

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3017

Designing Developer Platforms for Cross-Cloud Portability and Scale

Prem Nishanth Kothandarama1

1Independent Researcher, University of California, Irvine, United States.

Abstract

The recent ramp-up in multi-cloud strategy deployment has forced a redesign of the developer platform in

terms of portability and scalability across the heterogeneous cloud world. In this review, we explore

architectural and operational considerations for the deployment of developer platforms that run without

compromise across multiple cloud providers. It provides a multidimensional view of a framework that includes

architectural abstraction, developer experience, data management, performance engineering and security

integration. Container orchestration, infrastructure as code and service mesh are explored to see how they

enable interoperability and system consistency. The review additionally discusses the problems of stateful

application migration, data gravity and compliance; and emphasizes the necessity of intelligent automation

and policy-based governance to conquer these challenges. The conversation is taken forward by emerging

trends such as AI-driven orchestration, decentralized control planes and edge native deployments, which

would define the future of cross-cloud platform architecture. These platforms funnel developer tooling and

imbue it with intelligence, wrapped with intelligence into operational workflows, allowing for enterprises to

leverage their multi-cloud ecosystems to its fullest potential: resilience, cost optimization and regulatory

agility. The review finds that innovation within this space will continue to drive the evolution of intelligent,

scalable and autonomous cloud native platforms able to deal with increasing distributed application

complexity.

Keywords: Cloud-Native Scalability; Cross-Cloud Portability; Developer Platforms; Intelligent

Orchestration; Multi-Cloud Architecture; Platform Abstraction.

1. Introduction

Cloud computing has tremendously evolved and has

changed software development and deployment, and

operations strategies. The days of a single cloud

vendor are over; organizations are moving to multi-

cloud or cross-cloud to optimize for flexibility,

resilience and cost. However, analogues to these and

most other introductions in methodology are anything

but radical or unorthodox. This paradigm shift

envisions a transformation of how developer

platforms are architected, towards solutions that will

ensure portability and scalability across disparate

cloud environments. On the other hand, cross-cloud

portability means being able to develop, deploy and

run applications that run seamlessly on more than one

cloud provider without having to refactor and change

them much. Such portability is made possible by

developer platforms that provide enterprises with the

ability to take advantage of the best aspects of each

cloud vendor, prevent vendor lock-in in and conform

to compliance regulations across geographies. On the

other hand, the benefits are hampered by the

complexity of creating and maintaining systems that

can coexist with heterogeneous infrastructure,

service, API and security models. There is another

level of complexity because of the growing need for

scale. In addition, developer platforms need to be

scalable, and it is a dynamic process to manage

resource provisioning, orchestration, monitoring and

performance tuning across different environments.

To meet these diverse needs, this paper reviews core

design principles and leading innovations in

developer platforms enabling cross-cloud portability

and scalability. The wisdom of other geospatial data

and engineering practitioners and scholars is

represented in each section of the five most

technically and architecturally challenging elements

of web mapping and its operations. Modern software

engineering has developed a critical capability for

cross-cloud portability. This need to optimise

performance, security, costs and maintain availability

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3018

of the workloads has driven the ability to migrate

workloads seamlessly among multiple cloud

environments. The study also reports that multi-cloud

adoption empowers organizations to choose the

perfect services that various providers provide,

reaching operational resilience and vendor neutrality

[1]. Despite that, portability is hindered by

heterogeneity on the interfaces of cloud services, the

definitions of resources and platform-specific

capabilities. Based on another study, the key

challenges in cloud resource provisioning of higher-

layer applications are identified as a lack of

standardization in APIs, discrepancy of resource

provisioning mechanisms and variation of

deployment topologies. They [the inconsistencies]

make it almost impossible to write portable

applications without needing translation or

adaptation layers that are almost as complex as the

resulting application [2]. Of note, portability is

considered in three dimensions: syntactic

(compatible APIs), semantic (consistent behaviour)

and systemic (unified orchestration). Full portability,

according to this model, requires harmonised service

semantics and service infrastructure management in

addition to API compatibility [3]. While the

economic motivation additionally makes portability

necessary, the need was already fulfilled. A study has

found that enterprises employing portable platforms

enjoy lower downtime, better disaster recovery

capabilities. By and large, portability is a contributor

to data localisation regulations, because applications

can be run in region-specific cloud zones [4]. In light

of these requirements, therefore, developer platforms

need to be developed with these foundational

requirements considered, abstraction of the

underlying complexities, harmonisation of API

behaviours and a consistent orchestration mechanism

across cloud boundaries in mind.

2. Architectural Building Blocks: Abstractions

and Interoperability Layers

Architecting for cross-cloud portability demands

effective layers of abstraction and interoperability,

along with portability products focused on

application packages and on handling different types

of runtime services and relationships. This is made

possible by containers, orchestration engines and

infrastructure as code tools. Docker, for example,

offers very lightweight and consistent execution

environments that eliminate underlying infrastructure

dependencies. It encapsulates application code with

dependencies that behave the same across the cloud.

This concept of pods is extended by Kubernetes,

orchestrating containerized applications across

multiple nodes and clusters with native support for

hybrid and multi-cloud deployments [5]. Tools such

as Terraform and Pulumi enable us to do declarative

configuration of infrastructure resources. Unlike

others, these tools do not support one cloud provider

alone, nor do they allow developers to define

infrastructure in a provider-specific manner.

Figure 1 Key Components for Enabling Cross-

Cloud Abstraction and Interoperability in

Developer Platforms

Nevertheless, such abstractions are not easy to create,

which is to say, abstracting the unique features of

individual clouds without sacrificing functionality

[6]. With service mesh solutions like Istio, they have

additional interoperability, which manages service-

to-service communication, security policies and

observability across clouds. These tools allow for

application logic to be decoupled from operational

concerns so as to allow for uniform policies and

telemetry across environments [7]. Critical to this is

middleware and platform services that normalize

APIs. As an example, Cloud Foundry represents a

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3019

PaaS environment that abstracts cloud-specific

infrastructure such that developers won't need to tune

their applications to the specific cloud environment.

However, lower access to low level cloud native

capabilities [8] is the price paid. The architectural

choices made have helped establish the foundation

for any developer platform aiming to operate across

multiple cloud environments. Containerization,

orchestration, configuration and service mesh each

help us achieve abstraction and provide

interoperability and hence toward the ultimate goal of

platform portability.

3. Unified Developer Experience: Tooling,

Interfaces, and SDK Harmonization

Effective cross-cloud platform design starts with one

central thing: a unified developer experience.

Developers must work with numerous systems, APIs

and a bunch of tools that interact in a coherent,

intuitive manner. Usually, it results in productivity

bottlenecks and operational errors. Modern developer

platforms try to standardize interfaces by providing

Command Line Tools (CLIs), Software Development

Kits (SDKs) or Integrated Development

Environments (IDEs) that work across clouds, all

emerging to be the next fast and intuitive way for

programmers, developers and integration teams to

develop and deploy their next application, faster,

easier and across clouds. For instance, the existing

cross-platform SDKs, provided by Azure and AWS,

leave small semantic discrepancies in API semantics

that can force cognitive overhead to developers when

they are switching contexts [9]. By adding it to a

dashboard or portal-based interface, these dashboards

and metrics aggregate metrics, as well as deployment

status and configuration settings, and make cross-

cloud operations easier. Spotify has tools like

Backstage that give you a developer portal, which

will coordinate plugins and cloud resources through

a single interface [10]. And somewhere close to the

Developer Experience pipeline lies the CI/CD

pipeline. Jenkins X and GitHub Actions as cross-

cloud CI/CDs support the deployment across multiple

clouds, while at the same time still require a specific

configuration for each cloud. However, to achieve

consistency in build and release workflows above any

kind of differences [11], unified CI/CD pipelines

need to abstract these differences. It also plays a key

part by harmonize SDKs and APIs. API gateways and

wrapper libraries expose standardized interfaces to

developers, which, behind the scenes, translate

requests to these standardized interfaces into

whatever your internal infrastructure happens to be.

Yet, this may lead to a performance trade-off or a

limitation of access to cloud-specific features [12].

As such, designing for a seamless and developer-

friendly experience requires a balance between the

two: abstraction for convenience, but retaining the

control to take advantage of provider-specific

optimizations.

4. Data Gravity and Application State: Managing

Data Portability Across Clouds

Although effective cross-cloud design is built upon

the cornerstone of data portability, data gravity makes

data portability one of the most technically complex

elements to solve. Data gravity is Dave McCrory’s

term for what happens when large datasets tend to

attract applications, services and processing power to

them and become harder to move or recompute the

data across cloud providers without significant

overhead or risk. It takes the consistent storage

system, data representation, metadata schema and

consistency models of individual clouds and

reconciles them for porting data between clouds.

These factors impact not only the feasibility of data

transfer, but the operational semantics of applications

built in reliance to the data. Data replication and

synchronization strategies for heterogeneous cloud

storage systems are studied comprehensively in [13],

underlining the requirement of data placement

algorithms especially aware of latency and conflict

resolution protocols. CockroachDB and

YugabyteDB, two other distributed databases,

attempt to solve cross-cloud distribution of data by

providing globally consistent, partition-tolerant

storage layers. Unfortunately, these systems come

with a performance and complexity trade-off. From

the perspective of platform design, developer tooling

must abstract these trade-offs, intelligently present

them to developers in order to support various

consistency, availability and latency requirements

[14]. It adds on a whole extra layer of complexity.

Stateless services lend themselves more naturally to

portability, whereas stateful applications that depend

on persistent volumes or state in a session need data

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3020

serialization, checkpointing or volume migration

during the choreography of cross–cloud transitions.

A state management framework supporting

application state checkpointing and later restoration

across cloud boundaries is described in a study [15].

In addition, some datasets may only move

geographically based on data compliance and locality

regulations. Because of this constraint, strategies for

the intelligent placement of data centres to meet the

data sovereignty laws while preserving application

performance are needed. When applications extend

across multiple providers, applications will likely be

stuck in a deployment loop, as geo-fencing features

offered by major cloud providers can conflict.

Consequently, efficient data management in a cross-

cloud context involves not only the logical

consistency of application state but also the physical

movement of data. These approaches need to be

integrated as services in the developer platforms to

guarantee robust data portability and state handling

through replication, failover, consistency

enforcement and compliance policy alignment.

5. Scaling Across Clouds: Resource

Orchestration, Auto Scaling, and Performance

The ability to scale is a defining attribute of any

modern application platform, and the nature of a

cross-cloud environment complicates and expands

the scale dramatically. There is much more to cloud

scaling than increasing instance counts; it means

orchestrated scaling, load balancing, autoscaling, and

scaling monitoring that is not just in one network

domain but across availability zones and provider

architectures. For cross-cloud orchestration

platforms, dynamic provisioning of the resource must

be supported, with low latency, low cost and

sustaining SLAs, among other things. KubeFed, an

abbreviation for Kubernetes Federation, is a

Kubernetes orchestration across multiple Kubernetes

clusters over various cloud providers. It gives a

unified control plane to platform teams to specify

global deployment policies and operate services over

federated clusters [1, 16]. Scaling triggers, metrics

and pricing models vary between how the cloud

providers define scaling, making auto scaling across

clouds complicated. To assist developers in

managing these differences, unified scaling

frameworks must abstract these differences into a

single, harmonized interface. Documented work also

includes a cost-aware autoscaling model for cross-

cloud environments for dynamically selecting the

most cost-effective cloud resources under a given

workload and current market pricing [2, 17]. Cross-

cloud performance optimization requires addressing

both compute and network bottlenecks. To

compensate for inter-cloud latency, which is typically

higher than intra-cloud latency, bandwidth must be

effectively load-balanced. Global load balancers,

such as Cloudflare or Google Cloud, can be utilized

to distribute traffic evenly through DNS-based

routing. Yet, performing consistent performance

monitoring over clouds is still challenging, and

observability tools, including Prometheus and

Grafana, have to be coupled with cross-cloud data

collection plugins [3, 18]. These capabilities work

together to enable the creation of truly elastic systems

that will perform reliably and scale predictably, no

matter the provider of cloud. These capabilities need

to be surfaced in developer platforms in the form of

unified APIs with intelligent defaults, while

developers can develop application logic, instead of

infrastructure constraints.

6. Security and Compliance in Multi-Cloud

Environments

Credibility for any cross-cloud deployments starts

with security and compliance. Moving to multiple

cloud environments adds considerable complexity to

identity management, encryption standards, audit

trails and functions related to compliance reporting.

The consistent IAM across providers is one of the

central challenges. Different majors in major clouds

provide proprietary policies and role definitions

different from each other. These models must be

normalized, either by their developer platform or by

offering their federated IAM services. One

mechanism of Cross Cloud SSO (single sign on) is

identity federation using standards like SAML, OIDC

and OAuth 2.0 [4, 19]. Encryption and key

management is another very critical area. Provider-

specific Cloud native key management services

(KMS) challenge a consistent encryption policy

across clouds. External key management systems

(EKMS) or bring your own key (BYOK) strategies

have become the choice of platform architects to

maintain uniform cryptographic control [5, 20]. The

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3021

life of a network engineer is full of binary, yes or no

answers, but it is not easy to summarize these

concepts in just binary, yes or no answers because of

compliance requirements like GDPR, HIPAA and

PCI DSS that restrict data movement, access logging

and retention requirements. For these cross-cloud

developer platforms to enforce security and

compliance rules declaratively across environments,

they must be integrated with policy-as-code

frameworks such as Open Policy Agent (OPA). In

addition, audit logging and monitoring systems are

intended to provide a single view of events across

tools, on the assumption that events (1) are traceable

and (2) must provide forensic capabilities. However,

if trust boundaries are blurred across clouds, this must

also be incorporated into the security model as a zero-

trust architecture. Security of dynamic, multi-cloud

workloads (shifting from compute to workload-

focused) must adhere to the principles of zero trust:

continuous verification, micro-segmentation and

least privilege access [6, 21]. Developer platforms

that are designed with security first will guarantee

that portability and scale is not paid for through

exposure. Platforms can offer security as a built-in

feature, not as an afterthought, if they embed

compliance tools, policy enforcement and encryption

controls into the development lifecycle.

7. Future Directions: Towards Intelligent Autonomous Cross-Cloud Platforms

Table 1 Emerging Capabilities and Impact Areas in Next-Generation Cross-Cloud Developer

Platforms

Capability Functional Focus Expected Impact
Example

Technologies/Approaches

Autonomous Resource

Optimization

Dynamic workload

redistribution based on

real-time data

Reduced operational costs,

improved performance,

minimal manual intervention

AI-based autoscalers, cloud

cost advisors

Declarative Policy

Enforcement

Continuous application

of rules and

compliance constraints

Consistent access control,

enhanced governance,

reduced configuration drift

OPA (Open Policy Agent),

GitOps, Kyverno

Edge-First Deployment

Models

Proximity-based

application delivery

Lower latency, improved UX

in geographically distributed

user bases

Kubernetes at the edge,

Cloudflare Workers

Platform Intelligence via

ML/AI

Predictive analytics for

system behavior

Proactive failure mitigation,

smart provisioning decisions

ML-based orchestration

agents, Reinforcement

Learning models

Developer-Centric

Abstractions

Simplified interfaces

and cognitive load

reduction

Increased developer

productivity, faster

onboarding, less cloud-

specific learning

Low-code/no-code tools,

unified SDKs

Distributed Control

Planes

Coordination without

central bottlenecks

Improved fault tolerance,

decentralized management

KubeFed, Crossplane,

Consul by HashiCorp

Portable Execution

Environments

Application runtime

independence from

underlying platforms

Greater app mobility,

reduced vendor lock-in

WASM runtimes, micro-

frontends, serverless

Moving forward, cross-cloud developer platforms are

about increasing autonomy, intelligence and

developer-centric design. Autonomous orchestration,

AI-driven decision making and self-healing

infrastructure are trending. Workload placement and

cost optimisation are becoming a promising direction

via the use of AI/ML. They can predict traffic

patterns, failure probabilities or regional performance

problems and, in advance, move resources among

clouds. Intelligent orchestration agents that

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3022

dynamically adjust resource allocation as measured

in real time are explored in an article [7, 22].

Governance is also maturing in a policy-driven form

where developer platforms use declarative policies to

manage scaling thresholds, deployment conditions

and access control. Instead, enforcing these policies

is automated agents that modify platform behaviour

without human intervention. Related to that is

GitOps, where configuration and policies are version-

controlled and then continuously applied. Deeper

gains from these developments would be realised if

they are followed by a revised decentralized control

plane and edge-native developer platforms.

Deploying services closer to users enables these

platforms to reduce latency and improve fault

tolerance while keeping centralized coordination

logic. Applications have much for contemporary

applications, including micro-frontends, serverless

functions and WASM-based workloads, further

abstracting the execution environment, providing

portability and responsiveness [16-22]. The main

pattern to emerge will be that as these technologies

mature, developer platforms will become intelligent

systems that handle complexity autonomously, so

developers can again focus purely on innovation and

value delivery. The following table 1 shows the key

features driving the next generation of cross-cloud

developer platforms, their strategic impact and the

technologies underlying them to better understand

how many of these emerging trends translate into

functional capabilities and practical benefits.

Conclusion

To offer developer platforms supporting portability

and scalability across clouds requires a holistic,

multi-dimensional approach, tackling a complete

architecture abstraction, developer experience, data

management, performance tuning and resilient

security frameworks. Architectural abstraction is

defined to enable applications to run across various

cloud infrastructures without being tied to a specific

provider, while ensuring a consistent developer

experience that simplifies and streamlines multi-

cloud development workflows. Data gravity and

consistency, and compliance across cloud boundaries

can only be overcome if absolutely necessary.

Applications need to scale predictably and at high

availability, and integrated security models are key to

enforcing identity management, encryption and

regulatory compliance across providers. These

platforms incorporate advanced orchestration tools,

unified developer tooling and intelligent automation

like AI workload scheduling and policy enforcement

to allow organizations to realise the full benefits of a

multi-cloud strategy; improved resilience, flexibility,

and cost efficiency. In the foreseeable future, more

research and innovation in this area will be essential

to devise and build the next wave of developer

platforms, which will be powered by intelligent

automation, a decentralized architecture, and never

breaking the scale across cloud deployments.

Reference

[1]. Aldas, S., & Babakian, A. (2023). Cloud-

native service mesh readiness for 5G and

beyond. IEEE Access, 11, 132286–132295.

[2]. Basher, M. (2019). DevOps: An explorative

case study on the challenges and opportunities

in implementing Infrastructure as Code.

[3]. Casola, V., Rak, M., & Villano, U. (2010,

August). Identity federation in cloud

computing. In 2010 Sixth International

Conference on Information Assurance and

Security (pp. 253–259). IEEE.

[4]. Colotti, M. E. (2023). Enhancing multi-cloud

security with policy as code and a cloud

native application protection platform

(Doctoral dissertation, Politecnico di Torino).

[5]. Cuadrado, F., Navas, A., Duenas, J. C., &

Vaquero, L. M. (2014, April). Research

challenges for cross-cloud applications. In

2014 IEEE Conference on Computer

Communications Workshops (INFOCOM

WKSHPS) (pp. 19–24). IEEE.

[6]. Gouglidis, A., Mavridis, I., & Hu, V. C.

(2014). Security policy verification for multi-

domains in cloud systems. International

Journal of Information Security, 13(1), 97–

111.

[7]. Imran, H. A., Latif, U., Ikram, A. A., Ehsan,

M., Ikram, A. J., Khan, W. A., & Wazir, S.

(2020, November). Multi-cloud: A

comprehensive review. In 2020 IEEE 23rd

International Multitopic Conference (INMIC)

(pp. 1–5). IEEE.

[8]. Iosup, A., Uta, A., Versluis, L., Andreadis,

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 06 June 2025

Page No: 3017 - 3023

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0444

International Research Journal on Advanced Engineering Hub (IRJAEH)

3023

G., Van Eyk, E., Hegeman, T., ... & Toader,

L. (2018, July). Massivizing computer

systems: A vision to understand, design, and

engineer computer ecosystems through and

beyond modern distributed systems. In 2018

IEEE 38th International Conference on

Distributed Computing Systems (ICDCS)

(pp. 1224–1237). IEEE.

[9]. Jakkaraju, A. (2024). Cost-aware

infrastructure automation using predictive

analytics for multi-cloud environments.

SSRN.

[10]. Koneru, N. M. K. (2025). Optimizing CI/CD

pipelines for multi-cloud environments:

Strategies for AWS and Azure integration.

The Eastasouth Journal of Information

System and Computer Science, 2(03), 288–

310.

[11]. Kubernetes, T. (2019). Kubernetes. Retrieved

May 24, 2019.

[12]. Lin, Y. (2012). The emergence of the techno-

elite audience and free/open source content: A

case study on BBC Backstage. Participations:

Journal of Audience and Reception Studies,

9(2).

[13]. Ramalingam, C., & Mohan, P. (2021).

Addressing semantics standards for cloud

portability and interoperability in multi cloud

environment. Symmetry, 13(2), 317.

[14]. Ramamoorthi, V. (2023). Exploring AI-

driven cloud-edge orchestration for IoT

applications.

[15]. Räsänen, T. (2023). Securing intra-pod

communication in Kubernetes.

[16]. Sandru, C., Petcu, D., & Munteanu, V. I.

(2012, November). Building an open-source

platform-as-a-service with intelligent

management of multiple cloud resources. In

2012 IEEE Fifth International Conference on

Utility and Cloud Computing (pp. 333–338).

IEEE.

[17]. Şener, U., Gökalp, E., & Eren, P. E. (2017).

ClouDSS: A decision support system for

cloud service selection. In Economics of

grids, clouds, systems, and services: 14th

International Conference, GECON 2017,

Biarritz, France, September 19–21, 2017,

Proceedings 14 (pp. 249–261). Springer

International Publishing.

[18]. Sivaseelan, S. (2024). Enhancing cyber

resilience in multi-cloud environments.

[19]. Ullah, M. A. (2015). Design and

implementation of a framework for multi-

cloud service broker (Doctoral dissertation,

Ryerson University, Canada).

[20]. Vaño, R., Lacalle, I., Sowiński, P., S-Julián,

R., & Palau, C. E. (2023). Cloud-native

workload orchestration at the edge: A

deployment review and future directions.

Sensors, 23(4), 2215.

[21]. Xu, Q., Yang, C., & Zhou, A. (2024). Native

distributed databases: Problems, challenges

and opportunities. Proceedings of the VLDB

Endowment, 17(12), 4217–4220.

[22]. Şener, U., Gökalp, E., & Eren, P. E. (2017).

ClouDSS: A decision support system for

cloud service selection. In Economics of

grids, clouds, systems, and services: 14th

International Conference, GECON 2017,

Proceedings (pp. 249–261). Springer.

https://irjaeh.com/

