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Abstract 

This study focuses on the implementation of CNNs based on the Fast Fourier Transform (FFT) in medical 

images to study the performance boost compared to traditional neural networks. Using a Kaggle dataset of 

brain tumour imagery, we examine the effectiveness of FFT-based CNNs for the detection and classification 

of brain tumours. By leveraging the advantages of FFT, we aim to improve the efficiency and accuracy of 

CNNs in analyzing medical images. Our results demonstrate that FFT-based CNNs outperform traditional 

CNNs in terms of accuracy and computational efficiency. This performance boost is attributed to the inherent 

properties of FFT, which enable faster convolution operations and reduced complexity. In order to ensure a 

fair comparison between traditional CNNs and Fourier Transform-based convolutions, the forward pass for 

both methods was implemented from scratch using NumPy and SciPy libraries. By doing so, any optimization 

benefits gained by either technique through specific libraries or computation platforms are eliminated. This 

approach allows for a more accurate evaluation of the relative performance of each method in terms of 

inference time and accuracy, while also providing insights into potential areas for improvement and 

optimization. 
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1. Introduction 

The Fast Fourier Transform (FFT) is an efficient 

algorithm for computing the Discrete Fourier 

Transform (DFT) of a signal or image. The 

Convolution Theorem, a fundamental mathematical 

result, states that under appropriate conditions, the 

Fourier transform of a convolution of two functions 

is the pointwise product of their Fourier transforms. 

In other words, convolution in one domain (e.g., time 

domain) is equivalent to pointwise multiplication in 

the other domain (e.g., frequency domain). This 

property of the FFT enables a significant reduction in 

the computational complexity of the convolution 

operation in CNNs. These techniques can help to 

address the challenge of computational complexity in  

Convolutional neural networks and make them more  

deployable. [1] In this study, we aim to conduct a 

comparative analysis between the performance of 

FFT-based convolutions and standard 

convolutions. We have chosen medical imagery as 

the target domain for our imagery dataset, as 

medical images tend to exhibit complex feature 

sets and characteristics that are favorable for 

examining the performance of algorithms. By 

focusing on medical imagery, we can gain valuable 

insights into the computational complexity and 

efficiency of FFT-based convolutions versus 

standard convolutions in real-world applications. 

Furthermore, this comparison will help us 

determine the potential benefits of employing 

FFT-based convolutions in the medical imaging 

domain, which could lead to improved 

performance and faster processing times for image 
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reconstruction processes in these critical healthcare 

applications. The proposed study intends to quantify 

the acceleration or gain factor achieved by the 

technique of Fast Fourier Transform over 

conventional convolutional neural networks by 

creating a common platform implementation and 

running both the technique in forward propagation of 

neural network model with same training loop 

operating with same weights and biases so as to avoid 

any source of error. The dataset to be chosen needs to 

be simpler dataset to work on since the custom 

implementation of forward propagation will be 

computed without any extra acceleration like gpu or 

tpu modules. 

2. Methodology 

Theoretical Analysis of Convolution theorem 

Implementation would first require a theoretical basis 

of the convolution theorem which governs the 

proposed methodology. The underlying intuition 

given by the Convolution Theorem states that for two 

functions v and u, we have 

F (v∗u) = F (v) xF (u) where F denotes the Fourier 

transform, * denotes convolution and x denotes the 

Hadamard Pointwise Product. [1] This allows for 

convolution to be calculated more efficiently using 

Fast Fourier Transforms (FFTs). Since convolution 

corresponds to the Hadamard product in the Fourier 

domain and given the efficiency of the Fourier 

transform, this method involves significantly fewer 

computational operations than when using the sliding 

kernel spatial method and is therefore much faster. 

[2] The network architecture table is shown in Table 

1.  

Selection of Base Dataset 

Several parameters for the selection of the dataset to 

be considered for the proposed study are as 

follows: 

1. The selected dataset should have images with 

complex patterns that need to be learned. 

2. The dataset should not be complicated in 

terms of having multiple output classes or 

even complex classification, which may 

introduce classification level errors in the 

measurement of speed difference since any 

significant time added by non-convolutional 

layers in the network may add up and distort 

the results. 

3. Since the study needs to be conducted on 

machines with limited resources, the proposed 

dataset should preferably be monochrome to 

avoid multiple parallel layers being involved 

causing an increase in the number of weights 

and biases that need to be maintained during 

the training. 

4. Dataset should have been worked upon earlier 

to ensure sufficient reference models are 

available for the same. Based on these criteria, 

Brain Tumor Dataset from Kaggle. The 

selected dataset has a binary classification of 

monochrome brain scan imagery data which 

has complex patterns to learn from while 

maintaining the smaller size of images which 

means the model could be trained over 

general-purpose hardware. The model also has 

several legacy models trained on top of it. 

 

Training of base model 

The base model was designed to have minimal 

complexity yet factual accuracy. This was 

designed as follows: 

 

 

Table 1 Network Architecture Table 

Layer (type) Output Shape Param # 

conv2d (Conv2D) (None, 223, 223, 1) 10 

max pooling2d (MaxPooling2D) (None, 111, 111, 1) 0 

conv2d 1 (Conv2D) (None, 109, 109, 1) 10 
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max pooling2d 1 

(MaxPooling2D) 
(None, 54, 54, 1) 0 

conv2d 2 (Conv2D) (None, 52, 52, 1) 10 

max pooling2d 2 

(MaxPooling2D) 
(None, 26, 26, 1) 0 

flatten (Flatten) (None, 676) 0 

dense (Dense) (None, 640) 433280 

dense 1 (Dense) (None, 1) 641 

Implementation of Base Model 

The base model described above was implemented on 

a Kaggle kernel since the dataset was directly 

available through the Jupyter Notebook for training. 

1. The following code was used to do Data 

parsing 

#the two categories present in our dataset categories= 

['no','yes'] 

#Display some of the images from the original 

datasetfor category in categories: 

Win=plt.figure (fig size= (20, 10)) 

If category=='no': 

win.suptitle ("Original Data\n\nBrain MRI Images 

without Tumor", fontsize=15) 

Else: 

win.suptitle ("Brain MRI Images with Tumor", 

fontsize=15)  

Index=1 

for img in 

os.listdir(os.path.join("/kaggle/input/brain-mri-

images-for-brain-tumor-

detection/brain_tumor_dataset",category)): 

image=cv2.imread(os.path.join("/kaggle/input/brain-

mri-images-for-brain-tumor-

detection/brain_tumor_dataset",category,img)) 

Try: 

a. win.add_subplot (6, 6, index) 

b. plt.imshow (image) 

c. plt.axis ('off') 

d. Index=index+1 

Except: 

e. Break 

plt.show () 

 

 

2. To reduce the overfitting of model, the 

data set was extended by augmenting the 

data pipeline in the runtime. 

#Create an augmented image 

generatordatagen=ImageDataGenerator 

(width_shift_range=0.1, height_shift_range=0.1, 

zoom_range=0.1, horizontal_flip=True, 

shear_range=0.15, rotation_range=10) 

3. Training of Keras model: 

Model = keras.models.Sequential ([ 

keras.layers.Conv2D (1, (3, 3), activation='relu', 

input shape= (225, 225, 1)), 

keras.layers.MaxPooling2D (2, 2), 

keras.layers.Conv2D (1, (3, 3), activation='relu'), 

keras.layers.MaxPooling2D (2, 2), 

keras.layers.Conv2D (1, (3, 3), activation='relu'), 

keras.layers.MaxPooling2D (2, 2), 

keras.layers.Flatten (), 

keras.layers.Dense (640, activation='relu'), 

keras.layers.Dense (1, activation='sigmoid')]) 

From tensorflow.keras.optimizers import 

RMSprop 

model.compile (loss='binary_crossentropy', 

Optimizer=RMSprop (learning_rate=0.0001), 

Metrics= ['acc'] 

4. Implementation of platform 

independent convolutions: 

Def fft_forward (img, w, b, hparameters1): 

l = img. Shape [1] 

Pa = (l - 3) // 2 

f2 = np.pad (w.reshape (3, 3), (pa, pa)) 

Img = img.reshape (l, l) 

If l % 2 == 0: 

l = l-1 

Img = img [: l,: l] 

https://irjaeh.com/
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f = np.fft.fft2 (img) 

f21 = np.fft.fft2 (f2) 

AAA = f * f21 

Final = np.fft.ifft2 (AAA) 

Zeros = np.zeros ((l, l)) 

Zeros [1: l // 2+1, 1: l // 2+1] = final. Real [l // 2+1: l 

// 2+1:] 

Zeros [1: l // 2+1, l // 2+1:] = final. Real [l // 2+1: 1: l 

// 2+1] 

Zeros [l // 2+1: 1: l // 2+1] = final. Real [1: l // 2+1, l 

// 2+1:] 

Zeros [l // 2+1: l // 2+1:] = final. Real [1: l // 2+1, 1: l 

// 2+1] 

Zeros = zeros [1: l, 1: l] + b 

Else: 

f = np.fft.fft2 (img) 

f21 = np.fft.fft2 (f2) 

AAA = f * f21 

Final = np.fft.ifft2 (AAA) 

Zeros = np.zeros ((l, l)) 

Zeros [1: l // 2+1, 1: l // 2+1] = final. Real [l // 2+1: l 

// 2+1:] 

Zeros [1: l // 2+1, l // 2+1:] = final. Real [l // 2+1: 1: l 

// 2+1] 

Zeros [l // 2+1: 1: l // 2+1] = final. Real [1: l // 2+1, l 

// 2+1:] 

Zeros [l // 2+1: l // 2+1:] = final. Real [1: l // 2+1, 1: l 

// 2+1] 

Zeros = zeros [1: l-1, 1: l-1] + b 

Return zeros 

Def conv_forward (A_prev, W, b, hparameters): 

(M, n_H_prev, n_W_prev, n_C_prev) = 

A_prev.shape [0], A_prev.shape [1], A_prev.shape 

[2], A_prev.shape [3] 

(F, f, n_C_prev, n_C) = W.shape [0], W.shape [1], 

W.shape [2], W.shape [3] 

Stride = hparameters ["stride"] 

Pad = hparameters ["pad"] 

n_H = int (((n_H_prev - f + (2 * pad)) / stride) + 1) 

n_W = int (((n_W_prev - f + (2 * pad)) / stride) + 1) 

Z = np.zeros ((m, n_H, n_W, n_C)) 

A_prev_pad = zero_pad (A_prev, pad) 

For i in range (m):                                

a_prev_pad = A_prev_pad[i]   

For h in range (n_H):                            

a. for w in range(n_W):                        

b. for c in range(n_C):                    

i. vert_start = h * stride 

ii. vert_end = vert_start + f 

iii. horiz_start = w * stride 

iv. horiz_end = horiz_start + f 

v. a_slice_prev = 

a_prev_pad[vert_start:vert_end,horiz

_start:horiz_end,:] 

vi. Z[i, h, w, c] = 

conv_single_step(a_slice_prev, 

W[:,:,:,c], b[:,:,:,c])                               

Assert (Z.shape == (m, n_H, n_W, n_C)) 

Cache = (A_prev, W, b, hparameters) 

Return Z, cache 

Performance Evaluation: 

For enabling comparison of performance, forward 

passes of both traditional CNN and FFT CNN were 

written from scratch, so as to avoid any undue 

boost to one due to implementation details. To get 

timed output of these sections following code 

blocks were used. [4] 

conv_out = [] 

 

Start = time. Time () 

For i in range (len(x_test)): 

  Img = cv2.resize (x_test[i], (225,225)).reshape 

(1, 225, 225, 1) 

  Output = conv_model (img, weights, 

hparameters1, hparameters2) 

  If output [0] >= 0.5: 

    conv_out.append (1) 

  Else: 

    conv_out.append (0) 

End = time. Time () 

  Print ('Time taken by CNN to predict class for 

253 images is', end - start) 

fft_out = [] 

Start = time.time () 

For i in range (len (x_test)): 

  Img = cv2.resize (x_test[i], (225,225)).reshape 

(1, 225, 225, 1) 

  output1 = fft_model (img, weights, hparameters1, 

hparameters2) 

  If output1 [0] >= 0.5: 
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    fft_out.append (1) 

  Else: 

    fft_out.append (0) 

End = time. Time () 

Print ('Time taken by FFT to predict the class for 253 

images is', end - start)  

3. Results and Discussion 

3.1 Evaluation of Confusion Matrix 

Table 2 shows the comparison of the confusion 

matrix. 

 

Table 2 Confusion Matrix Comparison 
Attribute Normal 

Convolution 

FFT 

Convolution 

Time Taken 200.331 38.61 

True Positive 83 78 

False Positive 25 30 

False 

Negative 
17 18 

True Negative 128 127 

 

3.2 Evaluation of Observation of Normal CNN 

Over FFT CNN 

From these observations following evaluations were 

derived. Which points to a 5.1x increase in the speed 

of CNN due to the FFT technique. Observation of 

Normal CNN Over FFT CNN shown in Table 3. [6] 

3.3 Discussion of Results 

1. The proposed method showed around 5.1x 

increase in the speeds of forward pass. 

2. Both the methods showed similar recall 

performances. With minor difference between 

recalls. 

3. The precision performance of the proposed 

algorithm showed deterioration over the original 

method. 

4. The accuracy had a Deterioration of around 3% 

which could be acceptable for general cases 

although could be a matter of discussion in 

critical domains like medical domains 

5. The observations suggest that the proposed 

method provides boost of 1.64x with loss of 

every 1% in accuracy. Interpolating this one 

can understand that, one can expect loss of 

1.2% for every 2x increase in speed by the 

proposed algorithm. [5] 

 

Table 3 Observation of Normal CNN over 

FFT CNN 

Metric Value 

Ratio of speeds 5.1 

Recall of original CNN 0.83 

Recall of FFT CNN 0.81 

Precision of CNN 0.76 

Precision of FFT CNN 0.72 

F-measure Accuracy of CNN 0.793 

F-measure Accuracy of FFT CNN 0.762 

Average increase in speed per 

percent decrease in accuracy 
1.64 

Conclusion 

The proposed method of using FFT-based 

convolutional neural networks showed promising 

improvements over traditional CNN methods. The 

results were calculated even without factoring in 

real-world boosting of FFT algorithms by GPUs 

increasing the real-world speeds further by 

optimization. While the speed boost factors have 

been impressive, one should be cautious while 

using these algorithms in accuracy intensive tasks 

like the medical domain as a decrease in accuracy 

may become a life-or-death situation. However, 

the proposed method is a promising prospect for 

applications requiring high-speed convolutions on 

very large kernel sizes like self-driving cars or 

planet-scale weather models. The study also 

successfully demonstrated the implementation of 

convolutional neural networks from scratch using 

the proposed method. 
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