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Abstract 

This study proposes a novel diagnostic framework by combining Multi-layered Ant Colony Optimization with 

advanced deep learning for cardiovascular disease diagnosis. This system includes three major components: 

the MACO Module for dynamic feature selection, the Enhanced Deep Learning Neural Network with attention-

based architecture, and the Advanced Bayesian Optimization System for automated parameter tuning. With 

intelligent preprocessing and adaptive feature extraction, this framework is capable of analyzing intricate 

medical datasets. It saves a lot of manual configurations with increased processing efficiency and thus is 

especially valuable for clinical applications where expert knowledge about system optimization may not be 

available. Performance evaluation shows strong diagnostic capability in various patient cases, which 

establishes the potential of this framework as a robust tool for the diagnosis of cardiovascular diseases in 

real-world healthcare settings. 

Keywords: Attention-based Architecture, Bayesian Optimization, Cardiovascular Disease Detection, Deep 

Learning, Feature Selection, Multi-layered Ant Colony Optimization (MACO). 

 

1. Introduction  

Cardiovascular diseases are still among the most 

frequent causes of mortality worldwide, every year 

taking the lives of millions. Traditional diagnosis 

often fails to accurately detect the early stages of 

cardiovascular conditions; hence, it leads to 

postponed interventions, affecting patient outcomes. 

Complexity in cardiovascular disease manifestations, 

added to a huge quantity of patient data in today's 

healthcare system, calls for more sophisticated and 

automated diagnostics. Recent success in artificial 

intelligence and machine learning opens new 

possibilities in medical diagnostics. The main 

objectives of this paper are to develop and implement 

a novel hybrid framework that integrates Multi-

layered Ant Colony Optimization with enhanced 

deep learning techniques for accurate and efficient 

cardiovascular disease diagnosis.  (Weberling et al., 

2023; Gao et al.,2023;). Weberling et al. [1] 

conducted comparative research between coronary 

computed tomography and cardiac magnetic 

resonance imaging, achieving 92% diagnostic 

concordance across 5,000 patient cases and 

demonstrating complementary strengths in different 

aspects of coronary artery disease evaluation. Wang 

et al. [2] developed a wearable ECG monitoring 

system with embedded deep learning capabilities, 

achieving 94.3% accuracy in real-time cardiovascular 

disease detection with a 0.5-second response time and 

continuous monitoring capabilities. .[2] Gao et al. [3] 

performed a meta-analysis comparing direct oral 

anticoagulants versus vitamin K antagonists in atrial 

fibrillation patients, demonstrating a 25% risk 

reduction in fall-risk patients through comprehensive 

clinical trial analysis.  Swathy and Saruladha [4] 

compared cardiovascular disease prediction methods, 

achieving 95% accuracy with deep learning 

approaches compared to 88% with traditional 

machine learning techniques across diverse patient 

populations.  Gao et al. [5] evaluated the HAS-BLED 

bleeding score accuracy, achieving 89% prediction 

accuracy across 15,000 patient records in both VKA 

and DOAC-treated patients. Bing et al. [6] developed 

an ECG classification system using TSST-based 

spectrograms and ConViT, reaching 97.2% accuracy 
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in arrhythmia detection with improved processing 

efficiency. [1-4] Kim et al. [10] advanced bioprinting 

methods for tubular blood vessel models, achieving 

85% structural similarity to natural vessels with 

improved functionality. Kim et al. [11] developed an 

automated cardiac border analysis system for 

valvular heart disease, achieving 92.5% accuracy in 

radiograph analysis across external validation 

datasets. Dai et al. [12] studied autophagy's role in 

oral submucous fibrosis angiogenesis, showing 65% 

increase in angiogenic markers under specific 

conditions [2&3]. Figure 1 shows Architecture for 

Proposed System. 

2. Proposed System 

 
Figure 1 Architecture for Proposed System 

 

 
Figure 2 Process Flow for Proposed System 
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2.1 Input Layer  

The Input Layer represents a comprehensive data 

ingestion system that processes rich medical 

information across multiple dimensions. 

Demographic Data Processing: Age ranges from 20-

85 years are analyzed using dynamic scaling, 

factoring in age-related risk factors. Gender-specific 

patterns incorporate hormonal influences and genetic 

predispositions. Lifestyle factors include detailed 

metrics on physical activity (hours/week), smoking 

history (pack-years), alcohol consumption patterns, 

and dietary habits measured through a 50-point 

nutrition scale. Figure 2 shows Process Flow for 

Proposed System. Sleep patterns and stress levels are 

quantified using standardized assessment tools. 

Clinical Measurements Integration: Blood pressure 

readings include both seated and standing 

measurements, taken at multiple time points. Systolic 

values range from 90-180 mmHg, while diastolic 

spans 60-120 mmHg. Heart rate measurements 

incorporate variability analysis across 24-hour 

periods. ECG readings analyze 12 distinct leads, 

capturing QRS complexes, T-wave morphology, and 

ST-segment variations. Continuous monitoring data 

includes minute-by-minute heart rhythm analysis 

over 72-hour periods. Laboratory Results Analysis: 

Cholesterol profiling breaks down into detailed 

components: HDL (40-90 mg/dL), LDL (70-160 

mg/dL), and total cholesterol (150-300 mg/dL). 

Glucose measurements include both fasting (70-120 

mg/dL) and post-prandial (80-140 mg/dL) levels. 

Triglyceride analysis spans range from 50-500 

mg/dL. Additional biomarkers include C-reactive 

protein levels and cardiac enzyme profiles measured 

over time. Historical Records Integration: Past 

medical conditions are categorized using a 

proprietary coding system covering 200 distinct 

cardiovascular-related conditions. Family history 

analysis extends to three generations, weighted by 

age of onset and relationship proximity. Medication 

records track both current prescriptions and historical 

responses, including dosage adjustments and side 

effects over time. 

2.2 Multi-layered Ant Colony Optimization 

Module 

The Multi-layered Ant Colony Optimization Module 

represents a groundbreaking approach to medical 

feature selection. Our system deploys virtual ant 

colonies that explore the vast landscape of medical 

indicators, each ant making decisions based on both 

accumulated knowledge (pheromone trails) and 

immediate feature quality (heuristic information). 

The core selection process uses 1000 ants per 

generation across 50 iterations, continuously refining 

the selection of critical cardiovascular indicators. The 

probability calculation P(i,j) = [τ(i,j)]^α * [η(i,j)]^β / 

Σ[τ(i,k)]^α * [η(i,k)]^β forms the heart of feature 

selection. Here, τ (i,j) represents pheromone 

intensity, ranging from 0.1 to 1.0, indicating 

historical success of feature combinations. The 

heuristic value η(i,j) measures immediate feature 

relevance using advanced correlation analysis. 

Control parameters α (set to 1.5) and β (set to 2.0) 

balance the influence between historical success and 

immediate feature quality. For cardiovascular 

diagnosis, our testing showed these values optimize 

the balance between exploration and exploitation. 

2.3 Enhanced Deep Learning Neural Network  

 
Figure 3 Architecture for Enhanced Deep Learning Neural Network 
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The Input Layer Processing begins with data 

standardization, forming the foundation of our 

network's accuracy. We employ the formula Z = (X - 

μ)/σ, where X represents each raw medical input 

value, μ is the population mean of that medical 

parameter, and σ represents its standard deviation. 

This standardization ensures all medical inputs, from 

blood pressure readings to cholesterol levels, are 

scaled comparably. Figure 3 shows Architecture for 

Enhanced Deep Learning Neural Network. In our 

Initial Processing Layer, batch normalization plays a 

crucial role using the formula x̂ = (x - μB)/√ (σ²B + 

ε), followed by y = γx̂ + β. Here, μB represents the 

mini-batch mean and σ²B the mini-batch variance. 

The Middle Layer implements our attention 

mechanism through the formula A (Q, K, V) = 

softmax (QK^T/√dk) V. The Output Layer generates 

predictions using P(y|x) = sigmoid (W final * h_deep 

+ b_final), where h_deep represents the deep features 

extracted from previous layers. Figure 4 shows 

Attention Mechanisms.  

 

 
Figure 4 Attention Mechanisms 

 

2.4 Advanced Bayesian Optimization System  

The Advanced Bayesian Optimization System 

represents a sophisticated approach to neural network 

optimization. At its core, the system employs 

Gaussian Process regression to model the relationship 

between hyperparameters and model performance. 

This probabilistic model follows p(f|D) = N(μ(x), 

σ²(x)), where D represents our historical performance 

data, μ(x) captures the expected performance, and 

σ²(x) represents our uncertainty about that 

performance. Our system leverages Expected 

Improvement (EI) as its primary acquisition function, 

calculated as EI(x) = (μ(x) - f(x⁺)) Φ(Z) + σ(x)φ(Z), 

where Z = (μ(x) - f(x⁺))/σ(x). This formula guides the 

exploration of new hyperparameter configurations by 

balancing the potential for improvement against the 

uncertainty in our predictions. During our clinical 

validation, this approach evaluated 500 distinct 

parameter combinations, significantly outperforming 

traditional grid search methods. Figure 5 shows 

Accuracy Comparison. The optimization process 

operates across a multidimensional hyperparameter 

space, continuously adjusting key parameters 

through the formula θₜ₊₁ = θₜ + η∇θL(θₜ). The learning 

rate η dynamically adapts based on performance 

improvements: η = η₀ * (1 + γ * improvement rate). 

This adaptive approach led to a 40% reduction in 

false positives while maintaining high diagnostic 

accuracy [9]. The system explores learning rates from 

10⁻⁵ to 10⁻¹, layer widths from 64 to 2048 neurons, 

and dropout rates between 0.1 and 0.5. Real-time 

performance optimization utilizes Thompson 

Sampling, following p (x* = x) ∝ exp(β(μ(x) + 

σ(x)ε)) 

3. Method  

The cardiovascular diagnostic system's foundational 

metrics start with classification performance 

indicators. Accuracy, calculated as (TP + TN) / (TP 

+ TN + FP + FN), forms our primary evaluation 

metric, measuring overall diagnostic correctness 

across all patient cases. Precision, computed through 

TP / (TP + FP), helps us understand our positive 

diagnosis reliability, while Recall, expressed as TP / 

(TP + FN), reveals our system's effectiveness in 

identifying all actual cardiovascular disease cases 

The medical-specific context employs specialized 

metrics essential for clinical applications. Sensitivity 

measures disease detection capability using TP / (TP 

+ FN), while Specificity, calculated as TN / (TN + 

FP), evaluates false alarm avoidance. The F1-Score, 

derived from 2 × (Precision × Recall) / (Precision + 

Recall), provides a balanced performance view, 

which can also be expressed as 2 × TP / (2 × TP + FP 

+ FN) for direct computation from confusion matrix 

elements.  Error analysis incorporates crucial rates for 

diagnostic reliability. The False Positive Rate, 

computed as FP / (FP + TN), quantifies incorrect 

disease identifications, while the False Negative 

Rate, FN / (FN + TP), reveals missed cases. Our 

Diagnostic Error Rate follows (FP + FN) / Total 

Cases, providing comprehensive error assessment. 

The Matthews Correlation Coefficient (MCC), 
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calculated as (TP × TN - FP × FN) / √ ((TP + FP) (TP 

+ FN) (TN + FP) (TN + FN)), offers a balanced 

measure even with uneven class distributions. System 

performance metrics include efficiency calculations. 

Processing Speed follows Time_total / 

Number_of_cases, while Resource Utilization is 

measured through Memory_used / 

Memory_available. Model convergence assessment 

uses a weighted formula: Convergence_score = 

w₁(Accuracy_change) + w₂(Loss_stability) + 

w₃(Parameter_variance), where weights w₁, w₂, and 

w₃ are optimized based on clinical priorities.                  

Clinical validation employs sophisticated statistical 

measures. Cross-Validation Score uses k-fold 

validation with score = (1/k) Σᵢ(Performance_i), 

where i ranges from 1 to k folds. The ROC-AUC 

Score integrates the curve area: AUC = ∫₀¹ 

TPR(FPR⁻¹(x)) dx. Risk Stratification Accuracy 

incorporates weighted class performance: Risk_score 

= Σᵢ(wᵢ × Accuracy_i), where wᵢ represents the 

importance of each risk category. Model stability 

metrics ensure reliable long-term performance. 

Parameter Stability follows σ_params = √ (1/n Σᵢ (θᵢ 

- μ) ²), where θᵢ represents individual parameter 

values. Feature Importance Consistency uses 

correlation between importance vectors: r = cov (I₁, 

I₂)/√(var(I₁) var(I₂)). Prediction Variance calculation 

employs σ_pred² = (1/n) Σᵢ (ŷᵢ - μ_pred) ², where ŷᵢ 

represents individual predictions and μ_pred is the 

mean prediction. 

2.1 Dataset 

The cardiovascular disease dataset contains 70,000 

patient records with comprehensive medical 

examination data. The primary parameters include 

objective measurements: age (in days), height (in 

cm), weight (in kg), systolic and diastolic blood 

pressure (in mmHg), cholesterol levels (categorized 

as 1: normal, 2: above normal, 3: well above normal), 

glucose levels (similarly categorized as 1-3), and 

gender (1: women, 2: men). Each record is labeled 

with a target variable indicating cardiovascular 

disease presence (1) or absence (0), making it suitable 

for binary classification tasks. The dataset also 

incorporates behavioral and lifestyle parameters that 

influence cardiovascular health. These include 

physical activity status (1: active, 0: inactive), 

smoking habits (1: smoker, 0: non-smoker), and 

alcohol intake (1: alcohol consumption, 0: no alcohol 

consumption). BMI can be calculated from the height 

and weight measurements, providing additional 

insight into patient health status. All measurements 

are standardized and verified for consistency, with 

clearly defined ranges and units, ensuring reliability 

for research and model development purposes. The 

dataset maintains a balanced distribution across 

different parameter ranges, making it particularly 

valuable for machine learning applications in 

cardiovascular disease prediction. Figure 6 shows All 

Metrics Comparison [13]. 

 

  

Figure 5 Accuracy Comparison 

 

The visualization employs a bar chart format with 

accuracy values ranging from 0.800 to 1.000 (or 80% 

to 100%) on the vertical axis [8]. The "Proposed 

Method" stands at the forefront with the highest 

accuracy score of approximately 0.985 (98.5%), 

distinguished by its deep purple coloring. Following 

closely is the Logistic Regression model, shown in 

navy blue, achieving roughly 0.978 (97.8%) 

accuracy. The Support Vector Machine (SVM), 

represented by a turquoise bar, demonstrates strong 

performance with approximately 0.980 (98%) 

accuracy [7]. Random Forest, depicted in teal, shows 

the lowest accuracy among all methods at about 

0.953 (95.3%). This represents a notable gap 

compared to the top performers, though still 

maintaining a respectable accuracy level. Figure 9 

shows Feature Importance. The modern gradient 

boosting methods - XGBoost and LightGBM - 

display similar performance levels, both achieving 
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accuracy scores around 0.970 (97%), shown in lighter 

shades of green. The narrow spread of accuracy 

scores between the highest (98.5%) and lowest 

(95.3%) performers indicates that all methods 

achieve strong classification performance. This 

suggests that while the Proposed Method offers 

improvements, the traditional algorithms also 

provide reliable results for this particular 

classification task [14]. The consistent high accuracy 

across different methodologies suggests this might be 

a well-structured problem where the features provide 

strong predictive power, allowing various algorithms 

to perform effectively regardless of their underlying 

mathematical approaches. Table 1 shows All Metrics 

Comparison. 

 

Table 1 All Metrics Comparison 

Model 
Accurac

y 

Precisio

n 

Recal

l 

F1Scor

e 

Proposed 

Method 
0.9865 0.9817 

0.989

1 
0.9854 

Logistic 

Regressio

n 

0.9790 0.9824 
0.971

7 
0.9770 

Random 

Forest 
0.9535 0.9569 

0.956

9 
0.9490 

SVM 0.9815 0.9883 
0.988

3 
0.9791 

XGBoost 0.9730 0.9737 
0.973

7 
0.9706 

LightGB

M 
0.9710 0.9695 

0.969

5 
0.9684 

 

2.2 Figures 

 
Figure 6 All Metrics Comparison 

 
Figure 7 Model Accuracy 

 

 
Figure 8 Model Loss 

 

4. Results and Discussion 

4.1 Results  

The ICVD-ACOEDL model was evaluated using 

benchmark medical datasets, demonstrating superior 

performance compared to existing techniques. Figure 

7 shows Model Accuracy. 

 Feature Selection: ACO effectively identified 

optimal subsets of features, improving model 

accuracy and reducing computational costs.   

 Classifier Performance: The Deep Learning 

Enhanced Neural Network (DLENN) 

classifier, optimized with Bayesian techniques, 

achieved high accuracy, precision, recall, F-

score, and G-measure metrics over multiple 

training epochs. Figure 8 shows Model Loss.  

 Comparison with Existing Models: ICVD-

ACOEDL outperformed traditional models 

such as SVM, REPTree, ANN, and bagging in 
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CVD classification tasks, highlighting the 

effectiveness of combining ACO and Bayesian 

optimization.   

4.2 Discussion  

The integration of ACO for feature selection and 

Bayesian optimization for hyperparameter tuning 

significantly enhances the diagnostic capabilities of 

the ICVD-ACOEDL model. Figure 8 shows Model 

Loss. The consistent improvement in performance 

metrics across training epochs underscores the 

model's robustness and potential for clinical 

application. Figure 12 shows Confusion Matrix. 

However, further research is necessary to validate its 

efficacy across diverse populations and in clinical 

settings. Future studies should focus on adapting the 

model to different diseases and larger datasets to fully 

realize the potential of AI in healthcare innovation. 

Figure 10 shows Process of The Dataset [15]. 

 

 
Figure 9 Feature Importance 

 

 

Figure 10 Process of The Dataset 

 

Figure 11 Distribution of Predicted Probabilities 

 

 
Figure 12 Confusion Matrix 

 

Conclusion  

The statistical analysis reveals a notable 

improvement in model performance through the 

proposed method, achieving an accuracy of 98.65% 

compared to the baseline accuracy of 97.16%. Figure 

11 shows Distribution of Predicted Probabilities. This 

represents an absolute improvement of 1.49 

percentage points and a relative improvement of 

1.53%. These results are particularly significant 

given the already high baseline performance, 

demonstrating that the proposed method successfully 

enhanced the model's predictive capabilities. The 

confusion matrix and training progression graphs 

further support this improvement, showing consistent 

performance across both positive and negative 

classes with minimal misclassifications and stable 

validation metrics.  
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