

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 03 March 2024

Page No: 508 - 513

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0073

International Research Journal on Advanced Engineering Hub (IRJAEH)

508

Implementation of FFT-Based Convolutional Neural Networks on Medical

Imagery for Studying Performance Boost
Rohit Bokade1*, Dr. Namrata Gharat2
1 PG - Artificial intelligence, K J Somaiya Institute of Technology, Sion, Mumbai, India.
2 Assistant Professor -Artificial intelligence, K J Somaiya Institute of Technology, Sion, Mumbai, India.

Emails: rohit.bokade@somaiya.edu1, ngharat@somaiya.edu2

*Corresponding Author Orcid ID: 0009-0005-5893-0969

Abstract

This study focuses on the implementation of CNNs based on the Fast Fourier Transform (FFT) in medical

images to study the performance boost compared to traditional neural networks. Using a Kaggle dataset of

brain tumour imagery, we examine the effectiveness of FFT-based CNNs for the detection and classification

of brain tumours. By leveraging the advantages of FFT, we aim to improve the efficiency and accuracy of

CNNs in analyzing medical images. Our results demonstrate that FFT-based CNNs outperform traditional

CNNs in terms of accuracy and computational efficiency. This performance boost is attributed to the inherent

properties of FFT, which enable faster convolution operations and reduced complexity. In order to ensure a

fair comparison between traditional CNNs and Fourier Transform-based convolutions, the forward pass for

both methods was implemented from scratch using NumPy and SciPy libraries. By doing so, any optimization

benefits gained by either technique through specific libraries or computation platforms are eliminated. This

approach allows for a more accurate evaluation of the relative performance of each method in terms of

inference time and accuracy, while also providing insights into potential areas for improvement and

optimization.

Keywords: FFT-CNN, CNN, FFT, Fourier transform for CNN

1. Introduction

The Fast Fourier Transform (FFT) is an efficient

algorithm for computing the Discrete Fourier

Transform (DFT) of a signal or image. The

Convolution Theorem, a fundamental mathematical

result, states that under appropriate conditions, the

Fourier transform of a convolution of two functions

is the pointwise product of their Fourier transforms.

In other words, convolution in one domain (e.g., time

domain) is equivalent to pointwise multiplication in

the other domain (e.g., frequency domain). This

property of the FFT enables a significant reduction in

the computational complexity of the convolution

operation in CNNs. These techniques can help to

address the challenge of computational complexity in

Convolutional neural networks and make them more

deployable. [1] In this study, we aim to conduct a

comparative analysis between the performance of

FFT-based convolutions and standard

convolutions. We have chosen medical imagery as

the target domain for our imagery dataset, as

medical images tend to exhibit complex feature

sets and characteristics that are favorable for

examining the performance of algorithms. By

focusing on medical imagery, we can gain valuable

insights into the computational complexity and

efficiency of FFT-based convolutions versus

standard convolutions in real-world applications.

Furthermore, this comparison will help us

determine the potential benefits of employing

FFT-based convolutions in the medical imaging

domain, which could lead to improved

performance and faster processing times for image

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 03 March 2024

Page No: 508 - 513

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0073

International Research Journal on Advanced Engineering Hub (IRJAEH)

509

reconstruction processes in these critical healthcare

applications. The proposed study intends to quantify

the acceleration or gain factor achieved by the

technique of Fast Fourier Transform over

conventional convolutional neural networks by

creating a common platform implementation and

running both the technique in forward propagation of

neural network model with same training loop

operating with same weights and biases so as to avoid

any source of error. The dataset to be chosen needs to

be simpler dataset to work on since the custom

implementation of forward propagation will be

computed without any extra acceleration like gpu or

tpu modules.

2. Methodology

Theoretical Analysis of Convolution theorem

Implementation would first require a theoretical basis

of the convolution theorem which governs the

proposed methodology. The underlying intuition

given by the Convolution Theorem states that for two

functions v and u, we have

F (v∗u) = F (v) xF (u) where F denotes the Fourier

transform, * denotes convolution and x denotes the

Hadamard Pointwise Product. [1] This allows for

convolution to be calculated more efficiently using

Fast Fourier Transforms (FFTs). Since convolution

corresponds to the Hadamard product in the Fourier

domain and given the efficiency of the Fourier

transform, this method involves significantly fewer

computational operations than when using the sliding

kernel spatial method and is therefore much faster.

[2] The network architecture table is shown in Table

1.

Selection of Base Dataset

Several parameters for the selection of the dataset to

be considered for the proposed study are as

follows:

1. The selected dataset should have images with

complex patterns that need to be learned.

2. The dataset should not be complicated in

terms of having multiple output classes or

even complex classification, which may

introduce classification level errors in the

measurement of speed difference since any

significant time added by non-convolutional

layers in the network may add up and distort

the results.

3. Since the study needs to be conducted on

machines with limited resources, the proposed

dataset should preferably be monochrome to

avoid multiple parallel layers being involved

causing an increase in the number of weights

and biases that need to be maintained during

the training.

4. Dataset should have been worked upon earlier

to ensure sufficient reference models are

available for the same. Based on these criteria,

Brain Tumor Dataset from Kaggle. The

selected dataset has a binary classification of

monochrome brain scan imagery data which

has complex patterns to learn from while

maintaining the smaller size of images which

means the model could be trained over

general-purpose hardware. The model also has

several legacy models trained on top of it.

Training of base model

The base model was designed to have minimal

complexity yet factual accuracy. This was

designed as follows:

Table 1 Network Architecture Table

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 223, 223, 1) 10

max pooling2d (MaxPooling2D) (None, 111, 111, 1) 0

conv2d 1 (Conv2D) (None, 109, 109, 1) 10

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 03 March 2024

Page No: 508 - 513

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0073

International Research Journal on Advanced Engineering Hub (IRJAEH)

510

max pooling2d 1

(MaxPooling2D)
(None, 54, 54, 1) 0

conv2d 2 (Conv2D) (None, 52, 52, 1) 10

max pooling2d 2

(MaxPooling2D)
(None, 26, 26, 1) 0

flatten (Flatten) (None, 676) 0

dense (Dense) (None, 640) 433280

dense 1 (Dense) (None, 1) 641

Implementation of Base Model

The base model described above was implemented on

a Kaggle kernel since the dataset was directly

available through the Jupyter Notebook for training.

1. The following code was used to do Data

parsing

#the two categories present in our dataset categories=

['no','yes']

#Display some of the images from the original

datasetfor category in categories:

Win=plt.figure (fig size= (20, 10))

If category=='no':

win.suptitle ("Original Data\n\nBrain MRI Images

without Tumor", fontsize=15)

Else:

win.suptitle ("Brain MRI Images with Tumor",

fontsize=15)

Index=1

for img in

os.listdir(os.path.join("/kaggle/input/brain-mri-

images-for-brain-tumor-

detection/brain_tumor_dataset",category)):

image=cv2.imread(os.path.join("/kaggle/input/brain-

mri-images-for-brain-tumor-

detection/brain_tumor_dataset",category,img))

Try:

a. win.add_subplot (6, 6, index)

b. plt.imshow (image)

c. plt.axis ('off')

d. Index=index+1

Except:

e. Break

plt.show ()

2. To reduce the overfitting of model, the

data set was extended by augmenting the

data pipeline in the runtime.

#Create an augmented image

generatordatagen=ImageDataGenerator

(width_shift_range=0.1, height_shift_range=0.1,

zoom_range=0.1, horizontal_flip=True,

shear_range=0.15, rotation_range=10)

3. Training of Keras model:

Model = keras.models.Sequential ([

keras.layers.Conv2D (1, (3, 3), activation='relu',

input shape= (225, 225, 1)),

keras.layers.MaxPooling2D (2, 2),

keras.layers.Conv2D (1, (3, 3), activation='relu'),

keras.layers.MaxPooling2D (2, 2),

keras.layers.Conv2D (1, (3, 3), activation='relu'),

keras.layers.MaxPooling2D (2, 2),

keras.layers.Flatten (),

keras.layers.Dense (640, activation='relu'),

keras.layers.Dense (1, activation='sigmoid')])

From tensorflow.keras.optimizers import

RMSprop

model.compile (loss='binary_crossentropy',

Optimizer=RMSprop (learning_rate=0.0001),

Metrics= ['acc']

4. Implementation of platform

independent convolutions:

Def fft_forward (img, w, b, hparameters1):

l = img. Shape [1]

Pa = (l - 3) // 2

f2 = np.pad (w.reshape (3, 3), (pa, pa))

Img = img.reshape (l, l)

If l % 2 == 0:

l = l-1

Img = img [: l,: l]

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 03 March 2024

Page No: 508 - 513

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0073

International Research Journal on Advanced Engineering Hub (IRJAEH)

511

f = np.fft.fft2 (img)

f21 = np.fft.fft2 (f2)

AAA = f * f21

Final = np.fft.ifft2 (AAA)

Zeros = np.zeros ((l, l))

Zeros [1: l // 2+1, 1: l // 2+1] = final. Real [l // 2+1: l

// 2+1:]

Zeros [1: l // 2+1, l // 2+1:] = final. Real [l // 2+1: 1: l

// 2+1]

Zeros [l // 2+1: 1: l // 2+1] = final. Real [1: l // 2+1, l

// 2+1:]

Zeros [l // 2+1: l // 2+1:] = final. Real [1: l // 2+1, 1: l

// 2+1]

Zeros = zeros [1: l, 1: l] + b

Else:

f = np.fft.fft2 (img)

f21 = np.fft.fft2 (f2)

AAA = f * f21

Final = np.fft.ifft2 (AAA)

Zeros = np.zeros ((l, l))

Zeros [1: l // 2+1, 1: l // 2+1] = final. Real [l // 2+1: l

// 2+1:]

Zeros [1: l // 2+1, l // 2+1:] = final. Real [l // 2+1: 1: l

// 2+1]

Zeros [l // 2+1: 1: l // 2+1] = final. Real [1: l // 2+1, l

// 2+1:]

Zeros [l // 2+1: l // 2+1:] = final. Real [1: l // 2+1, 1: l

// 2+1]

Zeros = zeros [1: l-1, 1: l-1] + b

Return zeros

Def conv_forward (A_prev, W, b, hparameters):

(M, n_H_prev, n_W_prev, n_C_prev) =

A_prev.shape [0], A_prev.shape [1], A_prev.shape

[2], A_prev.shape [3]

(F, f, n_C_prev, n_C) = W.shape [0], W.shape [1],

W.shape [2], W.shape [3]

Stride = hparameters ["stride"]

Pad = hparameters ["pad"]

n_H = int (((n_H_prev - f + (2 * pad)) / stride) + 1)

n_W = int (((n_W_prev - f + (2 * pad)) / stride) + 1)

Z = np.zeros ((m, n_H, n_W, n_C))

A_prev_pad = zero_pad (A_prev, pad)

For i in range (m):

a_prev_pad = A_prev_pad[i]

For h in range (n_H):

a. for w in range(n_W):

b. for c in range(n_C):

i. vert_start = h * stride

ii. vert_end = vert_start + f

iii. horiz_start = w * stride

iv. horiz_end = horiz_start + f

v. a_slice_prev =

a_prev_pad[vert_start:vert_end,horiz

_start:horiz_end,:]

vi. Z[i, h, w, c] =

conv_single_step(a_slice_prev,

W[:,:,:,c], b[:,:,:,c])

Assert (Z.shape == (m, n_H, n_W, n_C))

Cache = (A_prev, W, b, hparameters)

Return Z, cache

Performance Evaluation:

For enabling comparison of performance, forward

passes of both traditional CNN and FFT CNN were

written from scratch, so as to avoid any undue

boost to one due to implementation details. To get

timed output of these sections following code

blocks were used. [4]

conv_out = []

Start = time. Time ()

For i in range (len(x_test)):

 Img = cv2.resize (x_test[i], (225,225)).reshape

(1, 225, 225, 1)

 Output = conv_model (img, weights,

hparameters1, hparameters2)

 If output [0] >= 0.5:

 conv_out.append (1)

 Else:

 conv_out.append (0)

End = time. Time ()

 Print ('Time taken by CNN to predict class for

253 images is', end - start)

fft_out = []

Start = time.time ()

For i in range (len (x_test)):

 Img = cv2.resize (x_test[i], (225,225)).reshape

(1, 225, 225, 1)

 output1 = fft_model (img, weights, hparameters1,

hparameters2)

 If output1 [0] >= 0.5:

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 03 March 2024

Page No: 508 - 513

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0073

International Research Journal on Advanced Engineering Hub (IRJAEH)

512

 fft_out.append (1)

 Else:

 fft_out.append (0)

End = time. Time ()

Print ('Time taken by FFT to predict the class for 253

images is', end - start)

3. Results and Discussion

3.1 Evaluation of Confusion Matrix

Table 2 shows the comparison of the confusion

matrix.

Table 2 Confusion Matrix Comparison
Attribute Normal

Convolution

FFT

Convolution

Time Taken 200.331 38.61

True Positive 83 78

False Positive 25 30

False

Negative
17 18

True Negative 128 127

3.2 Evaluation of Observation of Normal CNN

Over FFT CNN

From these observations following evaluations were

derived. Which points to a 5.1x increase in the speed

of CNN due to the FFT technique. Observation of

Normal CNN Over FFT CNN shown in Table 3. [6]

3.3 Discussion of Results

1. The proposed method showed around 5.1x

increase in the speeds of forward pass.

2. Both the methods showed similar recall

performances. With minor difference between

recalls.

3. The precision performance of the proposed

algorithm showed deterioration over the original

method.

4. The accuracy had a Deterioration of around 3%

which could be acceptable for general cases

although could be a matter of discussion in

critical domains like medical domains

5. The observations suggest that the proposed

method provides boost of 1.64x with loss of

every 1% in accuracy. Interpolating this one

can understand that, one can expect loss of

1.2% for every 2x increase in speed by the

proposed algorithm. [5]

Table 3 Observation of Normal CNN over

FFT CNN

Metric Value

Ratio of speeds 5.1

Recall of original CNN 0.83

Recall of FFT CNN 0.81

Precision of CNN 0.76

Precision of FFT CNN 0.72

F-measure Accuracy of CNN 0.793

F-measure Accuracy of FFT CNN 0.762

Average increase in speed per

percent decrease in accuracy
1.64

Conclusion

The proposed method of using FFT-based

convolutional neural networks showed promising

improvements over traditional CNN methods. The

results were calculated even without factoring in

real-world boosting of FFT algorithms by GPUs

increasing the real-world speeds further by

optimization. While the speed boost factors have

been impressive, one should be cautious while

using these algorithms in accuracy intensive tasks

like the medical domain as a decrease in accuracy

may become a life-or-death situation. However,

the proposed method is a promising prospect for

applications requiring high-speed convolutions on

very large kernel sizes like self-driving cars or

planet-scale weather models. The study also

successfully demonstrated the implementation of

convolutional neural networks from scratch using

the proposed method.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 03 March 2024

Page No: 508 - 513

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0073

International Research Journal on Advanced Engineering Hub (IRJAEH)

513

References

[1]. Highlander, T. & Rodriguez, A. Very

Efficient Training of Convolutional Neural

Networks using Fast Fourier Transform and

Overlap-and-Add. (2016)

[2]. Hsiao, V., Nau, D. & Dechter, R. Fast Fourier

Transform Reductions for Bayesian Network

Inference. Proceedings of the 25th

International Conference on Artificial

Intelligence and Statistics. 151 pp. 6445-6458

(2022, 3, 28),

https://proceedings.mlr.press/v151/hsiao22a.

html

[3]. Pratt, H., Williams, B., Coenen, F. & Zheng,

Y. FCNN: Fourier Convolutional Neural

Networks. Machine Learning and Knowledge

Discovery in Databases. pp. 786-798 (2017)

[4]. Vasilache, N., Johnson, J., Mathieu, M.,

Chintala, S., Piantino, S. & LeCun, Y. Fast

convolutional nets with fbfft: A GPU

performance evaluation. ArXiv Preprint

ArXiv: 1412.7580. (2014)

[5]. Cooley, J. & Tukey, J. An algorithm for the

machine calculation of complex Fourier

series. Mathematics of Computation. 19, 297-

301 (1965)

[6]. Wang, Z., LAN, Q., Huang, D. & Wen, M.

Combining FFT and spectral-pooling for

efficient convolution neural network model.

2016 2nd International Conference on

Artificial Intelligence and Industrial

Engineering (AIIE 2016). pp. 203-206 (2016)

https://irjaeh.com/

