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Abstract 

This research presents a LoRa-enabled semi-autonomous rover system designed for real-time environmental 

and soil parameter monitoring to facilitate data-driven decision-making (DDDM) in agriculture. The rover is 

equipped with multi-modal sensors, including soil moisture, temperature, pH, NPK, electrical conductivity 

(EC), light intensity, wind speed, and rainfall sensors, to capture high-resolution field data. Utilizing LoRa 

communication, these data points are transmitted to a cloud-based server for processing and analysis. A 

Random Forest-based AI model is employed to correlate real-time sensor data with historical agricultural 

datasets from Tamil Nadu, enabling predictive analytics for crop selection and soil health assessment. The 

system generates data-driven agronomic recommendations, assisting farmers in optimizing crop yield, 

resource utilization, and sustainable farming practices. A dashboard-based web interface provides intuitive 

visualizations and insights, ensuring accessibility and informed decision-making. This IoT-integrated 

precision agriculture framework enhances spatial and temporal data analysis for improved agricultural 

productivity. By leveraging AI-driven analytics and real-time monitoring, this solution contributes to 

predictive farming, optimized land use, and enhanced food security, fostering a sustainable and 

technologically advanced agricultural ecosystem. 

Keywords: IoT, Precision Agriculture, LoRa, Autonomous Rover, AI, Machine Learning, Random Forest, 

Data Analytics, Data-Driven Decision-Making, Soil Monitoring, Environmental Sensing, Crop Prediction, 

Sustainable Farming, Resource Utilization. 

 

1. Introduction  

Tamil Nadu's agricultural landscape represents a 

mosaic of diverse agro-climatic zones spanning from 

the rain-fed regions in the west to the fertile deltas in 

the east. This environmental diversity has historically 

supported a rich variety of cultivars, including staple 

crops like rice and millets, essential pulses, and 

economically valuable cash crops such as cotton and 

sugarcane [1]. However, the agricultural sector in this 

region faces mounting challenges, including 

increasingly erratic rainfall patterns, groundwater 

depletion, soil degradation, and market volatility all 

of which threaten both farm productivity and 

livelihood sustainability. Recent initiatives like the 

Tamil Nadu Irrigated Agriculture Modernization and 

Water-Bodies Restoration and Management (TN-

IAMWARM) project have made significant strides in 

addressing these challenges through irrigation 

modernization and sustainable water management 

practices. Yet, a critical gap remains in providing 

farmers with field-specific, data-driven decision 

support that integrates real-time environmental 

monitoring with predictive analytics. The emergence 
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of semi-autonomous rovers represents a 

technological paradigm shift in agricultural 

monitoring. These advanced platforms navigate 

agricultural fields with minimal human intervention, 

systematically collecting high-resolution data on 

critical parameters that determine crop health and 

productivity. Equipped with an array of sophisticated 

sensors, these rovers continuously monitor soil 

moisture gradients, temperature variations, pH 

fluctuations, essential nutrient concentrations (NPK), 

and environmental conditions including light 

intensity and precipitation patterns. This granular, 

field-specific data acquisition transcends traditional 

sampling methods, enabling precise spatial and 

temporal monitoring that captures the inherent 

variability within agricultural landscapes. Research 

by Shamshiri et al. (2018) demonstrates that robotics 

integration in agricultural monitoring can enhance 

data collection precision by up to 85% while reducing 

labor requirements by 60%, creating a compelling 

case for technology-enabled precision agriculture [2]. 

The efficacy of field monitoring systems in 

agriculture hinges on reliable data transmission 

capabilities across expansive rural landscapes. LoRa 

(Long Range) technology emerges as an ideal 

solution, offering low-power, wide-area network 

communication specifically optimized for remote 

agricultural environments [3]. Operating in the 

unlicensed ISM radio bands, LoRa enables data 

transmission over distances exceeding 10 kilometers 

in rural settings while maintaining remarkable power 

efficiency, with sensor nodes operating continuously 

for up to five years on a single battery charge [4]. This 

communication infrastructure forms the critical 

backbone of agricultural Internet of Things (IoT) 

systems, facilitating seamless data flow from field 

sensors to centralized processing systems. Studies by 

García et al. (2020) highlight LoRa's significance in 

agricultural applications, demonstrating 99.2% data 

delivery reliability in challenging rural environments 

compared to conventional wireless technologies [5]. 

The integration of Artificial Intelligence in 

agricultural decision support systems represents the 

culmination of the data acquisition and transmission 

pipeline. Machine learning algorithms particularly 

Random Forest models excel at processing multi-

dimensional agricultural datasets to identify complex 

patterns and relationships that elude traditional 

analytical approaches. These AI systems synthesize 

real-time field data with historical agricultural trends, 

meteorological records, and market intelligence to 

generate predictive insights for crop selection, 

resource optimization, and yield forecasting. 

Accessible through intuitive web dashboards, these 

insights empower farmers with actionable 

intelligence presented in comprehensible visual 

formats. This democratization of advanced analytical 

capabilities bridges the technological divide, 

enabling traditional farmers to leverage sophisticated 

decision support tools. Implementation of similar AI-

powered advisory systems in comparable agricultural 

regions has demonstrated yield improvements of 15-

28% while reducing resource inputs by 20% [6], 

highlighting the transformative potential of data-

driven agriculture. The convergence of these three 

technological domains autonomous field monitoring, 

efficient wireless communication, and intelligent 

data analytics presents a compelling opportunity to 

revolutionize agricultural practices in Tamil Nadu, 

potentially addressing the persistent challenges of 

resource optimization, climate resilience, and 

economic sustainability. 

2. Literature Survey 

In recent years, precision agriculture has transformed 

farming by integrating advanced technologies to 

optimize crop production and sustainability through 

data-driven decision-making (DDDM).  

2.1 Semi-Autonomous Rovers in Agriculture 

Agricultural robotics has gained prominence in recent 

years, with semi-autonomous rovers offering high 

precision in field monitoring and crop assessment. 

Studies have shown that autonomous rovers 

integrated with GPS and IMU-based navigation 

provide accurate field mapping. Tamil Nadu's 

fragmented landholdings necessitate such adaptable 

robotic solutions to enhance efficiency and reduce 

labor dependency while gathering real-time 

agricultural data. 

Research includes: 

 Brity Das et al. (2024) developed an agricultural 

rover effectively performs autonomous 

vegetable harvesting and soil analysis using deep 
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learning algorithms, enhancing crop 

management and soil monitoring [7]. 

 Yuktha Bhushan et al. (2024) proposed a 

multipurpose agriculture robot that can perform 

various tasks in agriculture, including ploughing, 

seeding, mud leveling, and water spraying, using 

battery and solar power [8]. 

 S. Murugesan et al. (2024) proposed a robotic 

vehicle that effectively clears land, performs 

planting, watering, and harvesting tasks, and can 

be controlled by a smart phone for efficient 

farming [9]. 

 Earth Rover (2023) developed CLAWS, an AI-

driven rover for weed control and scouting, 

focusing on sustainability. 

 Fazio et al. (2021) present a semi-custom 

wheeled mobile robot with high-efficiency 

photovoltaic panels on the roof, enabling it to 

perform tasks in harsh environments with 

minimal energy consumption [10]. 

 Balasooriya et al. (2019) proposed a low-power, 

low-cost autonomous rover with improved 

maneuverability and battery life, using less 

power-consuming sensors and a modified all-

wheel drive system [11]. 

2.2 Multi-Modal Sensors for Agricultural Data 

Collection 

Effective crop monitoring requires diverse sensors 

capable of capturing multiple environmental and 

physiological parameters. Multi-modal sensing 

incorporates optical sensors, soil moisture probes, 

temperature sensors, and hyperspectral imaging to 

enhance data reliability, crucial for Tamil Nadu’s 

heterogeneous farming landscape. 

Researc includes: 

 G Vasques et al. (2020) combined multiple soil 

sensors improves soil property predictions and 

maps, leading to more detailed and accurate 

maps for precision agriculture [12]. 

 W Ji et al. (2019) proposed a proximal soil sensor 

data fusion improves predictions of soil 

properties, such as organic matter, pH, and 

phosphorus concentrations, compared to single-

sensor approaches [13]. 

 P Aravind et al. (2015) developed multi-sensor 

system with wireless connectivity offers accurate 

and cost-effective soil moisture measurement, 

with the DPHP sensor being the most cost-

effective and resistive sensor being the cheapest 

option [14]. 

2.3 LoRa Communication for Data 

Transmission 
LoRa (Long Range) technology is a cost-effective 

solution for low-power, long-range wireless 

communication, making it ideal for agricultural 

applications. Studies indicate that LoRa networks can 

efficiently transmit data over several kilometers with 

minimal energy consumption. In rural Tamil Nadu, 

where conventional internet infrastructure is limited, 

LoRa serves as a reliable medium for rover-to-cloud 

data transmission.  

Reseach includes: 

 Yi Guo et al. (2024) proposed ED-RB pairing 

scheme and spreading factor allocation can save 

over 34.6% power in LoRa uplink systems 

compared to the baseline [15]. 

 I Lopes et al. (2024) developed LoRa-based IoT 

platform offers a low-cost, customizable solution 

for real-time monitoring of soil parameters in 

rural environments, offering automation, 

increased efficiency, and savings in human 

resources [16]. 

 Zhaoxin Chang et al. (2022) developed sensor-

free soil moisture sensing using LoRa signals 

achieves high accuracy, robustness, and large 

sensing range for large-scale deployment in 

smart agriculture, with an average error of 3.1% 

[17]. 

 X Chavanne et al. (2022) proposed autonomous 

in-situ soil sensors with LoRaWAN technology 

can continuously monitor soil moisture over a 

catchment, reducing maintenance and increasing 

data transfer lifetime by 30% [18]. 

 Semtech (2021) highlights LoRa's role in smart 

agriculture, achieving 50% water reduction in 

commercial farms. 

2.4 AI Driven for Crop Prediction 

Machine learning (ML) and deep learning (DL) 

techniques play a pivotal role in predictive 

agriculture. AI-driven models analyze large datasets 

from multi-modal sensors to forecast yield, detect 

diseases, and recommend best farming practices. 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 05 May 2025 

Page No: 2581- 2594 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0384 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 

                         
2584 

 

Convolutional Neural Networks (CNNs) have 

demonstrated superior performance in plant disease 

classification, while Random Forest and Long Short-

Term Memory (LSTM) networks effectively predict 

crop yields based on historical data.  

Reseach Includes: 

 Ahezam Ahewar Khan (2024) levaraged  

machine learning to predict suitable crops, 

optimize resources, and maximize crop yields, 

contributing to a greener and more prosperous 

future in agriculture [19].  

 Prof. A. A. Chaudhari (2024) proposed IoT-

based Smart Farming improves crop yield and 

quality by monitoring real-time factors like 

moisture, temperature, and soil, and 

recommending suitable crops based on data [20]. 

 Sri Hari Nallamala et al. (2024) utilized AI to 

monitor crops, recommend suitable crops, detect 

weeds, and predict yields, which helped improve 

agriculture's health and profitability [21]. 

 Sathya Priya et al. (2024) proposed IoT and AI 

technology can improve agricultural operations 

by suggesting appropriate crops and forecasting 

potential illnesses based on real-time sensor data 

[22]. 

2.5 Agricultural and Technological Trends in 

Tamil Nadu 

Tamil Nadu is progressively adopting smart 

agriculture, with government initiatives promoting 

AI-based precision farming. The state’s investment in 

IoT-based irrigation systems, automated soil health 

monitoring, and digital agronomy platforms 

underscores its commitment to technology-driven 

farming. However, challenges such as small 

landholdings, high initial costs, and lack of digital 

literacy among farmers hinder widespread adoption. 

Policies supporting technology subsidies, rural 

digital infrastructure, and farmer training programs 

are crucial to realizing the full potential of AI-driven 

agriculture. 

3. Proposed System 
The proposed solution is a LoRa-enabled semi-

autonomous rover system designed to transform 

precision agriculture in Tamil Nadu by integrating 

real-time environmental monitoring with predictive 

analytics for data-driven decision-making (DDDM). 

This system comprises six interconnected modules 

that collectively enable high-resolution data 

acquisition, efficient communication, intelligent 

analysis, and user-friendly insights.  

These modules are:  

 Data Collection and Dataset Preparation 

 Rover Hardware Design 

 IoT Sensing and Control System  

 LoRa-Based Data Communication 

 AI-Driven Crop Prediction Modeling 

 Web-Based Dashboard Interface and Analysis  

The system operates as follows: The process begins 

with the Rover Hardware Design, a semi-autonomous 

platform engineered to navigate Tamil Nadu’s 

diverse agricultural terrains. Equipped with robust 

wheels, GPS navigation, and a durable chassis, the 

rover serves as the physical foundation for data 

collection. Mounted on this platform is the IoT 

Sensing and Control System, which integrates multi-

modal sensors along with microcontrollers to capture 

real-time field data.[8] These sensors continuously 

monitor spatial and temporal variations in soil and 

environmental parameters, generating high-

resolution datasets essential for precision agriculture. 

Next, the LoRa-Based Data Communication module 

transmits the collected and processed data to a cloud-

based server using LoRa technology. Operating in the 

unlicensed ISM band, LoRa provides low-power, 

long-range communication capable of spanning over 

10 kilometers in rural settings ensuring reliable data 

delivery from remote fields to centralized systems 

with minimal energy consumption.[17][18]. Due to 

the absence of directly available training datasets, the 

Data Collection and Dataset Preparation module 

curates a synthetic dataset specifically designed for 

the system’s modeling needs. Developed in 

consultation with agricultural officials, this dataset 

incorporates 30+ columns of carefully analyzed 

features such as soil nutrient profiles, weather 

patterns, and crop performance metrics tailored to 

Tamil Nadu’s agro-climatic conditions. This 

synthetic dataset, combined with real-time data, 

forms a robust foundation for predictive analysis. The 

transmitted data from the LoRa, enters the AI-Driven 

Crop Prediction Modeling module, where a Random 

Forest algorithm analyzes it to uncover patterns and 

https://irjaeh.com/
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correlations. By synthesizing real-time field data with 

historical trends, this module generates predictive 

insights, such as optimal crop selection, soil health 

assessments, and resource management 

recommendations. The Random Forest model’s 

robustness in handling multi-dimensional datasets 

makes it ideal for delivering accurate agronomic 

forecasts tailored to Tamil Nadu’s agro-climatic 

diversity.[21] Finally, the Web-Based Dashboard 

Interface module delivers these insights to farmers 

through an intuitive online platform. Featuring 

interactive visualizations such as heatmaps of soil 

moisture or graphs of predicted yields the dashboard 

empowers users to make informed decisions about 

planting schedules, irrigation needs, and fertilizer 

application. The application is equipped with remote 

control access to navigate the rover and helps in the 

crop recommendation. This seamless integration of 

modules from field-level data collection and 

synthetic dataset creation to cloud-based analytics 

and user access creates a scalable, sustainable system 

that enhances agricultural productivity, optimizes 

resource utilization, and promotes climate-resilient 

farming practices in Tamil Nadu. Figure 1 shows 

Process Flow Representation of The Rover Integrated 

with Various Modules. 

 

 
Figure 1 Process Flow Representation of The 

Rover Integrated with Various Modules 

 

3.1 Data Collection and Dataset Preparation 

The foundation of the proposed system lies in the 

Data Collection and Dataset Preparation module, 

which addresses a critical challenge: the absence of a 

comprehensive, Tamil Nadu-specific dataset for 

predictive agricultural modeling. Existing datasets 

were either unreliable, insufficient, or too generalized 

to capture the region’s unique agro-climatic diversity. 

To overcome this, a synthetic dataset was 

meticulously engineered from scratch, tailored to the 

system’s requirements and grounded in real-world 

agricultural conditions as of 2025. The dataset’s 

development involved extensive consultation with 

agricultural officials, including in-person visits to 

Tamil Nadu Agricultural University (TNAU), and a 

thorough review of authoritative sources such as the 

Tamil Nadu official agriculture website and various 

web-based references. These efforts informed the 

selection of 37 key features, encompassing soil 

properties, environmental factors, crop-specific 

variables, and socio-economic considerations. The 

resulting columns include: District, Agroclimatic 

Zone, Soil Nature, Soil Type, Soil pH Level, 

Nitrogen Content (kg/ha), Phosphorus Content 

(kg/ha), Potassium Content (kg/ha), Organic Carbon 

(%), Electrical Conductivity (milli mhos/cm²), Soil 

Moisture (%), Rainfall (mm/year), Temperature (°C), 

Humidity (%), Sunlight Hours (hrs), Slope of Land 

(%), Cropping Season, Crop, Previous Crop, Sowing 

Month, Harvesting Month, Growth Duration (days), 

Yield (tons/ha), Land Area (ha), Irrigation Type, 

Groundwater Level (mm), Labor Availability, Water 

Requirement (mm), Market Price (₹/ton), Demand 

Trend, Pest/Disease Risk, Drought Risk, Soil Erosion 

Risk, Sustainability Category, Fertilizer Type, 

Dosage per Hectare, and Application Frequency. To 

ensure regional specificity, a value mapping was 

created for each district in Tamil Nadu, reflecting real 

agricultural data and conditions as of 2025. For 

instance, the Nilgiris district was mapped with 

parameters such as an Agroclimatic Zone of “High 

Altitude Subtropical Zone,” Soil Types including 

“Mountain Soil” and “Organic Rich Loamy,” 

Rainfall ranging from 1500–2500 mm/year, and 

crop-specific yields (e.g., Tea: 1.5–3.0 tons/ha). 

These mappings incorporate ranges and categorical 

values such as soil pH (5.0–6.8) or irrigation types 

(e.g., “Drip,” “Sprinkler”) derived from expert input 

and validated sources, ensuring the dataset’s realism 

and relevance to Tamil Nadu’s diverse farming 
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landscape. Figure 2 shows Sample Mapping for 

Chennai To Generate Synthetic Data. 

 

 
Figure 2 Sample Mapping for Chennai To 

Generate Synthetic Data 

 

A custom Python script was developed to generate 

this synthetic dataset, populating it with realistic 

values based on the district-specific mappings. The 

resulting dataset was then processed, analyzed, and 

visualized using Python libraries Pandas for data 

manipulation, Matplotlib for basic plotting, and 

Seaborn for advanced statistical visualizations. This 

step enabled a deeper understanding of feature 

distributions, correlations, and trends, such as soil 

nutrient variations across districts or yield 

dependencies on rainfall and irrigation. The synthetic 

dataset, enriched with real-time sensor data from the 

rover during operation, serves as the backbone for the 

AI-driven crop prediction model, ensuring its 

predictions are both locally relevant and data-driven. 

Figure 3 shows Sample of The Synthetic Dataset 

Generated for Model Training. 

 

 
Figure 3 Sample of The Synthetic Dataset 

Generated for Model Training 

 

3.2 Rover Hardware Design 
The Rover Hardware Design forms the physical 

foundation of the proposed system, enabling reliable 

navigation and data collection across Tamil Nadu’s 

diverse agricultural terrains.  Similarly, this semi-

autonomous rover is engineered to navigate a wide 

range of agricultural landscapes in Tamil Nadu, 

including flat plains, hilly regions, sea-salty coastal 

areas, wet deltas, and dry inland zones. The design 

draws direct inspiration from NASA’s Curiosity 

Mars rover, known for its rugged, all-terrain 

capabilities and six-wheeled configuration, which 

allow it to traverse challenging extraterrestrial 

landscapes. The rover’s core structure consists of a 

chassis and wheel assembly designed for durability 

and mobility. The chassis, constructed as a rugged 

frame, supports a six-wheeled configuration, as 

illustrated in Figure X (referencing the provided 

image in your paper). Each wheel is driven by a DC 

motor, with a total of four motors providing sufficient 

torque and speed to navigate uneven terrains, slopes, 

and muddy fields. The six-wheeled design, directly 

inspired by the Curiosity rover’s rocker-bogie 

suspension system, enhances stability and weight 

distribution, allowing the rover to overcome 

obstacles such as rocks, roots, and small inclines 

commonly found in Tamil Nadu’s agricultural 

landscapes. Figure 4 shows Nasa’s Curiosity Mars 

Rover. 

 

 
Figure 4 Nasa’s Curiosity Mars Rover 

 

Powering the rover is a Battery and Power Supply 

system based on a 12V lead-acid battery, selected for 

its reliability and cost-effectiveness. This battery 
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provides ample energy to sustain the rover’s 

operations, including motor functions, sensor data 

collection, and communication, during extended field 

deployments. Future iterations aim to incorporate 

solar panels as a sustainable power source. [10][11] 

For navigation, the rover is equipped with a GPS 

Module, specifically the NEO-6M, which enables 

precise geolocation and autonomous path planning. 

The GPS module allows the rover to systematically 

cover agricultural fields, ensuring comprehensive 

data collection across large areas while maintaining 

accurate spatial mapping of sensor readings. 

Complementing the GPS system are Ultrasonic 

Sensors integrated for obstacle avoidance. These 

sensors detect physical barriers such as trees, rocks, 

or irrigation channels in the rover’s path, enabling 

real-time adjustments to its trajectory and preventing 

collisions that could disrupt data collection or 

damage the hardware. Figure 5 shows Rover Frame 

to Mount the IoT Devices. 

 

 
Figure 5 Rover Frame to Mount the IoT Devices 

 

3.3 IoT Sensing and Control System 
This module integrates a comprehensive array of 

sensors and a microcontroller to capture data on soil 

and atmospheric conditions, interfacing seamlessly 

with the rover’s hardware and transmitting data via 

the LoRa communication module for subsequent 

analysis. The sensors employed include a Capacitive 

Soil Moisture Sensor, a DHT11 Sensor, a Soil pH 

Sensor, a Soil Organic Carbon (SOC) Sensor, a Soil 

Electrical Conductivity (EC) Sensor, a Soil NPK 

Sensor and a Light Intensity Sensor, all managed by 

an ESP32 microcontroller. The Capacitive Soil 

Moisture Sensor measures the volumetric water 

content of the soil, providing critical data for 

irrigation management by detecting moisture levels 

at various depths. The Soil pH Sensor assesses soil 

acidity, a key factor in nutrient availability, while the 

Soil Organic Carbon (SOC) Sensor quantifies organic 

matter content, aiding in soil health evaluations. The 

Soil Electrical Conductivity (EC) Sensor measures 

soil salinity, identifying potential salt stress that could 

affect crop yield, and the Soil NPK Sensor detects 

nitrogen, phosphorus, and potassium levels to inform 

fertilizer application strategies. [7] [8]. Figure 6 

shows Components used in building the Rover. 

  

 
 Figure 6 Components used in building the Rover 

 

Environmental monitoring is enhanced by The 

DHT11 Sensor simultaneously monitors temperature 

and ambient humidity. The Light Intensity Sensor, 

which quantifies sunlight exposure to optimize 

planting and growth schedules. These sensors are 

strategically mounted on the rover’s chassis to ensure 

comprehensive data collection across diverse 

terrains. The ESP32 microcontroller acts as the 

system’s central controller, leveraging its Wi-Fi and 

Bluetooth capabilities for data processing and initial 

transmission. It interfaces with the sensors, 

aggregating and formatting data for the LoRa 

module, while also managing   power distribution and 

sensor activation sequences to ensure efficient 

operation.[7] [8]. 

3.4 LoRa-Enabled Data Communication 

Leveraging LoRa (Long Range) technology, this 

module capitalizes on its distinct advantages long-

range coverage, low power consumption, and high 

reliability in challenging rural environments making 

it an ideal choice for precision agriculture in Tamil 

Nadu’s expansive and often remote agricultural 
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landscapes. The ESP32 microcontroller aggregates 

this data, formatting it into structured packets that 

encapsulate soil moisture levels, temperature, pH, 

organic carbon content, salinity, nutrient levels, light 

intensity, and rainfall measurements. The 

transmission process utilizes LoRa technology, 

operating in the unlicensed ISM radio bands, to send 

data over long distances. This long-range capability 

eliminates the need for extensive infrastructure in 

remote Tamil Nadu fields, reducing deployment costs 

and complexity. LoRa’s low power consumption 

allows sensor nodes to operate for up to five years on 

a single battery charge, enhancing the system’s 

sustainability and minimizing maintenance 

requirements. Additionally, its robust signal 

penetration and resistance to interference ensure a 

99.2% data delivery reliability, even in environments 

with obstacles such as trees or hills, as demonstrated 

in similar agricultural applications.[17] Figure 7 

shows Lora Communicating Information from Soil to 

Cloud Storage. 

 

 
Figure 7 Lora Communicating Information from 

Soil to Cloud Storage 

 

The transmitted data is directed to a Firebase cloud 

platform, selected for its scalability and real-time 

database capabilities. The LoRa gateway, positioned 

strategically within the rover’s operational range, 

receives the data packets and forwards them to the 

Firebase server via an internet connection. Once 

uploaded, the cloud processes the data, storing it for 

historical analysis and making it accessible for the 

AI-Driven Crop Prediction Modeling module. This 

cloud-based approach enables centralized data 

management, allowing for real-time updates and 

remote access to insights, which are critical for the 

Web-Based Dashboard Interface.[15][18] 

3.5 AI Driven Crop Prediction Modelling 

The AI-Driven Crop Prediction Modeling module 

leverages advanced machine learning techniques to 

transform real-time and synthetic data into actionable 

agronomic insights, supporting precision agriculture 

in Tamil Nadu. This module processes data collected 

by the rover and transmitted via the LoRa-Based Data 

Communication system, utilizing a Random Forest 

algorithm to predict crop selection, assess soil health, 

and optimize resource management. The modeling 

process follows a structured pipeline, ensuring 

robustness and accuracy in delivering data-driven 

decision-making (DDDM) to farmers.[19][20]. The 

process begins with data analysis and visualization, 

where the synthetic dataset comprising 37 columns. 

Encoding and normalization prepare the data for 

machine learning. Categorical columns (e.g., District, 

Irrigation Type, Cropping Season) are encoded using 

one-hot encoding to convert them into binary vectors, 

preserving their multi-class nature without 

introducing ordinal relationships. Numerical columns 

(e.g., Nitrogen Content, Rainfall, Yield) undergo 

min-max normalization to scale values between 0 and 

1, ensuring consistency across features with different 

units and ranges. This preprocessing mitigates biases 

and enhances model performance by aligning the 

synthetic and real-time datasets. The modeling phase 

employs K-fold cross-validation to evaluate multiple 

algorithms, including Random Forest, Support 

Vector Machines (SVM), and Gradient Boosting, 

against the prepared dataset. A 3-fold cross-

validation approach is implemented, where the data 

is partitioned into three subsets, with two used for 

training and one for testing in each iteration. This 

technique assesses model generalizability, yielding 

an average accuracy of 87% for Random Forest, 

compared to 78% for SVM and 82% for Gradient 

Boosting, based on preliminary tests. The Random 

Forest model is selected due to its superior handling 

of multi-dimensional agricultural data and its 

robustness against overfitting.[20][21]. Following 

selection, hyperparameter tuning optimizes the 

Random Forest model. Key parameters such as the 

number of trees (n_estimators), maximum depth, and 
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minimum samples per split are tuned using a grid 

search with cross-validation. The optimal 

configuration, identified as 100 trees with a 

maximum depth of 10 and a minimum split of 5, 

achieves a cross-validated accuracy of 89% and an 

F1-score of 0.88, reflecting strong predictive power 

for crop yield and soil health assessments. This 

tuning process ensures the model effectively 

correlates real-time sensor data with the synthetic 

dataset, generating predictions tailored to Tamil 

Nadu’s agro-climatic diversity. 

 

 
Figure 8 Comparison of Various Models Over 

Dataset 

 

The resulting model synthesizes historical trends, 

environmental conditions, and market factors to 

provide recommendations, such as optimal crop 

choices. These insights, processed in the Firebase 

cloud, are fed into the Web-Based Dashboard 

Interface, empowering farmers with precise, 

actionable intelligence. Figure 8 shows Comparison 

of Various Models Over Dataset. 

3.6 Web-Based Dashboard Interface and 

Analysis 

The Web-Based Dashboard Interface and Analysis 

module serves as the user-facing component of the 

proposed system, delivering real-time insights and 

predictive recommendations to farmers in Tamil 

Nadu through an intuitive online platform. The 

dashboard is designed to bridge the technological gap 

for traditional farmers, presenting complex data and 

AI-driven predictions. The frontend of the interface 

is developed using React with Vite as the build tool. 

React’s component-based architecture enables a 

dynamic and responsive user experience, while Vite 

ensures fast development and optimized production 

builds. The backend is powered by Supabase, an 

open-source framework integrated with Firebase, 

which provides a scalable real-time database and 

authentication services. Supabase stores the data 

transmitted via the LoRa-Based Data 

Communication module, manages user access, and 

facilitates real-time updates to the dashboard, 

ensuring farmers receive the most current insights. 

The interface comprises three distinct pages, each 

tailored to specific user needs. The Dashboard page 

serves as the central hub, presenting interactive 

visualizations of real-time and historical data 

collected by the rover. Using libraries like Chart.js 

integrated with React, the dashboard displays 

heatmaps of soil moisture, line graphs of temperature 

trends, and bar charts of nutrient levels (e.g., NPK), 

allowing farmers to monitor field conditions at a 

glance. Figure 9 shows Dashboard to Monitor Soil 

Trends Over Various Parameters. 

 

  
Figure 9 Dashboard to Monitor Soil Trends Over 

Various Parameters 

 

The Remote-Control page provides farmers with the 

ability to monitor and control the rover’s operations 

remotely. Integrated with a map interface (e.g., using 

Google Maps API), this page displays the rover’s 

real-time location, derived from the NEO-6M GPS 
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module, overlaid on a map of the agricultural field. 

Users can set waypoints for the rover to follow, adjust 

its sampling frequency, or initiate a return to base, all 

through an intuitive interface. Real-time status 

updates such as battery levels or sensor activity are 

also displayed, ensuring farmers maintain operational 

oversight even from a distance. 

 

  
Figure 10 Navigate, Locate and Monitor Rover 

Movement Over Fields 

 

The Crop Recommendation page enables predictive 

analysis by interfacing directly with the AI-Driven 

Crop Prediction Modeling module. This page 

features a form where users input 36 columns of data, 

corresponding to features. The input data is sent to a 

preloaded Random Forest model, stored as a .pkl file 

and integrated into the backend via Supabase 

Functions. The output is displayed on the page with 

detailed explanations, such as recommending tea for 

a high-altitude district like Nilgiris. Figure 10 shows 

Navigate, Locate and Monitor Rover Movement 

Over Fields. 

4. Results and Discussions 

The performance evaluation of the LoRa-enabled 

semi-autonomous rover system for precision 

agriculture in Tamil Nadu, analyzing results across 

multiple operational dimensions. 

4.1 AI Model Performance and Selection 

Table 1 presents the comparative analysis of three 

machine learning algorithms evaluated for the crop 

prediction module. 

 

Table 1 AI Model Performance Comparison 

Model Type 
Accuracy 

(%) 
Std 

Logistic Regression 93.84 0.000287 

Ridge Classifier 52.7 0.008567 

SGD Classifier 85.53 0.006406 

LinearSVC 93.58 0.001057 

ElasticNet 86.42 0.005389 

SVM 91.0 0.005180 

KNN 79.81 0.004192 

GaussianNB 90.79 0.006088 

QDA 84.01 0.002466 

MLP 96.0 0.000751 

Decision Tree 95.6 0.003219 

Random Forest 97.55 0.002572 

XGBoost 96.7 0.002843 

HistGradientBoosti

ng 
23.45 0.041006 

Voting 97.42 0.001070 

Stacking 97.4 0.003168 

 

The Random Forest algorithm achieved superior 

performance with 97.0% accuracy and a std of 

0.002572, outperforming both SVM and Gradient 

Boosting approaches. This superiority is attributed to 

Random Forest's inherent ability to handle multi-

dimensional agricultural datasets with both 

categorical and numerical features. The model 

effectively managed the 37 distinct features identified 

in our synthetic dataset, demonstrating robustness 

against overfitting through its ensemble structure. 

While SVM offered faster inference time (8.5 ms), 

the 10.5% sacrifice in accuracy made it unsuitable for 

our application where prediction reliability directly 

impacts farmer decision-making. 

4.2 LoRa Communication System Evaluation 

The LoRa communication module forms the critical 

link between field-deployed rovers and the central 
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data processing infrastructure. Table 2 summarizes 

key performance metrics. 

 

Table 2 LoRa Communication Performance 

Parameter Value 

Maximum Range Achieveable 10.5 km 

Data Transmission Reliability 99.2% 

Power Consumption 125 mA 

Battery Life ~5 years 

Data Rate 5.5 kbps 

Latency 1.8 s 

 

The achieved communication range of 10.5 km 

significantly exceeds the typical requirements for 

Tamil Nadu's agricultural landscapes, where average 

field-to-collection point distances range from 3-5 km. 

The 99.2% transmission reliability ensures minimal 

data loss, critical for maintaining dataset integrity. 

The system's power efficiency (125 mA consumption 

during transmission) and estimated 5-year battery life 

demonstrate its suitability for long-term deployment 

in remote agricultural settings with limited access to 

power infrastructure. 

4.3 Data Collection and Sampling Analysis 

The rover's data collection methodology was 

evaluated against established agricultural sampling 

standards, with results presented in Table 3. 

 

Table 3 Data Collection and Sampling 

Performance 

Parameter Value 

Sampling Time per Point 2.3 minutes 

Data Acquisition Rate 
10.85 

samples/hour 

Spatial Resolution 20 × 20 m grid 

Data Quality Index 94.3% 

Feature Completeness 97.8% 

Sensor Calibration Drift 0.7%/month 

Cross-Validation Score 92.1% 

 

The implemented sampling strategy achieved an 

optimal balance between comprehensive coverage 

and operational efficiency. The 25 points/hectare 

density provided sufficient resolution to detect micro-

variations in soil conditions while maintaining 

practical field coverage rates of 1.8 hectares per hour 

(as shown in Table IV). The high data quality index 

(94.3%) and feature completeness (97.8%) 

demonstrate the system's reliability in field 

conditions. The 92.1% cross-validation score 

between manual and rover-collected samples 

establishes the system's parity with traditional 

methods while offering significantly improved 

efficiency and consistency. 

4.4 Rover Hardware Performance 

The physical performance of the rover platform 

directly impacts data collection capabilities and 

operational efficiency. Table 4 presents key 

performance metrics. 

 

Table 4 Rover Hardware Performance 

Parameter Value 

Maximum Speed 2.5 km/h 

Battery Life 2-3  hours 

Navigation Accuracy ±3.5 m 

Obstacle Detection Range 1.5 m 

Maximum Slope Handled 27° 

Field Coverage 2.0 hectares/hour 

 

The rover's 3-hour battery life enables full-day field 

operations with a single charge, essential for remote 

deployment scenarios. The NEO-6M GPS module 

provided navigation accuracy of ±3.5 m, sufficient 

for maintaining the 20 × 20 m sampling grid pattern. 

The obstacle detection range of 1.5 m proved 

adequate for identifying and avoiding common field 

obstacles such as irrigation channels, rocks, and plant 

debris. The rover's ability to navigate slopes up to 27° 

demonstrates its suitability for Tamil Nadu's diverse 

terrain, including the undulating landscapes of 

Coimbatore districts. 

4.5 Crop Prediction Results 
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The system's crop recommendation performance was 

evaluated across six representative districts of Tamil 

Nadu, as shown in Table 5. 

 

Table 5 Rover Hardware Performance 

District 

Top 

Predicti

on 

Prediction 

Confidence 

(%) 

Actual vs. 

Predicted 

(%) 

Chennai Paddy 92.5 +2.1 

Nilgiris Tea 95.8 -1.7 

Coimbato

re 
Cotton 88.3 +3.5 

Madurai Millets 87.6 +4.2 

Thanjavu

r 
Paddy 94.5 +1.4 

 

 

4.6 System Evaluation and User Acceptance 

The system's holistic performance was evaluated 

through both technical metrics and user feedback, as 

summarized in Table 6. 

 

Table 6 Rover Hardware Performance 

Metric Score 

User Interface Usability 4.2/5.0 

System Reliability 92.7% 

Data Collection Efficiency 87.5% 

Decision Support Effectiveness 3.5/5.0 

Adoption Readiness 2.5/5.0 

Technical Support 

Requirements 
2.5/5.0 

 

 

4.7 Limitations and Future Potential 

As a prototype, the system faces limitations. The 

lead-acid battery restricted operation to 2 hours per 

deployment, and sensor accuracy drifted by 3–5% 

over extended use. The model’s 82% accuracy, while 

promising, can be improved with more field data and 

advanced tuning. Future iterations will incorporate 

solar power, refine sensor calibration, and expand the 

dataset with real-world data, potentially increasing 

yield gains to 20–25% and model accuracy to 85–

90%, aligning with industry benchmarks for mature 

precision agriculture systems. 

Conclusion 

This research demonstrates the successful 

implementation and evaluation of a LoRa-enabled 

semi-autonomous rover system for precision 

agriculture in Tamil Nadu, offering a viable solution 

for scalable, data-driven farming. Field trials and 

performance assessments validate the system's 

effectiveness in addressing key agricultural 

challenges related to data acquisition, connectivity, 

and decision support. The Random Forest algorithm 

achieved high accuracy (89%) and F1-score (0.88) in 

crop prediction, highlighting the efficacy of ensemble 

methods for complex agricultural data. The LoRa 

module ensured robust, long-range communication 

essential for rural deployments, while the rover's data 

integrity (over 94%) and efficient spatial coverage 

further validate its operational capabilities. User 

feedback underscores the system's strengths in 

usability and data reliability, while also identifying 

areas for future improvement, such as enhanced 

decision support and technical assistance. Future 

work will focus on integrating solar power, refining 

sensor calibration, and expanding training datasets to 

optimize system efficiency, promote user adoption, 

and enhance crop yield predictions. This study 

establishes a strong foundation for advancing 

precision agriculture in Tamil Nadu, showcasing the 

transformative potential of integrating AI, IoT, and 

autonomous robotics to empower farmers with 

actionable insights and foster sustainable farming 

practices. This approach could potentially address the 

need for increased production, while also aligning 

with the growing trend of smart agriculture 

applications in various domains. The integration of 

LoRa technology also contributes to the broader 

advancements in IoT and precision agriculture. 
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