres 

like sudden braking or aggressive acceleration. Such 

behaviours typically precede lane changes in 

response to traffic or to avoid perceived hazards. 

3.3.5. Relative Distance (Distance to Previous 

Position) 

The Euclidean distance the vehicle has travelled since 

the previous frame, based on both X and Y 

coordinates. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥𝑡 − 𝑥𝑡−1)2 + (𝑦𝑡 − 𝑦𝑡−1)2 
 
This spatial measurement helps identify micro-

movements in both longitudinal and lateral 

directions. An increase in lateral distance (Y-axis 

change) can signal an ongoing or attempted lane 

change. 

3.4. Models 

3.4.1. Gaussian Mixture Model (GMM) 

Using characteristics like velocity, acceleration, time 

headway (THW), time-to-collision (MTTC), and 

jerk, GMM is used in this project to classify drivers 

into various driving styles. These characteristics 

show how the car behaves dynamically and how the 

driver makes decisions while driving. GMM is 

appropriate for clustering behavioural patterns that 

are naturally present in the driving data because it 

does not require labelled data. Based on its movement 

profile, each vehicle is given a "Driving Style" 

label—such as aggressive, moderate, or cautious—by 

applying GMM. By allowing lane-change decisions 

to take into account not only external traffic 

conditions but also the driver's internal tendency or 

aggression, this extra feature improves the accuracy 

of the model. The Gaussian Mixture Model is a 

probabilistic unsupervised learning technique that 

models the data as a mixture of several Gaussian 

distributions. It assumes that each data point belongs 

to a cluster with a certain probability, enabling soft 

clustering — particularly useful in modeling 

uncertain and overlapping driving behaviours. 

3.4.2. Light GBM (Light Gradient Boosting 

Machine)   

LightGBM is a high-performance gradient boosting 

framework that constructs decision trees leaf-wise, 

resulting in higher efficiency and faster training than 

conventional boosting techniques. In this project, a 

variety of engineered features, such as vehicle speed, 

acceleration, gap to the previous vehicle, relative 

velocity and acceleration, THW, MTTC, and the 

driving style output from the GMM model, are used 

to identify the driver's intention to change lanes in 

real-time using LightGBM. The selection of 

LightGBM was based on its capacity to effectively 

manage feature interactions, support parallel 

learning, and handle large datasets. When deciding 

when the  car should change lanes to prevent 

collisions and preserve smooth flow, the car can 

make precise and timely decisions thanks to its 

predictive power. The use of LightGBM allows the 

system to respond dynamically to evolving traffic 

conditions, providing a robust backbone for 

intelligent behaviour modelling in autonomous or 

assisted driving simulations.   

3.4.3. Why Light GBM no other algorithms? 

Based on the performance metrics shown in the table 

1, LightGBM was chosen for the project due to its 

exceptional balance of accuracy, precision, recall, 

and training efficiency. Among all the models 

evaluated—LSTM, SVM, XGBoost, and 

LightGBM—LightGBM demonstrated consistently 

high performance across all three lane change 

intention types: Lane Keeping (LK), Right Lane 

Change (RLC), and Left Lane Change (LLC). 

Notably, it achieved an overall accuracy of 98.32%, 

which is nearly as high as XGBoost’s 98.47%, but 

with significantly lower training time (496.4 

seconds) compared to XGBoost’s 3880.7 seconds 

and SVM’s 33819.3 seconds. Additionally, 

LightGBM achieved perfect recall (100%) for 

LLC and high recall for RLC (99.93%), which is 

crucial in a real-time system where missing a lane 

change decision could lead to unsafe outcomes. It 

also maintained very high precision, minimizing 

false positives in predictions. These results indicate 

that LightGBM offers both high predictive accuracy 
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and computational efficiency, making it a highly 

suitable model for a real-time lane change prediction 

system. Its ability to handle large datasets and support 

rapid inference further justified its selection for this 

simulation project.[3] Table 1 shows Performance 

Metrics of Different Models 

  

Table 1 Performance Metrics of Different Models 

Model Type Precision Recall Accuracy 
Training 

time(s) 

LSTM LK 90.10% 96.21% 95.33% 992.3 

 RLC 97.83% 95.78%   

 LLC 97.79% 93.73%   

SVM LK 88.31% 97.29% 94.21% 33819.3 

 RLC 97.23% 93.46%   

 LLC 96.88% 92.10%   

XGBoost LK 95.79% 99.88% 98.47% 3880.7 

 RLC 99.93% 97.97%   

 LLC 99.96% 97.50%   

LightGBM LK 99.91% 94.89% 98.32% 496.4 

 RLC 97.89% 99.93%   

 LLC 97.34% 100%   

4. Experimental Results and Analysis 

4.1.Performance Metrics 

To adequately assess machine learning algorithms, 

choosing the right performance criteria is crucial. In 

this work, we primarily used precision (P), accuracy 

(A), recall (R), and F1-score (F1) as performance 

indicators. The precision, which indicates how many 

of the positive predictions are accurate, is computed 

by Equation (19). It ranges from 0 to 1. 

 
Precision: 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Recall:   

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
F1-Score:  

F1-Score = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
Accuracy: 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
4.2. Result 

The performance of the proposed lane change 

prediction model given in table 2, as evaluated on the 

test data, demonstrates strong results. The model 

achieved an overall accuracy of 91.46% and an 

impressive ROC-AUC score of 0.9708, indicating 

excellent capability in distinguishing between lane-

keeping and lane-changing manoeuvres. The 

classification report further highlights a precision of 

0.97 and recall of 0.89 for class 0 (lane-keeping), and 

a precision of 0.83 and recall of 0.96 for class 1 (lane 

change). This indicates that the model is highly 

effective at correctly identifying vehicles that intend 

to change lanes, which is critical for safety in 

autonomous driving. The macro and weighted 

averages of precision, recall, and F1-score all hover 
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around 0.91–0.92, showcasing balanced performance 

across classes. The confusion matrix also reveals a 

strong number of true positives and true negatives, 

with relatively fewer misclassifications. Overall, the 

results demonstrate the robustness and reliability of 

the LightGBM model integrated with Gaussian 

Mixture Model-based feature clustering in predicting 

lane changes in real-time scenarios. [14] 

4.3. Real Time Simulation 

The dynamic, interactive real-time lane change 

simulation module for this project was made with 

Pygame and simulates highway driving behaviour, 

with a focus on making intelligent lane changes. This 

simulation aims to evaluate and illustrate the 

performance of the LightGBM-based lane change 

intention prediction model in real-world driving 

situations. (Refer to Fig-2) 

4.4.Simulation Environment 

The dynamic, interactive real-time lane change 

simulation module for this project was made with 

Pygame and simulates highway driving behavior, 

with a focus on making intelligent lane changes. This 

simulation aims to evaluate and illustrate the 

performance of the Light GBM-based lane change 

intention prediction model in real-world driving 

situations. 

4.5.Player Car Behavior  

The lane-change prediction model is used to govern 

the behavior of the ego vehicle, which is represented 

by the player automobile (blue). It starts in the center 

lane and dynamically changes its behavior according 

to model forecasts and traffic flow. The automobile 

maintains a constant speed, but based on a forecast 

made by the trained Light GBM model, it may choose 

to change lanes to prevent possible collisions or 

increase driving safety. 

4.6.Surrounding Vehicles 

Other moving vehicles (red automobiles) with 

arbitrary beginning positions and speeds in various 

lanes are introduced into the game. These cars 

continuously travel down the screen to replicate 

actual traffic situations. To cut down on computing 

overhead while still producing intricate driving 

scenarios, the number of nearby cars is restricted to a 

manageable level (for example, four). [15] 

4.7.Feature Extraction in Real Time 

For every simulation frame, the system produces real-

time features. These consist of the player's speed, 

acceleration, relative velocity and acceleration, time 

headway (THW), minimum time to collision 

(MTTC), jerk, and distance to vehicles in front of 

them (gap). The driver's behaviour style is estimated 

using these features and then supplied into a pre-

trained Gaussian Mixture Model (GMM), which is 

then used as an input for lane change prediction. 

Table 2 shows Model Output 

 

 

Table 2 Model Output 

Lane 

Change 
Accuracy 

Precision 

(Class 0) 

Recall 

(Class 

0) 

F1-Score 

(Class 0) 

Precision 

(Class 1) 

Recall 

(Class 1) 

F1-Score (Class 

1) 

0 96.24% 0.944033 
0.96512

3 
0.954461 0.975510 0.960443 0.967918 

1 98.84% 0.983228 
0.98845

1 
0.985833 0.991987 0.988343 0.990162 

4.8.Lane Change Decision Making 

The LightGBM model is used to determine whether 

a lane change is required (1) or not (0) after the real-

time features have been retrieved and scaled using a 

pre-fitted StandardScaler. The system uses a bespoke 

logic to check the safety conditions in neighbouring 

lanes and prevent crashes if a lane change is advised 

(ensuring no surrounding vehicle is too close). Lane 

changes are only permitted when they are safe and 

required, which reflects a human-like approach to 
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decision-making. 

4.9.Purpose and Contribution 

The suggested intelligent lane changing system is 

validated and proof-of-concepted using the real-time 

simulation. It enables testing of the model's safety, 

accuracy, and reactivity in a reactive and visually 

interpretable setting. For upcoming research on 

autonomous driving systems, this type of simulation 

can be extended to incorporate sensor data or 

reinforcement learning methods. 

Conclusion 

This project presents an intelligent lane-changing 

system for autonomous vehicles using a combination 

of Gaussian Mixture Models (GMM) for driver 

behaviour classification and LightGBM for accurate 

lane change prediction. Leveraging real-world 

NGSIM I-80 data, feature engineering, and real-time 

simulation with Pygame, the system demonstrates 

high precision, recall, and overall performance in 

predicting safe and timely lane changes. The 

integration of behaviour-based modeling with 

efficient machine learning techniques ensures 

practical viability for real-time intelligent 

transportation systems, offering valuable insights for 

the future of autonomous driving technology. 
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