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Abstract

This research presents a LoRa-enabled semi-autonomous rover system designed for real-time environmental
and soil parameter monitoring to facilitate data-driven decision-making (DDDM) in agriculture. The rover is
equipped with multi-modal sensors, including soil moisture, temperature, pH, NPK, electrical conductivity
(EC), light intensity, wind speed, and rainfall sensors, to capture high-resolution field data. Utilizing LoRa
communication, these data points are transmitted to a cloud-based server for processing and analysis. A
Random Forest-based Al model is employed to correlate real-time sensor data with historical agricultural
datasets from Tamil Nadu, enabling predictive analytics for crop selection and soil health assessment. The
system generates data-driven agronomic recommendations, assisting farmers in optimizing crop yield,
resource utilization, and sustainable farming practices. A dashboard-based web interface provides intuitive
visualizations and insights, ensuring accessibility and informed decision-making. This loT-integrated
precision agriculture framework enhances spatial and temporal data analysis for improved agricultural
productivity. By leveraging Al-driven analytics and real-time monitoring, this solution contributes to
predictive farming, optimized land use, and enhanced food security, fostering a sustainable and
technologically advanced agricultural ecosystem.

Keywords: 10T, Precision Agriculture, LoRa, Autonomous Rover, Al, Machine Learning, Random Forest,
Data Analytics, Data-Driven Decision-Making, Soil Monitoring, Environmental Sensing, Crop Prediction,
Sustainable Farming, Resource Utilization.

1. Introduction

Tamil Nadu's agricultural landscape represents a
mosaic of diverse agro-climatic zones spanning from
the rain-fed regions in the west to the fertile deltas in
the east. This environmental diversity has historically
supported a rich variety of cultivars, including staple
crops like rice and millets, essential pulses, and
economically valuable cash crops such as cotton and
sugarcane [1]. However, the agricultural sector in this
region faces mounting challenges, including
increasingly erratic rainfall patterns, groundwater
depletion, soil degradation, and market volatility all
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of which threaten both farm productivity and
livelihood sustainability. Recent initiatives like the
Tamil Nadu Irrigated Agriculture Modernization and
Water-Bodies Restoration and Management (TN-
IAMWARM) project have made significant strides in
addressing these challenges through irrigation
modernization and sustainable water management
practices. Yet, a critical gap remains in providing
farmers with field-specific, data-driven decision
support that integrates real-time environmental
monitoring with predictive analytics. The emergence
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of  semi-autonomous  rovers  represents a
technological paradigm shift in agricultural
monitoring. These advanced platforms navigate
agricultural fields with minimal human intervention,
systematically collecting high-resolution data on
critical parameters that determine crop health and
productivity. Equipped with an array of sophisticated
sensors, these rovers continuously monitor soil
moisture gradients, temperature variations, pH
fluctuations, essential nutrient concentrations (NPK),
and environmental conditions including light
intensity and precipitation patterns. This granular,
field-specific data acquisition transcends traditional
sampling methods, enabling precise spatial and
temporal monitoring that captures the inherent
variability within agricultural landscapes. Research
by Shamshiri et al. (2018) demonstrates that robotics
integration in agricultural monitoring can enhance
data collection precision by up to 85% while reducing
labor requirements by 60%, creating a compelling
case for technology-enabled precision agriculture [2].
The efficacy of field monitoring systems in
agriculture hinges on reliable data transmission
capabilities across expansive rural landscapes. LoRa
(Long Range) technology emerges as an ideal
solution, offering low-power, wide-area network
communication specifically optimized for remote
agricultural environments [3]. Operating in the
unlicensed ISM radio bands, LoRa enables data
transmission over distances exceeding 10 kilometers
in rural settings while maintaining remarkable power
efficiency, with sensor nodes operating continuously
for up to five years on a single battery charge [4]. This
communication infrastructure forms the critical
backbone of agricultural Internet of Things (loT)
systems, facilitating seamless data flow from field
sensors to centralized processing systems. Studies by
Garcia et al. (2020) highlight LoRa's significance in
agricultural applications, demonstrating 99.2% data
delivery reliability in challenging rural environments
compared to conventional wireless technologies [5].
The integration of Artificial Intelligence in
agricultural decision support systems represents the
culmination of the data acquisition and transmission
pipeline. Machine learning algorithms particularly
Random Forest models excel at processing multi-
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dimensional agricultural datasets to identify complex
patterns and relationships that elude traditional
analytical approaches. These Al systems synthesize
real-time field data with historical agricultural trends,
meteorological records, and market intelligence to
generate predictive insights for crop selection,
resource optimization, and yield forecasting.
Accessible through intuitive web dashboards, these
insights  empower farmers with actionable
intelligence presented in comprehensible visual
formats. This democratization of advanced analytical
capabilities bridges the technological divide,
enabling traditional farmers to leverage sophisticated
decision support tools. Implementation of similar Al-
powered advisory systems in comparable agricultural
regions has demonstrated yield improvements of 15-
28% while reducing resource inputs by 20% [6],
highlighting the transformative potential of data-
driven agriculture. The convergence of these three
technological domains autonomous field monitoring,
efficient wireless communication, and intelligent
data analytics presents a compelling opportunity to
revolutionize agricultural practices in Tamil Nadu,
potentially addressing the persistent challenges of
resource optimization, climate resilience, and
economic sustainability.

2. Literature Survey

In recent years, precision agriculture has transformed
farming by integrating advanced technologies to
optimize crop production and sustainability through
data-driven decision-making (DDDM).

2.1 Semi-Autonomous Rovers in Agriculture
Agricultural robotics has gained prominence in recent
years, with semi-autonomous rovers offering high
precision in field monitoring and crop assessment.
Studies have shown that autonomous rovers
integrated with GPS and IMU-based navigation
provide accurate field mapping. Tamil Nadu's
fragmented landholdings necessitate such adaptable
robotic solutions to enhance efficiency and reduce
labor dependency while gathering real-time
agricultural data.

Research includes:

e Brity Das et al. (2024) developed an agricultural
rover  effectively performs  autonomous
vegetable harvesting and soil analysis using deep
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learning algorithms, enhancing
management and soil monitoring [7].

e Yuktha Bhushan et al. (2024) proposed a
multipurpose agriculture robot that can perform
various tasks in agriculture, including ploughing,
seeding, mud leveling, and water spraying, using
battery and solar power [8].

e S. Murugesan et al. (2024) proposed a robotic
vehicle that effectively clears land, performs
planting, watering, and harvesting tasks, and can
be controlled by a smart phone for efficient
farming [9].

e Earth Rover (2023) developed CLAWS, an Al-
driven rover for weed control and scouting,
focusing on sustainability.

e Fazio et al. (2021) present a semi-custom
wheeled mobile robot with high-efficiency
photovoltaic panels on the roof, enabling it to
perform tasks in harsh environments with
minimal energy consumption [10].

e Balasooriya et al. (2019) proposed a low-power,
low-cost autonomous rover with improved
maneuverability and battery life, using less
power-consuming sensors and a modified all-
wheel drive system [11].

2.2 Multi-Modal Sensors for Agricultural Data

Collection

Effective crop monitoring requires diverse sensors
capable of capturing multiple environmental and
physiological parameters. Multi-modal sensing
incorporates optical sensors, soil moisture probes,
temperature sensors, and hyperspectral imaging to
enhance data reliability, crucial for Tamil Nadu’s
heterogeneous farming landscape.

Researc includes:

e G Vasques et al. (2020) combined multiple soil
sensors improves soil property predictions and
maps, leading to more detailed and accurate
maps for precision agriculture [12].

e W lietal. (2019) proposed a proximal soil sensor
data fusion improves predictions of soil
properties, such as organic matter, pH, and
phosphorus concentrations, compared to single-
sensor approaches [13].

e P Aravind et al. (2015) developed multi-sensor
system with wireless connectivity offers accurate

crop
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and cost-effective soil moisture measurement,
with the DPHP sensor being the most cost-
effective and resistive sensor being the cheapest
option [14].

2.3 LoRa Communication for
Transmission

LoRa (Long Range) technology is a cost-effective

solution for low-power, long-range wireless

communication, making it ideal for agricultural
applications. Studies indicate that LoRa networks can
efficiently transmit data over several kilometers with
minimal energy consumption. In rural Tamil Nadu,
where conventional internet infrastructure is limited,

LoRa serves as a reliable medium for rover-to-cloud

data transmission.

Reseach includes:

e Yi Guo et al. (2024) proposed ED-RB pairing
scheme and spreading factor allocation can save
over 34.6% power in LoRa uplink systems
compared to the baseline [15].

e | Lopes et al. (2024) developed LoRa-based 10T
platform offers a low-cost, customizable solution
for real-time monitoring of soil parameters in
rural —environments, offering automation,
increased efficiency, and savings in human
resources [16].

e Zhaoxin Chang et al. (2022) developed sensor-
free soil moisture sensing using LoRa signals
achieves high accuracy, robustness, and large
sensing range for large-scale deployment in
smart agriculture, with an average error of 3.1%
[17].

e X Chavanne et al. (2022) proposed autonomous
in-situ soil sensors with LoRaWAN technology
can continuously monitor soil moisture over a
catchment, reducing maintenance and increasing
data transfer lifetime by 30% [18].

e Semtech (2021) highlights LoRa's role in smart
agriculture, achieving 50% water reduction in
commercial farms.

2.4 Al Driven for Crop Prediction

Machine learning (ML) and deep learning (DL)

techniques play a pivotal role in predictive

agriculture. Al-driven models analyze large datasets
from multi-modal sensors to forecast yield, detect
diseases, and recommend best farming practices.

Data
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Convolutional Neural Networks (CNNs) have
demonstrated superior performance in plant disease
classification, while Random Forest and Long Short-
Term Memory (LSTM) networks effectively predict
crop Yyields based on historical data.

Reseach Includes:

e Ahezam Ahewar Khan (2024) levaraged
machine learning to predict suitable crops,
optimize resources, and maximize crop Yyields,
contributing to a greener and more prosperous
future in agriculture [19].

e Prof. A. A. Chaudhari (2024) proposed loT-
based Smart Farming improves crop yield and
quality by monitoring real-time factors like
moisture,  temperature, and soil, and
recommending suitable crops based on data [20].

e Sri Hari Nallamala et al. (2024) utilized Al to
monitor crops, recommend suitable crops, detect
weeds, and predict yields, which helped improve
agriculture's health and profitability [21].

e Sathya Priya et al. (2024) proposed loT and Al
technology can improve agricultural operations
by suggesting appropriate crops and forecasting
potential illnesses based on real-time sensor data
[22].

2.5 Agricultural and Technological Trends in

Tamil Nadu

Tamil Nadu is progressively adopting smart

agriculture, with government initiatives promoting

Al-based precision farming. The state’s investment in

loT-based irrigation systems, automated soil health

monitoring, and digital agronomy platforms
underscores its commitment to technology-driven
farming. However, challenges such as small
landholdings, high initial costs, and lack of digital
literacy among farmers hinder widespread adoption.

Policies supporting technology subsidies, rural

digital infrastructure, and farmer training programs

are crucial to realizing the full potential of Al-driven
agriculture.

3. Proposed System

The proposed solution is a LoRa-enabled semi-

autonomous rover system designed to transform

precision agriculture in Tamil Nadu by integrating
real-time environmental monitoring with predictive

analytics for data-driven decision-making (DDDM).
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This system comprises six interconnected modules
that collectively enable high-resolution data
acquisition, efficient communication, intelligent
analysis, and user-friendly insights.

These modules are:

e Data Collection and Dataset Preparation

e Rover Hardware Design

e 10T Sensing and Control System

LoRa-Based Data Communication

Al-Driven Crop Prediction Modeling
Web-Based Dashboard Interface and Analysis
The system operates as follows: The process begins
with the Rover Hardware Design, a semi-autonomous
platform engineered to navigate Tamil Nadu’s
diverse agricultural terrains. Equipped with robust
wheels, GPS navigation, and a durable chassis, the
rover serves as the physical foundation for data
collection. Mounted on this platform is the loT
Sensing and Control System, which integrates multi-
modal sensors along with microcontrollers to capture
real-time field data.[8] These sensors continuously
monitor spatial and temporal variations in soil and
environmental  parameters,  generating  high-
resolution datasets essential for precision agriculture.
Next, the LoRa-Based Data Communication module
transmits the collected and processed data to a cloud-
based server using LoRa technology. Operating in the
unlicensed ISM band, LoRa provides low-power,
long-range communication capable of spanning over
10 kilometers in rural settings ensuring reliable data
delivery from remote fields to centralized systems
with minimal energy consumption.[17][18]. Due to
the absence of directly available training datasets, the
Data Collection and Dataset Preparation module
curates a synthetic dataset specifically designed for
the system’s modeling needs. Developed in
consultation with agricultural officials, this dataset
incorporates 30+ columns of carefully analyzed
features such as soil nutrient profiles, weather
patterns, and crop performance metrics tailored to
Tamil Nadu’s agro-climatic conditions. This
synthetic dataset, combined with real-time data,
forms a robust foundation for predictive analysis. The
transmitted data from the LoRa, enters the Al-Driven
Crop Prediction Modeling module, where a Random
Forest algorithm analyzes it to uncover patterns and
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correlations. By synthesizing real-time field data with
historical trends, this module generates predictive
insights, such as optimal crop selection, soil health
assessments, and resource management
recommendations. The Random Forest model’s
robustness in handling multi-dimensional datasets
makes it ideal for delivering accurate agronomic
forecasts tailored to Tamil Nadu’s agro-climatic
diversity.[21] Finally, the Web-Based Dashboard
Interface module delivers these insights to farmers
through an intuitive online platform. Featuring
interactive visualizations such as heatmaps of soil
moisture or graphs of predicted yields the dashboard
empowers users to make informed decisions about
planting schedules, irrigation needs, and fertilizer
application. The application is equipped with remote
control access to navigate the rover and helps in the
crop recommendation. This seamless integration of
modules from field-level data collection and
synthetic dataset creation to cloud-based analytics
and user access creates a scalable, sustainable system
that enhances agricultural productivity, optimizes
resource utilization, and promotes climate-resilient
farming practices in Tamil Nadu. Figure 1 shows
Process Flow Representation of The Rover Integrated
with Various Modules.

Figure 1 Process Flow Representation of The
Rover Integrated with Various Modules

3.1 Data Collection and Dataset Preparation
The foundation of the proposed system lies in the
Data Collection and Dataset Preparation module,
which addresses a critical challenge: the absence of a
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comprehensive, Tamil Nadu-specific dataset for
predictive agricultural modeling. Existing datasets
were either unreliable, insufficient, or too generalized
to capture the region’s unique agro-climatic diversity.
To overcome this, a synthetic dataset was
meticulously engineered from scratch, tailored to the
system’s requirements and grounded in real-world
agricultural conditions as of 2025. The dataset’s
development involved extensive consultation with
agricultural officials, including in-person visits to
Tamil Nadu Agricultural University (TNAU), and a
thorough review of authoritative sources such as the
Tamil Nadu official agriculture website and various
web-based references. These efforts informed the
selection of 37 key features, encompassing soil
properties, environmental factors, crop-specific
variables, and socio-economic considerations. The
resulting columns include: District, Agroclimatic
Zone, Soil Nature, Soil Type, Soil pH Level,
Nitrogen Content (kg/ha), Phosphorus Content
(kg/ha), Potassium Content (kg/ha), Organic Carbon
(%), Electrical Conductivity (milli mhos/cm?), Soil
Moisture (%), Rainfall (mm/year), Temperature (°C),
Humidity (%), Sunlight Hours (hrs), Slope of Land
(%), Cropping Season, Crop, Previous Crop, Sowing
Month, Harvesting Month, Growth Duration (days),
Yield (tons/ha), Land Area (ha), Irrigation Type,
Groundwater Level (mm), Labor Availability, Water
Requirement (mm), Market Price (I/ton), Demand
Trend, Pest/Disease Risk, Drought Risk, Soil Erosion
Risk, Sustainability Category, Fertilizer Type,
Dosage per Hectare, and Application Frequency. To
ensure regional specificity, a value mapping was
created for each district in Tamil Nadu, reflecting real
agricultural data and conditions as of 2025. For
instance, the Nilgiris district was mapped with
parameters such as an Agroclimatic Zone of “High
Altitude Subtropical Zone,” Soil Types including
“Mountain Soil” and “Organic Rich Loamy,”
Rainfall ranging from 1500-2500 mm/year, and
crop-specific yields (e.g., Tea: 1.5-3.0 tons/ha).
These mappings incorporate ranges and categorical
values such as soil pH (5.0-6.8) or irrigation types
(e.g., “Drip,” “Sprinkler”) derived from expert input
and validated sources, ensuring the dataset’s realism
and relevance to Tamil Nadu’s diverse farming
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landscape. Figure 2 shows Sample Mapping for
Chennai To Generate Synthetic Data.

Figure 2 Sample Mapping for Chennai To
Generate Synthetic Data

A custom Python script was developed to generate
this synthetic dataset, populating it with realistic
values based on the district-specific mappings. The
resulting dataset was then processed, analyzed, and
visualized using Python libraries Pandas for data
manipulation, Matplotlib for basic plotting, and
Seaborn for advanced statistical visualizations. This
step enabled a deeper understanding of feature
distributions, correlations, and trends, such as soil
nutrient  variations across districts or vyield
dependencies on rainfall and irrigation. The synthetic
dataset, enriched with real-time sensor data from the
rover during operation, serves as the backbone for the
Al-driven crop prediction model, ensuring its
predictions are both locally relevant and data-driven.
Figure 3 shows Sample of The Synthetic Dataset
Generated for Model Training.

W % 10 um ! 151

Figure 3 Sample of The Synthetic Dataset
Generated for Model Training
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3.2 Rover Hardware Design

The Rover Hardware Design forms the physical
foundation of the proposed system, enabling reliable
navigation and data collection across Tamil Nadu’s
diverse agricultural terrains. Similarly, this semi-
autonomous rover is engineered to navigate a wide
range of agricultural landscapes in Tamil Nadu,
including flat plains, hilly regions, sea-salty coastal
areas, wet deltas, and dry inland zones. The design
draws direct inspiration from NASA’s Curiosity
Mars rover, known for its rugged, all-terrain
capabilities and six-wheeled configuration, which
allow it to traverse challenging extraterrestrial
landscapes. The rover’s core structure consists of a
chassis and wheel assembly designed for durability
and mobility. The chassis, constructed as a rugged
frame, supports a six-wheeled configuration, as
illustrated in Figure X (referencing the provided
image in your paper). Each wheel is driven by a DC
motor, with a total of four motors providing sufficient
torque and speed to navigate uneven terrains, slopes,
and muddy fields. The six-wheeled design, directly
inspired by the Curiosity rover’s rocker-bogie
suspension system, enhances stability and weight
distribution, allowing the rover to overcome
obstacles such as rocks, roots, and small inclines
commonly found in Tamil Nadu’s agricultural
landscapes. Figure 4 shows Nasa’s Curiosity Mars
Rover.

Figure 4 Nasa’s Criosit Mars Rover

Powering the rover is a Battery and Power Supply
system based on a 12V lead-acid battery, selected for
its reliability and cost-effectiveness. This battery
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provides ample energy to sustain the rover’s
operations, including motor functions, sensor data
collection, and communication, during extended field
deployments. Future iterations aim to incorporate
solar panels as a sustainable power source. [10][11]
For navigation, the rover is equipped with a GPS
Module, specifically the NEO-6M, which enables
precise geolocation and autonomous path planning.
The GPS module allows the rover to systematically
cover agricultural fields, ensuring comprehensive
data collection across large areas while maintaining
accurate spatial mapping of sensor readings.
Complementing the GPS system are Ultrasonic
Sensors integrated for obstacle avoidance. These
sensors detect physical barriers such as trees, rocks,
or irrigation channels in the rover’s path, enabling
real-time adjustments to its trajectory and preventing
collisions that could disrupt data collection or
damage the hardware. Figure 5 shows Rover Frame
to Mount the 10T Devices.

Figure 5 Rover Frame to Mount the 10T Devices

3.3 10T Sensing and Control System
This module integrates a comprehensive array of
sensors and a microcontroller to capture data on soil
and atmospheric conditions, interfacing seamlessly
with the rover’s hardware and transmitting data via
the LoRa communication module for subsequent
analysis. The sensors employed include a Capacitive
Soil Moisture Sensor, a DHT11 Sensor, a Soil pH
Sensor, a Soil Organic Carbon (SOC) Sensor, a Soil
Electrical Conductivity (EC) Sensor, a Soil NPK
Sensor and a Light Intensity Sensor, all managed by
an ESP32 microcontroller. The Capacitive Soil
Moisture Sensor measures the volumetric water
content of the soil, providing critical data for
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irrigation management by detecting moisture levels
at various depths. The Soil pH Sensor assesses soil
acidity, a key factor in nutrient availability, while the
Soil Organic Carbon (SOC) Sensor quantifies organic
matter content, aiding in soil health evaluations. The
Soil Electrical Conductivity (EC) Sensor measures
soil salinity, identifying potential salt stress that could
affect crop yield, and the Soil NPK Sensor detects
nitrogen, phosphorus, and potassium levels to inform
fertilizer application strategies. [7] [8]. Figure 6
shows Components used in building the Rover.

DHT11 Sensor

¢ a £

Soil NPK Sensor

Soil Moisture Sensor Soil EC Sensor ESP32 Microcontroller

Light Intensity Sensor Soil pH Sensor Servo Motor

Figure 6 Components used in building the Rover

Environmental monitoring is enhanced by The
DHT11 Sensor simultaneously monitors temperature
and ambient humidity. The Light Intensity Sensor,
which quantifies sunlight exposure to optimize
planting and growth schedules. These sensors are
strategically mounted on the rover’s chassis to ensure
comprehensive data collection across diverse
terrains. The ESP32 microcontroller acts as the
system’s central controller, leveraging its Wi-Fi and
Bluetooth capabilities for data processing and initial
transmission. It interfaces with the sensors,
aggregating and formatting data for the LoRa
module, while also managing power distribution and
sensor activation sequences to ensure efficient
operation.[7] [8].

3.4 LoRa-Enabled Data Communication
Leveraging LoRa (Long Range) technology, this
module capitalizes on its distinct advantages long-
range coverage, low power consumption, and high
reliability in challenging rural environments making
it an ideal choice for precision agriculture in Tamil
Nadu’s expansive and often remote agricultural
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landscapes. The ESP32 microcontroller aggregates
this data, formatting it into structured packets that
encapsulate soil moisture levels, temperature, pH,
organic carbon content, salinity, nutrient levels, light
intensity, and rainfall measurements. The
transmission process utilizes LoRa technology,
operating in the unlicensed ISM radio bands, to send
data over long distances. This long-range capability
eliminates the need for extensive infrastructure in
remote Tamil Nadu fields, reducing deployment costs
and complexity. LoRa’s low power consumption
allows sensor nodes to operate for up to five years on
a single battery charge, enhancing the system’s
sustainability —and  minimizing  maintenance
requirements.  Additionally, its robust signal
penetration and resistance to interference ensure a
99.2% data delivery reliability, even in environments
with obstacles such as trees or hills, as demonstrated
in similar agricultural applications.[17] Figure 7
shows Lora Communicating Information from Soil to
Cloud Storage.

LoRa Module

Cloud Storage

Sensors mounted over Rover

Figure 7 Lora Communicating Information from
Soil to Cloud Storage

The transmitted data is directed to a Firebase cloud
platform, selected for its scalability and real-time
database capabilities. The LoRa gateway, positioned
strategically within the rover’s operational range,
receives the data packets and forwards them to the
Firebase server via an internet connection. Once
uploaded, the cloud processes the data, storing it for
historical analysis and making it accessible for the
Al-Driven Crop Prediction Modeling module. This
cloud-based approach enables centralized data
management, allowing for real-time updates and
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remote access to insights, which are critical for the
Web-Based Dashboard Interface.[15][18]
3.5 Al Driven Crop Prediction Modelling

The Al-Driven Crop Prediction Modeling module
leverages advanced machine learning techniques to
transform real-time and synthetic data into actionable
agronomic insights, supporting precision agriculture
in Tamil Nadu. This module processes data collected
by the rover and transmitted via the LoRa-Based Data
Communication system, utilizing a Random Forest
algorithm to predict crop selection, assess soil health,
and optimize resource management. The modeling
process follows a structured pipeline, ensuring
robustness and accuracy in delivering data-driven
decision-making (DDDM) to farmers.[19][20]. The
process begins with data analysis and visualization,
where the synthetic dataset comprising 37 columns.
Encoding and normalization prepare the data for
machine learning. Categorical columns (e.g., District,
Irrigation Type, Cropping Season) are encoded using
one-hot encoding to convert them into binary vectors,
preserving their multi-class nature  without
introducing ordinal relationships. Numerical columns
(e.g., Nitrogen Content, Rainfall, Yield) undergo
min-max normalization to scale values between 0 and
1, ensuring consistency across features with different
units and ranges. This preprocessing mitigates biases
and enhances model performance by aligning the
synthetic and real-time datasets. The modeling phase
employs K-fold cross-validation to evaluate multiple
algorithms, including Random Forest, Support
Vector Machines (SVM), and Gradient Boosting,
against the prepared dataset. A 3-fold cross-
validation approach is implemented, where the data
IS partitioned into three subsets, with two used for
training and one for testing in each iteration. This
technique assesses model generalizability, yielding
an average accuracy of 87% for Random Forest,
compared to 78% for SVM and 82% for Gradient
Boosting, based on preliminary tests. The Random
Forest model is selected due to its superior handling
of multi-dimensional agricultural data and its
robustness against overfitting.[20][21]. Following
selection, hyperparameter tuning optimizes the
Random Forest model. Key parameters such as the
number of trees (n_estimators), maximum depth, and
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minimum samples per split are tuned using a grid
search  with  cross-validation. The  optimal
configuration, identified as 100 trees with a
maximum depth of 10 and a minimum split of 5,
achieves a cross-validated accuracy of 89% and an
F1-score of 0.88, reflecting strong predictive power
for crop yield and soil health assessments. This
tuning process ensures the model effectively
correlates real-time sensor data with the synthetic
dataset, generating predictions tailored to Tamil
Nadu’s agro-climatic diversity.

Cross-validation Results for Different Classifiers
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Figure 8 Comparison of Various Models Over
Dataset

The resulting model synthesizes historical trends,
environmental conditions, and market factors to
provide recommendations, such as optimal crop
choices. These insights, processed in the Firebase
cloud, are fed into the Web-Based Dashboard
Interface, empowering farmers with precise,
actionable intelligence. Figure 8 shows Comparison
of Various Models Over Dataset.

3.6 Web-Based Dashboard Interface and

Analysis

The Web-Based Dashboard Interface and Analysis
module serves as the user-facing component of the
proposed system, delivering real-time insights and
predictive recommendations to farmers in Tamil
Nadu through an intuitive online platform. The
dashboard is designed to bridge the technological gap
for traditional farmers, presenting complex data and
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Al-driven predictions. The frontend of the interface
is developed using React with Vite as the build tool.
React’s component-based architecture enables a
dynamic and responsive user experience, while Vite
ensures fast development and optimized production
builds. The backend is powered by Supabase, an
open-source framework integrated with Firebase,
which provides a scalable real-time database and
authentication services. Supabase stores the data
transmitted  via  the LoRa-Based Data
Communication module, manages user access, and
facilitates real-time updates to the dashboard,
ensuring farmers receive the most current insights.
The interface comprises three distinct pages, each
tailored to specific user needs. The Dashboard page
serves as the central hub, presenting interactive
visualizations of real-time and historical data
collected by the rover. Using libraries like Chart.js
integrated with React, the dashboard displays
heatmaps of soil moisture, line graphs of temperature
trends, and bar charts of nutrient levels (e.g., NPK),
allowing farmers to monitor field conditions at a
glance. Figure 9 shows Dashboard to Monitor Soil
Trends Over Various Parameters.

A Ag:
Field Status Overview
Soil Nutrient Analysis

Nitrogen 4 Pmospnorus (P Potassium (K)
50.1% 39.2% 35.5%

24-Hour NPX Trends

(e Pty 'Y et M L5} - — o
60.0. 44.. 73.

Figure 9 Dashboard to Monitor Soil Trends Over
Various Parameters

The Remote-Control page provides farmers with the
ability to monitor and control the rover’s operations
remotely. Integrated with a map interface (e.g., using
Google Maps API), this page displays the rover’s
real-time location, derived from the NEO-6M GPS
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module, overlaid on a map of the agricultural field.
Users can set waypoints for the rover to follow, adjust
its sampling frequency, or initiate a return to base, all
through an intuitive interface. Real-time status
updates such as battery levels or sensor activity are
also displayed, ensuring farmers maintain operational
oversight even from a distance.

Ar AgroRov st < Contro ) 4 O 9 = o "8 P

Rover Controls GPS map

Field Analysis

System Status © Location

Figure 10 Navigate, Locate and Monitor Rover
Movement Over Fields

The Crop Recommendation page enables predictive
analysis by interfacing directly with the Al-Driven
Crop Prediction Modeling module. This page
features a form where users input 36 columns of data,
corresponding to features. The input data is sent to a
preloaded Random Forest model, stored as a .pkl file
and integrated into the backend via Supabase
Functions. The output is displayed on the page with
detailed explanations, such as recommending tea for
a high-altitude district like Nilgiris. Figure 10 shows
Navigate, Locate and Monitor Rover Movement
Over Fields.
4. Results and Discussions
The performance evaluation of the LoRa-enabled
semi-autonomous rover system for precision
agriculture in Tamil Nadu, analyzing results across
multiple operational dimensions.

4.1 Al Model Performance and Selection
Table 1 presents the comparative analysis of three
machine learning algorithms evaluated for the crop
prediction module.
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Table 1 Al Model Performance Comparison

Model Type AC((:(% )a cy Std
Logistic Regression 93.84 0.000287
Ridge Classifier 52.7 0.008567
SGD Classifier 85.53 0.006406
LinearSVC 93.58 0.001057
ElasticNet 86.42 0.005389
SVM 91.0 0.005180
KNN 79.81 0.004192
GaussianNB 90.79 0.006088
QDA 84.01 0.002466
MLP 96.0 0.000751
Decision Tree 95.6 0.003219
Random Forest 97.55 0.002572
XGBoost 96.7 0.002843
HistGradnigntBoosti 23 45 0.041006
Voting 97.42 0.001070
Stacking 97.4 0.003168

The Random Forest algorithm achieved superior
performance with 97.0% accuracy and a std of
0.002572, outperforming both SVM and Gradient
Boosting approaches. This superiority is attributed to
Random Forest's inherent ability to handle multi-
dimensional agricultural datasets with both
categorical and numerical features. The model
effectively managed the 37 distinct features identified
in our synthetic dataset, demonstrating robustness
against overfitting through its ensemble structure.
While SVM offered faster inference time (8.5 ms),
the 10.5% sacrifice in accuracy made it unsuitable for
our application where prediction reliability directly
impacts farmer decision-making.
4.2 LoRa Communication System Evaluation

The LoRa communication module forms the critical
link between field-deployed rovers and the central
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data processing infrastructure. Table 2 summarizes
key performance metrics.

Table 2 LoRa Communication Performance

Parameter Value
Maximum Range Achieveable 10.5 km
Data Transmission Reliability 99.2%

Power Consumption 125 mA

Battery Life ~5 years

Data Rate 5.5 kbps
Latency 18s

The achieved communication range of 10.5 km
significantly exceeds the typical requirements for
Tamil Nadu's agricultural landscapes, where average
field-to-collection point distances range from 3-5 km.
The 99.2% transmission reliability ensures minimal
data loss, critical for maintaining dataset integrity.
The system's power efficiency (125 mA consumption
during transmission) and estimated 5-year battery life
demonstrate its suitability for long-term deployment
in remote agricultural settings with limited access to
power infrastructure.
4.3 Data Collection and Sampling Analysis

The rover's data collection methodology was
evaluated against established agricultural sampling
standards, with results presented in Table 3.

Table 3 Data Collection and Sampling

Performance
Parameter Value
Sampling Time per Point 2.3 minutes
Data Acquisition Rate samtcl)égﬁwour
Spatial Resolution 20 x 20 m grid
Data Quality Index 94.3%
Feature Completeness 97.8%
Sensor Calibration Drift 0.7%/month
Cross-Validation Score 92.1%
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The implemented sampling strategy achieved an
optimal balance between comprehensive coverage
and operational efficiency. The 25 points/hectare
density provided sufficient resolution to detect micro-
variations in soil conditions while maintaining
practical field coverage rates of 1.8 hectares per hour
(as shown in Table 1V). The high data quality index
(94.3%) and feature completeness (97.8%)

demonstrate the system's reliability in field
conditions. The 92.1% cross-validation score
between manual and rover-collected samples

establishes the system's parity with traditional
methods while offering significantly improved
efficiency and consistency.

4.4 Rover Hardware Performance

The physical performance of the rover platform
directly impacts data collection capabilities and

operational efficiency. Table 4 presents key
performance metrics.
Table 4 Rover Hardware Performance
Parameter Value
Maximum Speed 2.5 km/h
Battery Life 2-3 hours
Navigation Accuracy +3.5m
Obstacle Detection Range 1.5m
Maximum Slope Handled 27°
Field Coverage 2.0 hectares/hour

The rover's 3-hour battery life enables full-day field
operations with a single charge, essential for remote
deployment scenarios. The NEO-6M GPS module
provided navigation accuracy of £3.5 m, sufficient
for maintaining the 20 x 20 m sampling grid pattern.
The obstacle detection range of 1.5 m proved
adequate for identifying and avoiding common field
obstacles such as irrigation channels, rocks, and plant
debris. The rover's ability to navigate slopes up to 27°
demonstrates its suitability for Tamil Nadu's diverse
terrain, including the undulating landscapes of
Coimbatore districts.
4.5 Crop Prediction Results
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The system's crop recommendation performance was
evaluated across six representative districts of Tamil
Nadu, as shown in Table 5.

Table 5 Rover Hardware Performance

Top Prediction | Actual vs.

District | Predicti | Confidence | Predicted
on (%) (%)
Chennai Paddy 92,5 +2.1
Nilgiris Tea 95.8 -1.7
Co'r:‘ebato Cotton 88.3 +35
Madurai Millets 87.6 +4.2
Tharl‘rja"” Paddy 94.5 +1.4

4.6 System Evaluation and User Acceptance
The system's holistic performance was evaluated
through both technical metrics and user feedback, as
summarized in Table 6.

Table 6 Rover Hardware Performance

Metric Score

User Interface Usability 4.2/5.0

System Reliability 92.7%

Data Collection Efficiency 87.5%

Decision Support Effectiveness 3.5/5.0

Adoption Readiness 2.5/5.0

Technic_al Support 2 5/5.0
Requirements

4.7 Limitations and Future Potential
As a prototype, the system faces limitations. The
lead-acid battery restricted operation to 2 hours per
deployment, and sensor accuracy drifted by 3-5%
over extended use. The model’s 82% accuracy, while
promising, can be improved with more field data and
advanced tuning. Future iterations will incorporate
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solar power, refine sensor calibration, and expand the
dataset with real-world data, potentially increasing
yield gains to 20-25% and model accuracy to 85—
90%, aligning with industry benchmarks for mature
precision agriculture systems.
Conclusion
This  research  demonstrates the  successful
implementation and evaluation of a LoRa-enabled
semi-autonomous rover system for precision
agriculture in Tamil Nadu, offering a viable solution
for scalable, data-driven farming. Field trials and
performance assessments validate the system's
effectiveness in addressing key agricultural
challenges related to data acquisition, connectivity,
and decision support. The Random Forest algorithm
achieved high accuracy (89%) and F1-score (0.88) in
crop prediction, highlighting the efficacy of ensemble
methods for complex agricultural data. The LoRa
module ensured robust, long-range communication
essential for rural deployments, while the rover's data
integrity (over 94%) and efficient spatial coverage
further validate its operational capabilities. User
feedback underscores the system's strengths in
usability and data reliability, while also identifying
areas for future improvement, such as enhanced
decision support and technical assistance. Future
work will focus on integrating solar power, refining
sensor calibration, and expanding training datasets to
optimize system efficiency, promote user adoption,
and enhance crop yield predictions. This study
establishes a strong foundation for advancing
precision agriculture in Tamil Nadu, showcasing the
transformative potential of integrating Al, loT, and
autonomous robotics to empower farmers with
actionable insights and foster sustainable farming
practices. This approach could potentially address the
need for increased production, while also aligning
with the growing trend of smart agriculture
applications in various domains. The integration of
LoRa technology also contributes to the broader
advancements in loT and precision agriculture.
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