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Abstract 

Precision agriculture and efficient environmental management depend on the dependability of sensor-based 

monitoring systems in soil and climatic applications. The upkeep and long-term dependability of the sensors 

producing this data have received little attention, despite the widespread use of machine learning (ML) for 

agronomic parameter estimation. A scalable and interpretable machine learning system for environmental 

sensor monitoring, diagnostics, and predictive maintenance is presented in this paper. The system can identify 

both sudden sensor failures and slow performance deterioration by combining time-series forecasting models 

with unsupervised anomaly detection methods. Through the use of SHAP and LIME, interpretability is 

integrated, allowing for clear and understandable diagnostics. With lightweight models appropriate for edge 

devices in low-resource contexts, the suggested architecture facilitates deployment in dispersed environments 

via edge-cloud integration.  The system's efficacy in problem detection, data quality preservation, and 

actionable insights is demonstrated by experimental findings using real-world sensor datasets and generated 

degradation scenarios.  An important step toward independent and reliable environmental monitoring systems 

is represented by this research. 

Keywords: Precision agriculture, Soil sensors, Predictive maintenance, Edge computing, Interpretable 

machine learning, Anomaly detection. 

 

1. Introduction

Modern agriculture's adoption of sensor-based 

technologies has created new opportunities for 

precision farming, where data-driven insights 

maximize crop health monitoring, fertilization, and 

irrigation.  The foundation of these systems are soil 

sensors, which measure variables including electrical 

conductivity, temperature, pH, and moisture.  

However, the lifetime and dependability of these 

sensors become crucial as agricultural operations 

depend more and more on continuous sensor data.  

Environmental stress, sensor drift, physical damage, 

and aging are some of the factors that might cause 

inaccurate readings, which can impair the precision 

of agronomic decisions and reduce output. 

Agronomic results have been modeled using a variety 

of machine learning (ML) techniques, but the upkeep 

and condition of the sensors themselves have 

received little attention. Particularly in contexts with 

limited resources and remote locations, conventional 

monitoring systems frequently fail to identify early 

indicators of sensor deterioration. Furthermore, 

existing solutions are not appropriate for locations 

with sporadic access because they are usually cloud-

dependent and centralized. A scalable and 

interpretable machine learning system is presented in 

this paper to facilitate real-time soil sensor 
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monitoring and predictive maintenance in precision 

agriculture. Unsupervised anomaly detection and 

time-series forecasting algorithms are combined to 

enable the system to detect both abrupt failures and 

slow sensor deterioration. Explainability tools like 

SHAP and LIME are incorporated into the 

framework to improve usability and trust, enabling 

farmers and agronomists to comprehend the 

reasoning behind anomaly alarms. The architecture 

makes use of lightweight models that can be deployed 

on edge devices and coordinate with cloud-based 

analytics to provide scalable performance and quite 

low latency decision-making. Through the use of 

intelligent, autonomous, and interpretable 

maintenance techniques, our effort seeks to close a 

significant gap in precision agriculture and pave the 

road for more sustainable and reliable digital 

agricultural systems. 

 SHAP - SHapley Additive exPlanations 

 LIME - Local Interpretable Model-agnostic 

Explanations 

 GSM - Global System for Mobile 

communications 

2. Related Work  

The integration of machine learning (ML) and sensor 

technologies in environmental and agricultural 

monitoring has witnessed significant progress in 

recent years, particularly for soil parameter 

estimation, nutrient analysis, and moisture modeling. 

The current body of literature highlights both the 

evolution of methodologies and the broadening of 

applications in soil and climate monitoring. 

Triantakonstantis and Karakostas [1] demonstrated 

the efficacy of combining remote sensing data and 

ML algorithms to enhance Soil Organic Carbon 

(SOC) prediction, reinforcing the importance of 

scalable models in climate change mitigation. Similar 

approaches were adopted by studies that utilize 

Google Earth Engine and satellite imagery to 

generate 100-cm depth soil moisture datasets at high 

spatial resolution using machine learning [4]. ML has 

also been integrated into IoT-enabled systems to 

perform real-time soil nutrient monitoring and crop 

recommendation, facilitating precision agriculture 

and optimizing input usage [2]. These systems often 

employ low-power, long-range communication 

protocols and signal strength estimations through 

deep learning, as seen in LoRa-based designs for soil 

humidity sensing [13]. Interpretable and physically-

consistent ML models are increasingly emphasized. 

For instance, researchers proposed data-driven 

hydrological models with high interpretability to 

forecast soil moisture effectively [3] [16]. 

Furthermore, global datasets generated from in-situ 

sensor measurements trained via ML have 

demonstrated their relevance in large-scale 

hydrologic modeling and climate research [10]. On 

the environmental monitoring front, reviews have 

addressed the integration of sensor networks and ML 

to enhance monitoring granularity and efficiency 

[6][5]. These works stress the necessity for 

interpretable ML to ensure trust in sparsely 

distributed sensor systems [12], a concern echoed in 

broader geoscientific modeling [16]. In the 

agricultural domain, UAV hyperspectral imagery 

coupled with ML has proven to be an effective tool 

in evaluating soil nutrient composition [15], and 

agroecosystem models have begun incorporating ML 

to improve scalability and decision support [14]. 

Techniques have also emerged to estimate soil matric 

potential using ML with fewer field sensors, aiming 

to optimize irrigation strategies [17]. Additionally, 

comprehensive surveys [7][8] consolidate the role of 

ML and remote sensing in soil and water 

conservation, showcasing improved predictive 

accuracy and resource management capabilities. The 

development of high-resolution, daily soil moisture 

maps using ML [19] has provided critical inputs for 

precision agriculture and irrigation scheduling. 

Lastly, several studies [9] [18] have presented AI-

powered systems capable of monitoring soil health, 

predicting crop yields, and supporting sustainable 

farming practices through accurate resource 

recommendation engines. Collectively, these works 

provide a robust foundation and technological 

roadmap for the design of interpretable, scalable, and 

sensor-integrated ML systems for soil and 

environmental monitoring, directly supporting the 

objectives of this research This research advances the 

field by addressing a critical gap overlooked in prior 

work: the reliability and maintenance of sensor 

networks in precision agriculture. While most 
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existing approaches focus on estimating agronomic 

variables, this work introduces a novel, interpretable 

machine learning framework specifically designed to 

detect, diagnose, and predict sensor failures such as 

drift, spikes, and stuck readings. Through the 

integration of time-series forecasting and 

unsupervised anomaly detection, combined with 

SHAP and LIME for transparency, the framework 

ensures sensor trustworthiness over time. Moreover, 

its scalable edge–cloud architecture allows real-time 

deployment across diverse and resource-constrained 

agricultural environments a capability not 

demonstrated in earlier research. 

3. Methodology 

3.1.System Architecture 

The proposed system adopts a modular and scalable 

edge–cloud architecture designed for real-time 

predictive maintenance of soil sensors deployed in 

precision agriculture. The architecture ensures low-

latency detection, interpretability, and operational 

sustainability in both resource-rich and resource-

constrained agricultural environments. The system is 

composed of five key players: Sensor Layer, Edge 

Computing Layer, Communication Layer, Cloud 

Analytics Layer, and Dashboard Layer, as detailed 

below in Table 1 

 

Table 1 System Architecture Components 

Layer Function Key Technologies 

Sensor Layer 
Real-time acquisition of soil moisture and 

temperature data 

Capacitive Moisture Sensor, 

DS18B20 

Edge Layer 
Local preprocessing and lightweight anomaly 

detection 
ESP32, Raspberry Pi, TinyML 

Communication 

Layer 

Transmits data and anomaly flags to cloud 

infrastructure 

Wi-Fi, GSM (SIM800L), LoRa, 

MQTT, HTTP 

Cloud Layer 
Central model retraining, interpretability 

analysis, and storage 

Firebase, AWS, Flask, LSTM, 

SHAP, LIME 

Dashboard Layer 
Visualizes sensor data, alerts, and diagnostics 

for decision-making 
Streamlit, Dash, Plotly, React 

3.2.Data Acquisition and Preprocessing 

A real-time soil monitoring setup was developed 

using capacitive moisture sensors and digital 

temperature sensors, integrated with ESP32-based 

edge devices. The system was deployed in a 

controlled agricultural environment, where it 

captured soil moisture and temperature readings at 

fixed 10-minute intervals. To support robust anomaly 

detection and predictive maintenance, the raw sensor 

data was extended with engineered time-series 

features: 

 Moisture_Diff: The first-order difference in 

moisture values to detect abrupt changes or 

stagnation. 

 Temperature_Diff: The rate of temperature 

variation to capture lagging or stuck sensor 

behavior. 

3.3.Machine Learning Framework 

The proposed machine learning framework is 

designed to detect and predict sensor failures—such 

as drift, spikes, and stuck values—in real time, 

thereby enabling proactive maintenance of soil sensor 

networks. The framework adopts a hybrid approach 

that combines supervised classification, time-series 

forecasting, and unsupervised anomaly detection, 

with model components distributed across both edge 

and cloud layers. These models are selected for their 

robustness, interpretability, and compatibility with 

deployment constraints in agricultural settings.The 

following features are used to train and infer from the 

models: 

 Moisture: Raw soil moisture reading 

 Temperature: Raw soil temperature reading 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 07 July 2025 

Page No: 3113 - 3120  

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0459 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 

                         
3116 

 

 Moisture_Diff: First-order difference of 

moisture 

 Temperature_Diff: First-order difference of 

temperature 

All features are standardized using Z-score 

normalization to ensure consistency and performance 

across models. 

Table 2 Machine Learning Frameworks 

Model Type Purpose 

LSTM (Long Short-Term 

Memory) 
Time-Series Forecasting 

Predict expected sensor values based on historical 

patterns. 

GRU (Gated Recurrent 

Unit) 
Time-Series Forecasting 

Alternative to LSTM for efficient sequential 

modeling. 

Isolation Forest 
Unsupervised Anomaly 

Detection 

Identify anomalies in multivariate data without 

labels. 

Autoencoder 
Unsupervised Anomaly 

Detection 

Detect complex deviations by reconstructing 

normal patterns. 

Extra Trees Classifier Supervised Classification 
Classify data points as normal or anomalous 

based on engineered features. 

3.4. Training, Labeling and Deployment Strategy 

The supervised models were trained using labeled 

field data, which included expert-annotated instances 

of normal behavior and known anomaly types (drift, 

spike, stuck). Class balancing techniques were 

applied to mitigate the impact of label imbalance. 

 Edge Inference: Lightweight, real-time 

anomaly detection is performed on 

microcontrollers (e.g., ESP32) using 

optimized models such as quantized Isolation 

Forests or simple rule-based drift detectors. 

 Cloud Inference: More complex models 

(e.g., LSTM, Autoencoder) are deployed in 

the cloud to support periodic model 

retraining, deeper diagnostics, and integration 

with interpretability tools such as SHAP and 

LIME. 

The framework’s effectiveness is evaluated using: 

 Precision, Recall, and F1-Score for fault 

detection accuracy 

 Time-to-Failure (TTF) estimation metrics 

 Model interpretability, assessed through 

feature attribution analysis and visualization. 

This machine learning framework enhances the 

operational reliability of precision agriculture 

systems by ensuring the early detection of sensor 

degradation, promoting proactive maintenance, and 

supporting trust through explainable ML decisions. 

3.5. Programming Tools 
The entire machine learning framework was 

implemented in Python 3.10 using libraries such as 

Scikit-learn, TensorFlow, SHAP, and LIME. Time-

series data from soil moisture and temperature 

sensors were preprocessed using Pandas and NumPy, 

with engineered features like temporal gradients to 

enhance anomaly detection. Models including 

Isolation Forest, LSTM, and Extra Trees Classifier 

were trained and evaluated offline. Interpretability 

was achieved through SHAP for global insights and 

LIME for instance-level explanations. For real-time 

deployment, lightweight models were converted 

using TensorFlow Lite and deployed on ESP32 

microcontrollers using MicroPython and TinyML 

4. EDGE–Cloud Integration 

As shown in figure 1 the proposed system adopts a 

hybrid Edge–Cloud architecture to enable real-time 

predictive maintenance of soil sensors. Sensor data is 

first processed on ESP32-based edge devices, which 

perform noise filtering, feature extraction, and 

lightweight anomaly detection using models like 

Isolation Forests. This reduces latency and minimizes 

data transmission. Processed data is then sent to the 

cloud via MQTT, HTTP, or LoRa protocols, where 

advanced models such as LSTM and Auto encoders 

handle deeper analysis, retraining, and fault 

classification. SHAP and LIME are used to provide  
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interpretability, and results are visualized through a 

dashboard that offers real-time monitoring and 

maintenance insights. This integration balances 

efficiency at the edge with computational depth in the 

cloud, making it suitable for distributed agricultural 

deployments. 

 

 
Figure 1 Edge–Cloud Integration 

 

5. Results and Discussion 

 

 
Figure 2 Anomaly Detection with Soil Moisture 

Time-Series 

 

Figure 2 presents time-series analysis of soil moisture 

with detected anomalies marked in red. The baseline 

data remains stable around 30%, while significant 

deviations—such as sudden spikes (~50%), abrupt 

drops (~10%), and repeated fluctuations—are 

flagged as anomalies. These patterns correspond to 

potential sensor issues like signal overshoot, probe 

disconnection, or drift due to environmental stress or 

corrosion. The detection model effectively captures 

both transient and sustained abnormal behaviors, 

demonstrating strong capability for real-time fault 

identification in sensor data streams. (Figure 3) 

 

 
Figure 3 Normal vs. Anomaly Plots for Soil 

Moisture and Temperature 

 

Figure 3 illustrates a comparative analysis of soil 

moisture and temperature readings under normal and 

anomalous conditions. Anomalies such as sudden 

spikes, dropouts, and plateaus are clearly 

distinguishable from the stable baseline. The model 

accurately detects extreme events like sharp moisture 

surges (~48%) and abrupt temperature deviations 

 

  
Figure 4 SHAP Interaction Plot 
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(~40°C or ~14°C), indicating its effectiveness in 

identifying various sensor failure modes. This 

confirms the framework’s robustness in 

differentiating between natural fluctuations and 

sensor malfunctions, making it suitable for real-time 

deployment in agricultural environments. Figure 4 

displays the SHAP interaction plot for the anomaly 

detection model, illustrating the contribution of each 

feature to the model's output. The x-axis represents 

SHAP interaction values, indicating how soil 

temperature and moisture individually and jointly 

influence the prediction. Moisture shows higher 

SHAP interaction variance than temperature, 

confirming its dominant role in model decisions. The 

aligned output table supports this interpretation, 

showing consistent health scores of 100 and 

classification of all shown samples as ‘Normal’ with 

no predicted Time-to-Failure (TTF). This 

interpretability framework enables transparent 

diagnostics and validates model behavior aligned 

with domain expectations. 

 

 
Figure 5 SHAP Interaction Plot 

 

Figure 5 presents a LIME-based local interpretability 

explanation for an instance classified as an anomaly. 

The plot identifies Moisture > 0.25 as the most 

influential factor contributing positively to the 

anomaly class, followed by Temperature > –0.04. 

Conversely, negative moisture and temperature 

differentials (e.g., Moisture_Diff ≤ –0.04) are 

negatively correlated with the anomaly outcome. 

This highlights the model’s sensitivity to both 

absolute sensor values and sudden transitions. The 

local explanation offers instance-specific diagnostic 

insights, enabling actionable field responses and 

enhancing the trustworthiness of anomaly predictions 

in operational settings. 

Conclusion   
For the purpose of predicting soil sensor maintenance 

in precision agriculture, this study offers a thorough 

machine learning framework that integrates time-

series forecasting, unsupervised anomaly detection, 

and post hoc interpretability. While SHAP and LIME 

offer clear, feature-level explanations for every 

choice, improving model interpretability and 

operational trust, the combination of Isolation Forest 

and LSTM models allows for the identification of 

both sudden and gradual sensor degradations. With 

accompanying visual diagnostics verifying its 

capacity to detect sensor failures including spikes, 

signal drift, and flatline behaviors, the framework 

achieves excellent precision (0.88) in real-world 

anomaly identification. With cloud-based modules 

managing model explanation, health scoring, and 

long-term time-to-failure (TTF) estimation, the 

modular architecture enables the real-time execution 

of lightweight models on edge devices. For 

agricultural settings with diverse sensor networks and 

spotty connectivity, the edge–cloud deployment 

pipeline guarantees scalability, fault-tolerant 

monitoring, and low latency. The framework bridges 

a crucial gap in existing precision agriculture systems 

by combining anomaly classification with 

interpretable diagnostics and hardware health 

indicators. This enhances sensor data dependability 

and facilitates proactive maintenance plans. 

References  
[1].  D. Triantakonstantis and A. Karakostas, “Soil 

Organic Carbon monitoring and modelling 

via Machine Learning Methods Using Soil 

and Remote Sensing Data,” Agriculture, vol. 

15, no. 9, p. 910, Apr. 2025, doi: 

10.3390/agriculture15090910. 

[2].  Islam, M. R., Oliullah, K., Kabir, M. M., 

Alom, M., & Mridha, M. (2023). Machine 

learning enabled IoT system for soil nutrients 

monitoring and crop recommendation. 

Journal of Agriculture and Food Research, 

14, 100880. https:// doi.org/ 10.1016/ j.jafr. 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 07 July 2025 

Page No: 3113 - 3120  

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0459 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 

                         
3119 

 

2023.100880 

[3].  Basak, A., Schmidt, K. M., & Mengshoel, O. 

J. (2022). From data to interpretable models: 

machine learning for soil moisture 

forecasting. International Journal of Data 

Science and Analytics, 15(1), 9–32. 

https://doi.org/10.1007/s41060-022-00347-8 

[4].  Liwen Chen, Boting Hu, Jingxuan Sun, Y. 

Jun Xu, Guangxin Zhang, Hongbo Ma, 

Jingquan Ren, “Using remote sensing and 

machine learning to generate 100-cm soil 

moisture at 30-m resolution for the black soil 

region of China: Implication for agricultural 

water management”, Agricultural Water 

Management,Volume 309, 2025, 109353, 

ISSN 0378-3774, https:// doi.org/ 10.1016/ 

j.agwat.2025.109353. 

[5].  Olawade, D. B., Wada, O. Z., Ige, A. O., 

Egbewole, B. I., Olojo, A., & Oladapo, B. I. 

(2024). Artificial intelligence in 

environmental monitoring: advancements, 

challenges, and future directions. Hygiene 

and Environmental Health Advances, 

100114. 

https://doi.org/10.1016/j.heha.2024.100114 

[6].  Brown, L. E., Maavara, T., Zhang, J., Chen, 

X., Klaar, M., Moshe, F. O., … Arnon, S. 

(2024). Integrating sensor data and machine 

learning to advance the science and 

management of river carbon emissions. 

Critical Reviews in Environmental Science 

and Technology, 55(9), 600–623. 

https://doi.org/10.1080/10643389.2024.2429

912 

[7].  Kim, Y. I., Park, W. H., Shin, Y., Park, J., 

Engel, B., Yun, Y., & Jang, W. S. (2024). 

Applications of machine learning and remote 

sensing in soil and water conservation. 

Hydrology, 11(11), 183. 

https://doi.org/10.3390/hydrology11110183 

[8].  Rani, A., Kumar, N., Kumar, J., Kumar, J., & 

Sinha, N. K. (2022). Machine learning for soil 

moisture assessment. In Elsevier eBooks (pp. 

143–168). https://doi.org/10.1016/b978-0-

323-85214-2.00001-x 

[9].  Islam, M. R., Oliullah, K., Kabir, M. M., 

Alom, M., & Mridha, M. (2023b). Machine 

learning enabled IoT system for soil nutrients 

monitoring and crop recommendation. 

Journal of Agriculture and Food Research, 

14, 100880. https:// doi.org/ 10.1016 

/j.jafr.2023.100880 

[10].  Jana, S., Chatterjee, D., Pal, N., Pal, K., Roy, 

K., & Bashak, S. (2024). AI in Soil Health 

Monitoring: A Data-Driven Approach. 

International Journal for Research in Applied 

Science and Engineering Technology, 12(10), 

1327–1335. 

https://doi.org/10.22214/ijraset.2024.64871 

[11].  O, S., & Orth, R. (2021). Global soil moisture 

data derived through machine learning trained 

with in-situ measurements. Scientific Data, 

8(1). https://doi.org/10.1038/s41597-021-

00964-1 

[12].  Lasota, E., Houben, T., Polz, J., Schmidt, L., 

Glawion, L., Schäfer, D., Bumberger, J., & 

Chwala, C. (2024). Interpretable quality 

control of sparsely distributed environmental 

sensor networks using graph neural networks. 

Artificial Intelligence for the Earth Systems. 

https://doi.org/10.1175/aies-d-24-0032.1 

[13].  Rodić, L. D., Županović, T., Perković, T., 

Šolić, P., & Rodrigues, J. J. P. C. (2021). 

Machine Learning and Soil Humidity 

Sensing: Signal Strength aproach. ACM 

Transactions on Internet Technology, 22(2), 

1–21. https://doi.org/10.1145/3418207 

[14].  Aderele, M. O., Srivastava, A. K., 

Butterbach-Bahl, K., & Rahimi, J. (2025). 

Integrating machine learning with 

agroecosystem modelling: Current state and 

future challenges. European Journal of 

Agronomy, 168, 127610. https:// doi.org/ 

10.1016/j.eja.2025.127610 

[15].  Liu, K., Wang, Y., Peng, Z., Xu, X., Liu, J., 

Song, Y., … Hua, D. (2024). Monitoring soil 

nutrients using machine learning based on 

UAV hyperspectral remote sensing. 

International Journal of Remote Sensing, 

45(14), 4897–4921. https:// doi.org/ 10.1080/ 

01431161.2024.2371618 

[16].  Jiang, S., Sweet, L., Blougouras, G., 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 07 July 2025 

Page No: 3113 - 3120  

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0459 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 

                         
3120 

 

Brenning, A., Li, W., Reichstein, M., 

Denzler, J., Shangguan, W., Yu, G., Huang, 

F., & Zscheischler, J. (2024). How 

interpretable machine learning can benefit 

process understanding in the geosciences. 

Earth S Future, 12(7). https:// doi.org/ 

10.1029/2024ef004540 

[17].  Maia RF, Lurbe CB, Hornbuckle J. Machine 

learning approach to estimate soil matric 

potential in the plant root zone based on 

remote sensing data. Front Plant Sci. 2022 

Aug 15;13:931491. doi: 10.3389/ fpls.2022. 

931491. 

[18].  Anand, V., Rajput, P., Minkina, T., 

Mandzhieva, S., Kumar, S., Chauhan, A., & 

Rajput, V. D. (2025). Systematic Review of 

Machine Learning Applications in 

Sustainable Agriculture: Insights on soil 

health and crop improvement. Phyton, 0(0), 

1–10. https:// doi.org/ 10.32604/ phyton. 

2025.063927 

[19].  Xia Y, Watts JD, Machmuller MB, 

Sanderman J. Machine learning based 

estimation of field-scale daily, high 

resolution, multi-depth soil moisture for the 

Western and Midwestern United States. 

PeerJ. 2022 Nov 4;10:e14275. doi: 

10.7717/peerj.14275. 

https://irjaeh.com/

