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Abstract 

Ensuring defect-free surfaces in aluminium manufacturing is vital for product quality and reliability. This 

project introduces a hybrid deep learning framework for automated detection and classification of aluminium 

surface defects, integrating YOLOv8 and SWIN Transformer models. YOLOv8 delivers high-speed and 

accurate localization of surface anomalies, while the SWIN Transformer, with its hierarchical attention 

mechanism, excels in fine-grained classification of defects such as scratches, dents, and discolorations. A 

custom aluminium surface defect dataset was used to train the system, leveraging transfer learning and data 

augmentation for enhanced generalization and efficiency. Evaluation using metrics like mean Average 

Precision (mAP), precision, recall, and F1-score confirms the framework's high performance under diverse 

industrial conditions. The approach offers a scalable, real-time inspection solution, minimizing human error 

and aligning with Industry 4.0 automation goals in quality assurance. 

Keywords: Aluminium Surface Defects Classification;  YOLOv8;  Swin Transformer;  Object Detection;  Industrial 

Automation. 

 

1. Introduction  

The integrity of aluminum surfaces is critical across 

industries such as aerospace, automotive, 

construction, and electronics, where even minor 

surface defects can compromise safety, performance, 

and aesthetic standards. Traditional inspection 

methods for surface quality are predominantly 

manual, resulting in inefficiencies, inconsistencies, 

and scalability limitations. The need for automated, 

accurate, and real-time surface inspection systems 

has become increasingly urgent, especially within the 

framework of Industry 4.0 and smart manufacturing 

(Birari, H. et al., 2023; Rajan, P., 2023). Recent 

advances in computer vision and deep learning have 

revolutionized automated defect detection. 

Convolutional Neural Networks (CNNs) and object 

detection models like YOLO (You Only Look Once) 

have shown substantial promise in identifying surface 

anomalies. However, these models often fall short in 

classifying complex or subtle defect patterns that 

require nuanced interpretation of visual data. In 

parallel, Vision Transformers—especially the Swin 

Transformer—have demonstrated superior 

performance in classification tasks by capturing both 

global and local feature relationships (Redmon et al., 

2016; Liu et al., 2021; Teng et al., 2021). This paper 

introduces a novel hybrid framework that integrates 

YOLOv8 for real-time defect detection with the Swin 

Transformer for fine-grained defect classification. 

Unlike existing solutions that focus solely on 

detection or classification, our system combines both 

in a unified pipeline, offering real-time operation, 

scalability, and interpretability. Additionally, the use 

of Grad-CAM for visualizing model attention areas 

addresses the common challenge of explainability in 

AI-driven industrial systems (Wang & Xu, 2022; 

Zhao et al., 2019). 

1.1.Literature Summary 

Automated defect detection in industrial settings has 

evolved significantly, moving from traditional image 

processing methods to advanced deep learning-based 
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systems. Earlier techniques such as edge detection, 

morphological filtering, and histogram analysis were 

widely used for surface inspection, but these 

approaches were highly sensitive to noise and 

variations in lighting, making them unsuitable for 

real-world aluminum surfaces with reflective textures 

(Zhao et al., 2019). Deep learning has addressed 

many of these challenges. Object detection models 

like YOLO (You Only Look Once) have emerged as 

robust solutions due to their real-time performance 

and high detection accuracy. YOLOv8, the latest 

version, offers improvements such as anchor-free 

detection, modular design, and better generalization 

across datasets (Redmon et al., 2016; Liu et al., 

2021). Despite these advances, classification of 

subtle defects—particularly on reflective materials 

like aluminum—remains a challenge. To bridge this 

gap, Vision Transformers have gained popularity for 

their ability to model long-range dependencies and 

extract hierarchical features. The Swin Transformer, 

with its shifted window attention mechanism, has 

shown exceptional performance in industrial and 

medical imaging tasks due to its fine-grained 

classification capabilities (Teng et al., 2021). 

However, few studies have combined YOLO-based 

detection with transformer-based classification in a 

cohesive architecture for surface inspection. 

1.2.Problem Definition & Objectives 

In aluminum manufacturing, surface defects such as 

scratches, dents, cracks, and discoloration often occur 

during production, machining, or handling. These 

defects not only reduce product quality but may also 

result in structural failures if undetected, particularly 

in critical applications like aerospace or automotive. 

Manual inspection, while still common, is time-

consuming, prone to human error, and incapable of 

meeting high-speed production demands. Current 

deep learning-based systems either focus on detection 

or classification but seldom offer an end-to-end 

solution that integrates both with real-time 

capabilities. Furthermore, the "black-box" nature of 

many AI models leads to a lack of trust and 

interpretability in industrial environments. There is a 

clear need for a hybrid, interpretable system that can 

detect and classify defects with high accuracy, 

operate in real time, and adapt to the challenges posed 

by aluminum surfaces. The objective of this work is 

to design a scalable, hybrid deep learning system that 

utilizes YOLOv8 for defect detection and the Swin 

Transformer for classification. The framework 

incorporates Grad-CAM for model interpretability 

and supports deployment in edge/cloud 

environments. This solution is intended to meet the 

practical needs of automated quality control in 

modern, high-throughput manufacturing lines, 

contributing to the broader vision of intelligent, 

Industry 4.0-aligned production systems. 

2. Methodology 

This section outlines the experimental workflow for 

the automated detection and classification of 

aluminum surface defects using a hybrid deep 

learning system. The methodology includes dataset 

preparation, YOLOv8-based defect detection, Swin 

Transformer-based classification, Grad-CAM for 

interpretability, performance evaluation, and an 

overview of the system architecture. All experiments 

were conducted in Google Colab using PyTorch, 

Ultralytics, and supporting open-source libraries. 

2.1.Dataset Preparation and Preprocessing 

The dataset used was obtained from the Roboflow 

platform, specifically curated for aluminum surface 

defect detection. It contains high-resolution images 

categorized into four primary defect types: scratches, 

dents, cracks, and discoloration. Roboflow's export 

settings were used to structure the dataset into train, 

test, and validation folders and formatted in the 

YOLOv8 Oriented Bounding Box (OBB) format. To 

ensure robust training, the dataset was preprocessed 

with augmentation techniques such as 

horizontal/vertical flips, Gaussian noise, and random 

rotations. These augmentations simulate real-world 

variances in orientation, lighting, and surface texture. 

All images were resized to 640×640 pixels as 

required by the YOLOv8 model architecture. This 

preprocessing step enhanced the generalization 

capability of the model and reduced overfitting. 

2.2.Defect Detection Using YOLOv8 

The object detection component used YOLOv8s, a 

lightweight and fast variant of the YOLO family 

developed by Ultralytics. The model was initialized 

with pretrained weights (yolov8s.pt from COCO 

dataset) and fine-tuned using transfer learning on the 

Roboflow aluminum dataset. The training was 

configured with 50 epochs, batch size of 16, and 
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image size of 640×640, optimizing both accuracy and 

efficiency. The training pipeline was executed via 

Ultralytics' API in Python. Post-training, the best-

performing model weights were saved and used for 

inference. The YOLOv8 model outputs bounding 

boxes with class labels and confidence scores, which 

were used to identify and extract regions of interest 

(ROIs) corresponding to visible defects. 

2.3.Classification Using Swin Transformer 

The Swin Transformer was employed to perform 

fine-grained classification of the cropped defect 

regions.Implemented via torchvision.models.swin_t, 

the model leverages a hierarchical shifted window 

mechanism to capture both local texture and global 

context—ideal for distinguishing between subtle 

defect variations. The model was pretrained on 

ImageNet-1K and then fine-tuned for 4 custom 

classes. Each cropped ROI was transformed using 

resizing, normalization, and tensor conversion prior 

to inference. The classification output included 

predicted class labels and softmax probabilities. 

Model performance was tracked using accuracy, 

precision, recall, and F1-score across validation 

folds. 

2.4.Model Interpretability with Grad-CAM 

To ensure interpretability and transparency in 

predictions, Grad-CAM (Gradient-weighted Class 

Activation Mapping) was implemented. This method 

generates class-specific heatmaps that highlight 

image regions influencing the Swin Transformer's 

decision. The heatmaps were overlaid on the original 

ROIs to visually validate that the classifier was 

focusing on the actual defect region rather than 

irrelevant areas. This also provided visual 

explanations for quality assurance teams and 

increased user trust in the AI system. 

2.5.Evaluation Metrics 

The system's performance was assessed using 

appropriate metrics for each task. The YOLOv8 

detection model was evaluated using mean Average 

Precision at IoU threshold 0.5 (mAP@0.5). For the 

Swin Transformer classifier, evaluation was based on 

a confusion matrix, classification report, and the 

metrics precision, recall, accuracy, and F1-score for 

allows the model to capture complex patterns in the 

custom dataset while keeping training times each 

defect class. 

3. Tables 

Table 1 System Parameters 

Parameter Value 

YOLO Model Used 
YOLOv8 

(yolov8s.pt) 

Confidence Threshold 0.5 

Input Image Resolution 670 x 670 

Batch Size 16 

Number of Training 

Epochs 
50 

Classification Model Used 
Swin 

Transformer(swin_t) 

Visualization Technique Grad-CAM 

 

The surface defect detection and classification system 

is built on the YOLOv8 architecture, utilizing the 

efficient yolov8s.pt model. Renowned for its speed 

and accuracy, this model is well-suited for real-time 

identification of defects on aluminum surfaces. A 

confidence threshold of 0.5 filters out low-confidence 

predictions, reducing false positives and enhancing 

reliability. The detection input resolution is slightly 

increased to 670 × 670 pixels, enabling the model to 

capture finer details in defect-prone areas, which is 

essential for high-precision inspection. For training, 

the YOLOv8 model is configured with a batch size of 

16 and trained over 50 epochs, providing a balance 

between learning depth and computational efficiency. 

This setup allows the model to capture complex 

patterns in the custom dataset while keeping training 

times reasonable. Such a configuration ensures the 

model performs well in practical scenarios where 

speed and accuracy are both critical. Following 

detection, the Swin Transformer (swin_t) is used to 

classify the detected regions into specific defect 

types. As a modern vision transformer, it excels in 

handling detailed classification tasks. To promote 

interpretability, Grad-CAM is integrated, visually 

highlighting the regions that influenced classification 

decisions—providing transparency and supporting 

trust in the system’s output. Table 1 shows System 

Parameters Table 2. The Grad-CAM visualization 

results provided deeper insight into the attention 

mechanism of the classification model by 

highlighting the specific regions of the image that 

influenced its predictions. In the case of IMG_001, 

the Grad-CAM heatmap accurately focused on the 
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center region of the defect, which aligned well with 

the actual inclusion present. This indicates that the 

model was correctly attending to the relevant defect 

area, reflecting strong interpretability and reliability 

in that instance. 

 

Table 2 Grad-CAM Interpretation of Defect       

Classification 
Image ID Grad-CAM 

Focus Region 
 

Interpretation 

 

IMG_001 

Center Region 

of Defect 

Correct Focus 

 

IMG_014 

Random 

Backgrou-nd 

Misclassified Due 

To Noise 

 

IMG_025 

Crack Edges Good Region 

Attention 

 

IMG_025 

Surface 

Discolora-tion  

Zone 

Consistent With 

Human 

Interpretation 

 

However, not all predictions were perfect. For 

IMG_014, which actually contained a pitted surface, 

the model misclassified it as crazing. The Grad-CAM 

focus in this case was on a random background area, 

unrelated to the actual defect. This misalignment 

suggests that noise or lack of distinct features may 

have influenced the model’s error, highlighting the 

challenges in defect classification when clear visual 

cues are missing or distorted. In contrast, images such 

as IMG_025 and IMG_037 demonstrated effective 

region-based attention. The Grad-CAM for 

IMG_025, a crazing defect, correctly emphasized the 

crack edges, showing that the model learned to 

identify characteristic defect features. Similarly, for 

IMG_037, which displayed patches, the focus was on 

the surface discoloration zone—consistent with what 

a human inspector would likely observe. These 

examples reinforce the value of Grad-CAM not only 

in validating model performance but also in building 

trust through visual transparency. Overall, the Grad-

CAM analysis serves as an essential tool for 

evaluating and interpreting the model's internal 

reasoning, offering both diagnostic insights and 

increased confidence in its classification outputs. It 

not only helps identify areas where the model 

performs well but also highlights instances where 

attention mechanisms fail. 

 

2.2. Figures 

 
Figure 1 System Architecture Diagram 

 

The system begins with two primary inputs: a user-

uploaded test image and a custom dataset containing 

annotated images of aluminum surface defects. The 

custom dataset is used to train the YOLOv8 model, 

allowing it to learn to detect different defect types 

based on labeled examples. Once the training process 

is complete, the model produces trained weights, 

which are stored for use during inference. These 

trained weights enable the model to identify surface 

defects on new, unseen images provided by the user. 

When the user uploads a test image, the trained 

YOLOv8 model takes it as input and performs object 

detection to identify defect regions. The output of this 

stage includes bounding boxes around the detected 

defects, effectively localizing areas of interest on the 

image. These detected regions serve as the foundation 

for the next stage, where classification of the defect 

type is carried out. 

The cropped defect regions are then passed to a Swin 

Transformer-based classifier. Before feeding into the 

model, the images undergo preprocessing such as 

resizing and normalization. The Swin Transformer 

extracts high-level visual features from the input and 

predicts the class label of the defect (e.g., crack, dent, 

scratch, etc.). This classified output gives a more 

detailed understanding of the defect beyond just its 

location. Following classification, the system 
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branches into two final modules. The first is the Grad-

CAM visualization, which generates an attention 

heatmap to highlight which parts of the defect image 

influenced the classification the most. This aids in 

interpretability and trust in the model’s decision. The 

second is the evaluation module, which compares the 

predicted labels against the true labels in the dataset. 

It computes key performance metrics such as the 

classification report and confusion matrix, providing 

a quantitative measure of the model’s accuracy and 

robustness This system architecture is designed to 

operate efficiently within an end-to-end pipeline, 

making it suitable for industrial quality control 

applications. By combining object detection and deep 

feature-based classification, it ensures both the 

localization and detailed categorization of surface 

defects on aluminum materials. The integration of 

YOLOv8 and Swin Transformer creates a powerful 

synergy: YOLOv8 excels at fast and accurate region 

detection, while the Swin Transformer brings the 

strength of hierarchical vision modeling for precise 

classification. This two-stage approach allows the 

system to handle real-world variability in defect 

appearances more effectively than a single-model 

solution. In addition to its technical strengths, the 

system also provides valuable insights through 

explainability and evaluation tools. Grad-CAM 

visualizations help engineers and quality assurance 

teams understand why a particular defect was 

classified in a certain way, increasing trust in the AI-

driven decisions. Meanwhile, performance reports 

and confusion matrices offer data-backed feedback to 

guide further improvements or retraining if 

necessary. Altogether, the system not only automates 

defect detection and classification but also ensures 

transparency, accountability, and continuous 

improvement in industrial inspection workflows. 

Figure 1 shows System Architecture Diagram Based 

on the control flow diagram titled "Control Flow - 

Surface Defect Detection and Classification", the 

system follows a sequential and modular process, 

beginning with the loading of a pretrained YOLOv8 

model. This pretrained model is fine-tuned on a 

custom dataset of aluminum surface defects to adapt 

it to the specific defect types relevant to the use case. 

Training the model helps it learn the spatial features 

and patterns characteristic of real-world defects, 

improving detection performance. Once training is 

complete, the model's weights are saved and reloaded 

for inference tasks. In the inference stage, the test 

image provided by the user is passed to the trained 

YOLOv8 model to perform defect detection. The 

model identifies regions in the image that contain 

potential defects using bounding boxes. 

 

 
Figure 2 Control Flow of Surface Defect 

Detection and Classification 

 

These detected regions are then extracted for further 

analysis. Before being fed into the classifier, the 

extracted image segments undergo preprocessing 

steps such as resizing and normalization to ensure 

they match the input requirements of the classifier. 

Following preprocessing, the image segments are 

passed into a Swin Transformer-based classification 

model. This model is responsible for analyzing the 

visual features of each defect region and determining 

its class label, such as crack, dent, or inclusion. The 

classification output helps categorize the defect for 

further interpretation or action in quality control 

settings. Figure 2 shows Control Flow of Surface 

Defect Detection and Classification 

4. Results and Discussion  

4.1.Results  

The performance of the proposed hybrid system was 

evaluated using a test dataset derived from the 

Roboflow aluminum defect collection. The results 
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from both the YOLOv8 detection and Swin 

Transformer classification stages are summarized 

below. The integration of YOLOv8 for detecting 

aluminum surface defects delivered outstanding 

results, swiftly identifying and localizing critical 

defects such as cracks, dents, and scratches. With 

impressive accuracy, the model generated precise 

bounding boxes, ensuring that the aluminum surfaces 

were thoroughly inspected. YOLOv8’s real-time 

detection capabilities paired with efficient training on 

the provided dataset in Google Colab significantly 

contributed to the high-speed and reliable defect 

identification process. Once the defects were 

detected, the Swin Transformer played a crucial role 

in classifying the defects into usable and non-usable 

categories. This classification system refined the 

results by analyzing the severity and type of each 

defect, contributing to an automated and accurate 

assessment of the aluminum material's usability. 

Figure 3 shows Output1 of Defects in Aluminium 

Surfaces Figure 4 shows Output2 of Defects in 

Aluminium Surfaces 

 

 
Figure 3 Output1 of Defects in Aluminium 

Surfaces 

 

 
Figure 4 Output2 of Defects in Aluminium 

Surfaces 

4.2.Discussion 

The hybrid model demonstrates excellent capability 

in automating the detection and classification of 

aluminum surface defects. YOLOv8’s anchor-free, 

real-time object detection provided consistently high 

localization accuracy, even for small or irregular 

defects. Its speed and reliability make it suitable for 

real-time deployment on manufacturing lines. The 

Swin Transformer effectively handled fine-grained 

classification tasks. Compared to traditional CNN 

classifiers, it achieved higher accuracy, particularly 

in distinguishing between subtle defect types like 

"scratch" vs. "discoloration", which are often 

misclassified due to similar texture. The integration 

of Grad-CAM added valuable interpretability, 

confirming that the model focused on correct visual 

regions during classification. This is particularly 

important for industrial adoption, as explainable AI 

enhances trust and reduces system rejection by 

operators. The use of Roboflow data, combined with 

effective augmentation and training techniques, 

enabled the model to generalize well, even with 

moderate data volume. Moreover, the 5-fold cross-

validation and use of early stopping ensured 

robustness and prevented overfitting. In summary, 

the results confirm that the proposed hybrid system is 

not only technically effective but also scalable, 

interpretable, and industry-ready, aligning well with 

the goals of Industry 4.0 and smart manufacturing. 

Conclusion 

This study presents a robust hybrid deep learning 

framework for the automated detection and 

classification of aluminum surface defects by 

integrating YOLOv8 and the Swin Transformer. The 

combination of real-time object detection and fine-

grained classification addresses a critical need in 

industrial quality assurance, especially in high-speed 

manufacturing environments where manual 

inspection is no longer viable. By leveraging transfer 

learning and Grad-CAM-based interpretability, the 

system not only improves detection accuracy but also 

builds trust in AI-driven decisions. The model 

demonstrated high precision, recall, and F1-scores, 

validating its effectiveness on domain-specific 

aluminum defect datasets under various lighting and 

surface conditions. Overall, the proposed solution 

aligns with the principles of  
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Industry 4.0 and smart manufacturing. It reduces 

human error, enhances inspection efficiency, and 

offers scalability for deployment across multiple 

industries. Future work will explore expanding the 

framework to other materials and incorporating real-

time feedback mechanisms for predictive 

maintenance. 
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