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Abstract 

This project presents a novel computational framework for cardiac arrhythmia classification that combines 

particle swarm optimization with convolution neural networks. The proposed system automatically optimizes 

neural network architectures for analyzing ECG signals to detect and classify multiple types of cardiac 

arrhythmias. The framework introduces a particle swarm optimization approach that autonomously 

determines optimal hyper parameters for the CNN architecture, eliminating the need for manual 

configuration. By leveraging the MIT-BIH Arrhythmia Dataset, the system demonstrates robust performance 

in classifying five distinct types of cardiac arrhythmias. The integration of evolutionary algorithms with deep 

learning enables automatic architecture optimization while maintaining high classification accuracy and 

minimizing categorical cross-entropy error. This innovative approach represents a significant advancement 

in automated ECG analysis by removing the dependency on manual hyper parameter selection, making it 

particularly valuable for clinical applications where expert knowledge of neural network design may be 

limited. 
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1. Introduction  

Cardiovascular diseases (CVDs) are the leading 

cause of death worldwide, accounting for 

approximately 17.9 million deaths annually, with 

arrhythmias being one of the most common and 

serious cardiac abnormalities. Arrhythmias refer to 

irregular heartbeats that can lead to severe conditions 

such as stroke, heart failure, and sudden cardiac 

arrest. Early and accurate detection of arrhythmias is 

crucial for timely medical intervention and effective 

treatment. The electro cardiogram (ECG) is the 

primary diagnostic tool used to assess heart rhythm 

abnormalities. It records the electrical activity of the 

heart and provides essential insights into a patient’s 

cardiac health. However, interpreting ECG signals is 

highly complex, time-consuming, and requires 

specialized medical expertise. Misinterpretation or 

delays in diagnosis can have life-threatening 

consequences. With the increasing burden of cardiac 

diseases, there is a growing demand for automated, 

accurate, and efficient ECG classification systems 

that can assist healthcare professionals in detecting 

arrhythmias with minimal human intervention. 

Artificial Intelligence (AI) and Deep Learning (DL) 

have revolutionized ECG analysis by enabling 

automatic feature extraction and classification of 

heartbeats, significantly reducing the reliance on 

manual analysis. 

2. Literature Survey 

Zhang's et all [1] targeted the BP Neural Network 

improvement by using the PSO optimization. Their 

proposed model optimized the classification accuracy 

to 96.5% and reduced the convergence time by 45% 

in contrast to the traditional BP methods. This 

network, designed with three hidden layers, was fed 

with 15 ECG parameters. It required only 120 

training epochs—much lesser than the 200 usually 

needed—and yet kept a minimal error rate at 3.2%. 

Rahman's work [2] proposed an effective 1D CNN 
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architecture that also could achieve an arrhythmia 

classification accuracy of 98.1%. Their proposed 

very lightweight model, of only 2.3MB, processed 

the ECG segment in 0.3 seconds and hence was 

suitable for real-time applications. The proposed 

system showed balanced performance, with 97.8% 

precision versus 97.5% recall, trained on 48 half-hour 

recordings over 4.5 hours. 

3. Existing System 

3.1 Traditional Approaches for ECG 

Classification: 
Electrocardiogram (ECG) signal classification plays 

a crucial role in detecting cardiac arrhythmias and 

assisting healthcare professionals in diagnosing heart 

diseases. Over the years, various machine learning 

and deep learning techniques have been used to 

automate this process. However, existing systems 

struggle with feature extraction, scalability, and real-

time performance. 

3.2 Conventional Machine Learning Methods 
Traditional ECG classification relied on machine 

learning models such as Support Vector Machines 

(SVMs), Decision Trees, Random Forests, and K-

Nearest Neighbors (KNN). These models require 

manual feature extraction, where handcrafted 

features such as heart rate variability (HRV), QRS 

complex width, P-wave morphology, and RR 

intervals are used for classification. While these 

models have shown moderate success, they suffer 

from major limitations: 

 Feature Engineering Dependency – Traditional 

models require expert-defined features, making 

them impractical for large-scale ECG datasets 

[1]. 

 Limited Generalization – SVMs and KNN 

struggle to handle the complex, high-

dimensional nature of ECG signals, leading to 

poor generalization across different patient 

populations [2]. 

 Computational Inefficiency – High-dimensional 

ECG data makes training and inference 

computationally expensive, preventing real-time 

applications [3]. 

Despite these drawbacks, some traditional methods 

have achieved decent accuracy. Zhang et al. [1] 

implemented an SVM-based ECG classifier that 

reached 92.4% accuracy but required significant 

manual feature selection. Similarly, Liu et al. [3] 

explored KNN-based ECG classification, achieving 

87.6% accuracy, but the model failed to scale 

efficiently to large ECG datasets. 

3.3 Deep Learning-Based ECG Classification 
The emergence of deep learning significantly 

improved ECG classification accuracy, eliminating 

the need for manual feature extraction. Deep learning 

models particularly Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Long 

Short-Term Memory (LSTM) networks and 

Transformers have become dominant in ECG signal 

analysis. 

 Convolutional Neural Networks (CNNs): CNNs 

automatically extract spatial features from ECG 

waveforms, making them highly effective for 

classification. However, traditional CNN models 

require manual hyper parameter tuning, which 

limits adaptability across different datasets [4]. 

 Recurrent Neural Networks (RNNs) and 

LSTMs: These models are particularly useful for 

ECG signals because they capture temporal 

dependencies. However, they suffer from 

vanishing gradient issues, making deep 

architectures difficult to train [5]. 

 Hybrid CNN-LSTM Models: Some researchers 

combined CNNs with LSTMs to capture both 

spatial and temporal features, but these models 

still require extensive parameter tuning [3]. 

4.  Proposed System 

To address the limitations of existing ECG 

classification systems, this study proposes a novel 

Evolutionary Deep Learning Framework that 

integrates Particle Swarm Optimization (PSO) with 

Convolutional Neural Networks (CNNs). The 

proposed system automates hyper parameter tuning, 

eliminates manual feature selection, and ensures high 

classification accuracy with minimal computational 

overhead. By combining PSO's optimization 

capabilities with CNN's feature extraction ability, the 

system dynamically selects optimal parameters, 

improving generalization and real-time performance. 

The primary objectives of the proposed system are: 

 Automate the optimization of CNN architectures 

for ECG classification using PSO. 

https://irjaeh.com/
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 Improve classification accuracy and efficiency 

while minimizing human intervention. 

 Enhance model generalization across diverse 

ECG datasets. 

 Reduce computational complexity, making it 

feasible for real-time applications such as 

wearable devices and telemedicine. 

 

 
Figure 1 Proposed System Model 

 

The healthcare industry faces significant challenges 

in accurately detecting and classifying cardiac 

arrhythmias through ECG analysis. Current systems 

heavily depend on both medical expertise for 

interpretation and technical knowledge for system 

configuration, creating a substantial bottleneck in 

healthcare delivery. Traditional approaches require 

extensive manual tuning of machine learning 

parameters or deep learning architectures, making 

them impractical for many healthcare facilities that 

lack specialized AI expertise. This limitation often 

forces medical institutions to either invest heavily in 

technical specialists or rely on less sophisticated 

analysis tools that may miss critical cardiac patterns, 

potentially affecting patient care quality and 

diagnosis Speed. Figure 1 shows Proposed System 

Model. 

 
Figure 2 Process Flow for Proposed Model 

 
Proposed Method: The first step in the proposed 

framework is ECG data acquisition. High-quality 

electrocardiogram (ECG) signals are captured, 

representing the electrical activity of the heart over 

time. The ECG signal is a time-series signal, usually 

denoted as x(t), where t is the time variable. The ECG 

signal reflects the complex electrical propagation 

through the conductive tissue of the heart, and its 

waveform features are directly related to the 

underlying cardiac physiology. Figure 2 shows 

Process Flow for Proposed Model. The ECG data to 

be captured should be of high quality for the 

subsequent processing and analysis to be performed 

accurately and reliably. This is best done using 

specialized medical-grade ECG recording devices 

that can capture the signal with high sampling rates, 

such as 500 Hz or higher, and with adequate 

resolution, such as 12-bit or higher analog-to-digital 

conversion. The ECG signal can be described by x(t) 

= f(t), where f(t) is a function of time describing the 

time-varying electrical potential measured at the 

body surface. Through the representation of the ECG 

data as a continuous-time signal x(t), the proposed 

system can employ powerful signal processing 

techniques to extract valid features and patterns, 

which may contribute to the precise identification and 

classification of different types of cardiac arrhythmia. 

The raw ECG signal, denoted as x(t), is used as the 

major input to the cardiac arrhythmia classification 
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system proposed in this work. This time-series data 

will undergo various pre-processing steps, including 

filtering, normalization, and feature extraction, 

before feeding into the deep learning-based 

classification model. Preprocessing is a vital step to 

enhance the quality of the signal and prepare the data 

for the subsequent particle swarm optimization and 

convolutional neural network parts of the system. The 

proposed framework lays the foundation for the 

effective application of advanced computational 

techniques, such as particle swarm optimization and 

convolutional neural networks, to achieve robust and 

accurate cardiac arrhythmia classification, with the 

acquisition of high-quality ECG data and its 

representation in a mathematically meaningful 

manner. 

4.1 ECG Data Preprocessing 
Before feeding the ECG signals into the deep learning 

model, several preprocessing steps are performed to 

clean the raw data and extract relevant features: 

 Noise Removal – Band pass filtering is applied 

to eliminate baseline wander, power line 

interference, and high-frequency noise [1]. 

 Normalization –ECG signals are scaled to [-

1,1] to ensure consistent model inputs [2]. 

 Segmentation – The dataset is divided into 

individual heartbeats for classification. 

These preprocessing steps enhance the 

quality of ECG signals, ensuring 

robust model training. 

5. Experimental Procedure 

5.1 Dataset Being Used in This Cardiac 

Arrhythmia Classification System 

 The MIT-BIH Arrhythmia Dataset is the primary 

data source for this project, offering a comprehensive 

collection of ECG recordings. It comprises 48 half-

hour recordings of two-channel ambulatory ECG data 

from 47 subjects, collected at Beth Israel Hospital 

Arrhythmia Laboratory. The recordings are digitized 

at 360 samples per second per channel, with 11-bit 

resolution over a 10mV range. This dataset includes 

annotations for both normal heartbeats and various 

arrhythmia types, making it highly suitable for 

training and evaluating the classification system [6]. 

The diverse and well-annotated nature of the MIT-

BIH dataset provides a robust foundation for 

developing and testing the cardiac arrhythmia 

classification model. 

 

Table 1 Performance Metrics for Proposed 

Method 

Metric 
Nor

mal 

LBB

B 
RBBB APC PVC 

Precision 0.99 1 1 0.98 0.99 

Recall 1 1 1 0.98 0.98 

F1-Score 0.99 1 1 0.98 0.99 

Support 200 200 200 130 200 

 

Table 2 Accuracy Metrics for Proposed Method 

Overall Metrics Value 

Accuracy 0.99 

Macro Avg 0.99 

Weighted Avg 0.99 

 

 

 
Figure 3 Accuracy Comparison Various Models 

 

Figure 3 is an "Algorithm Comparison" chart 

comparing the accuracy of various machine learning 

models for the task at hand. Still, the performance of 

the proposed Convolutional Neural Network (CNN) 

model outperforms others with an accuracy of 

99.25%. Random Forest and SVM perform strongly 

with an accuracy of 98.60%, and Gradient Boosting 

follows closely with 98.17%. In this chart, it can be 
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clearly seen that the CNN model outperforms other 

approaches by a long margin. The chart shows 

various algorithms relative to their strengths; hence, 

allowing the determination of the best of them all and 

offering a concise view of how different machine 

learning algorithms stack up against each other. 

6. Results 

Figure 4 Model Accuracy 

 

 
Figure 5 Model Loss 

Figures 4 and 5 show the model's behaviour during 

training over 20 epochs. Figure 4 is the accuracy plot, 

where training accuracy (in blue) and validation 

accuracy (in orange) start very low but increase 

rapidly. The training accuracy plateaus around epoch 

10, while the validation accuracy closely follows, 

which means good generalization. Figure 5 is the loss 

plot; in this, both training loss (blue) and validation 

loss (orange) start high but drop off quickly to 

stabilize around epoch 5. Thus, by epoch 20, both the 

accuracy and loss curves for training and validation 

have converged to optimal levels. This parallel 

behaviour of the training and validation metrics 

indicates that the model has learned well without over 

fitting, achieving high accuracy and low loss on both 

seen and unseen data. Together, these plots indicate 

that the model was trained successfully and that it 

generalizes well to new data [7]. 

 

 
Figure 6 ROC Curve 

 

Figure 6 displays ROC curves of the classification 

task for various arrhythmia classes. The plot 

illustrates the trade-off between True Positive Rate 

(y-axis) and False Positive Rate (x-axis) while 

varying the decision threshold. ROC curves for 

"Normal,""LBBB", "RBBB,""APC," and "PVC" 

classes are shown, each with an AUC of 1.00, 

indicating perfect classification performance. The 

curves approximate very closely to the ideal vertical 

line from (0,0) to (0,1), indicating that the model 

achieves nearly perfect sensitivity and specificity in 

discriminating arrhythmia classes. This visualization 

shows the exceptional effectiveness of the 

classification model for all arrhythmias, as the curves 

for each class are located in the upper left corner of 

the plot and far above the diagonal line representing 
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a random classifier [8]. 

 

 
Figure 7 Learning Curve Accuracy 

 

 
Figure 8 Learning Curve Loss 

 

Figure 7 and 8 shows the accuracy and loss of the 

model during training and validation. On the 

accuracy plot, one can observe a starting point that is 

low for both training (in blue) and validation (in red), 

which steadily increases, although the training 

accuracy plateaus around epoch 10. Validation 

accuracy follows this curve well, meaning that 

generalization is good. The loss plot shows high 

starting values for both training and validation, which 

rapidly drops and stabilizes around epoch 5. The 20th 

epoch shows very low and stable values for training 

and validation loss, indicating model convergence. In 

addition, the training and validation curves in both 

plots are very close to each other, indicating that the 

model learns effectively from the training data while 

showing good performance on unseen data, not over 

fitting. More comprehensive visualization of how the 

model is learning and generalizing over both the 

training and validation datasets is presented here 

 

  
Figure 9 Pre-Class Performance Metrics 

 

Figure 9 presents an in-depth analysis of the 

performance of different arrhythmia classes using 

various metrics in the classification task. These 

include Precision, Recall, and F1-score for the 

Normal, LBBB, RBBB, APC, and PVC classes. The 

model performs outstandingly well on all three 

metrics for the Normal, LBBB, and RBBB classes, 

with scores of 0.99 or higher. In addition, APC and 

PVC arrhythmia classes present commendable 

results, where Precision and Recall are above 0.98, 

and the F1-Score is approximately 0.98 or 0.99. This 

consistent high performance across different 

arrhythmias may indicate that the model has been 

trained well and can classify different arrhythmias 

found in the dataset with high accuracy [9]. The 

analysis gives an in-depth evaluation of the 

capabilities of the model, which can guide further 

improvements or its application in clinical settings. 

Figure 10 presents a normalized confusion matrix for 

the classification model's performance across 

arrhythmia types. On the diagonal, one can find true 

positive rates, where the "Normal","LBBB," and 

"RBBB" classes have perfect 100.00% rates, 
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meaning that these conditions were identified 

perfectly. The "APC" class has a true positive rate of 

97.69%, while the "PVC" class has 98.00%, 

indicating slight misclassifications within these less 

frequent arrhythmias. This matrix provides an overall 

view of the capabilities of the model in terms of 

excellent accuracy in most arrhythmia types and 

pinpointing areas where minor improvements could 

be made for less frequent conditions [10]. The 

visualization of the confusion matrix gives valuable 

insight into the model's overall effectiveness and its 

performance on specific tasks of different cardiac 

normalities. 

 

 
Figure 10 Normalized Confusion Matrix 

 

Figure 11 Test Set Class Distribution 

Figure 11 shows the class distribution of the test set 

data used in the classification task. The x-axis 

represents the different classes: RBBB, LBBB, 

Normal, PVC, and APC. From the chart, one can see 

that the test set has 175 samples from the RBBB class, 

170 from the LBBB class, 160 from the Normal class, 

150 from the PVC class, and 130 from the APC class. 

This distribution of the test set data gives insight into 

the relative frequency of the different arrhythmia 

types in the overall dataset, which may be useful in 

understanding the model's performance and potential 

biases. 

 

 
Figure 12 Accuracy Vs coverage Trade off 

 

Figure 12 depicts how accuracy, coverage, and 

confidence threshold are interlinked in model 

performance. Along the x-axis, as the confidence 

threshold increases, the blue line representing 

accuracy stays stable around 0.996, and the orange 

line for coverage starts at 1.0 and trends downwards. 

From this visualization, it is easy to pick out a good 

confidence threshold trading off between accuracy 

and coverage for this particular classification task. 

For example, with the threshold 0.4, one achieves 

about 0.995 accuracy and 0.99 coverage—that is to 

say, this model can correctly classify 99% of all 

instances with 99.5% accuracy. Real-world 

applications find this threshold tuneable because such 

a value will let one trade off what kind of errors 

dominate in which scenarios. 

5.2 Comparative Analysis with Existing 

Systems 

The proposed system is compared with traditional 
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and existing ECG classification methods, as shown 

in Table 3: 

 

Table 3 Proposed System Compared with 

Traditional 

Method Accuracy 
Real-Time 

Suitability 

SVM 92.4% LOW 

KNN 87.6% LOW 

CNN 97.3% Moderate 

Transform

er 
98.1% 

High (but 

requires 

large 

dataset) 

Proposed 

PSO-CNN 
99.25% 

High 

(Optimized 

for Real 

Time) 

 

This study introduces a novel PSO-CNN framework 

that automates hyperparameter tuning, enhances 

classification accuracy, and ensures scalability for 

real-world applications. The Particle Swarm 

Optimization algorithm optimizes CNN architectures 

dynamically, eliminating the need for manual 

parameter selection. The proposed system 

outperforms existing methods in terms of accuracy, 

efficiency, and adaptability, making it a viable 

solution for automated ECG arrhythmia detection in 

clinical and telemedicine applications [12-15]. The 

experimental evaluation of the proposed PSO-

optimized CNN framework for ECG classification 

focuses on its classification accuracy, training 

efficiency, and generalization capabilities. This 

section presents a comparative analysis of different 

models, performance metrics, and graphical 

representations of the training process. The results 

demonstrate how the automated hyper parameter 

tuning with PSO enhances CNN performance, 

reducing manual intervention and training time while 

maintaining high accuracy. 

Conclusion 

The analysis of the proposed machine learning model 

for ECG arrhythmia classification reveals 

exceptional performance, with the Convolutional 

Neural Network achieving an accuracy of 99.25% on 

the test set. Detailed per-class metrics show 

consistently high precision, recall, and F1-scores 

across all arrhythmia types, including less common 

APC and PVC cases. The confusion matrix further 

demonstrates the model's ability to accurately 

differentiate between various cardiac conditions. 

These results indicate the model's strong potential for 

clinical application in arrhythmia detection. To 

further enhance its generalizability and robustness, 

incorporating more diverse datasets, especially real-

world clinical data, could help the model adapt to a 

wider range of ECG signal characteristics and 

improve its performance across varied patient 

populations and recording conditions [11]. 
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