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Abstract 

The rapid and cost-effective prediction of drug-target interactions (DTIs) is a critical challenge in 

computational drug discovery. This project presents a novel web-based system that predicts Drug Target 

Affinity (DTA) using Graph Neural Networks (GNNs) and amino acid sequence embeddings. The model 

represents drug molecules as molecular graphs derived from SMILES strings and proteins as encoded 

sequences. A custom GNN architecture processes graph-structured molecular data while a convolutional 

embedding layer extracts features from protein sequences. The integrated model predicts binding affinity 

scores, enabling interpretation of interaction strength. The system includes a user-friendly interface for 

submitting single or batch predictions, visualization of molecule structures, interactive affinity plots, and 3D 

binding structure rendering using RDKit and 3Dmol.js. This solution demonstrates a powerful and extensible 

platform for virtual screening, offering interpretability and speed in early-stage drug development pipelines. 
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1. Introduction  

The prediction of drug–target interactions (DTIs) is a 

foundational aspect of drug discovery, aiming to 

understand how molecules interact with biological 

targets such as proteins. Accurate prediction of 

binding affinity, a quantitative measure of interaction 

strength, is essential for prioritizing drug candidates. 

With the rise of computational biology and AI, data-

driven methods have become increasingly popular for 

modeling complex molecular relationships [1[. 

Traditional DTA estimation relies heavily on wet-lab 

experiments, which are costly and time-consuming. 

In response, machine learning (ML) and deep 

learning (DL) models have emerged as efficient 

alternatives, offering high-throughput predictions 

based on chemical and biological features. Among 

them, Graph Neural Networks (GNNs) have shown 

great potential in modeling molecular graphs, 

providing a natural way to learn topological features 

of compounds. In this work, we propose a GNN-

based architecture for DTA prediction that leverages 

molecular graphs for drug input and sequence 

embeddings for proteins. Our contributions include: 

 A GNN model architecture tailored for drug 

molecule graph representation [2]. 

 Protein feature extraction via 1D sequence 

embeddings. 

 Integration of these representations for 

affinity prediction. 

 Interactive tools for structure visualization 

and batch analysis [3]. 

The proposed system addresses key challenges in 

DTA prediction, including the lack of structural data 

and the need for scalable, user-friendly tools. It 

eliminates dependence on 3D structures, reduces 

computational overhead, and supports diverse 

applications, such as virtual screening, drug 
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repurposing, and personalized medicine. By 

integrating advanced machine learning with an 

intuitive interface, this system bridges the gap 

between computational drug discovery and practical 

implementation, offering a transformative tool for 

pharmaceutical and educational environments [4]. 

2. Methodology 

The GNN-based DTA prediction system operates as 

a real-time pipeline, transforming molecular and 

protein inputs into binding affinity predictions 

through a series of modular stages: data acquisition, 

graph construction, feature extraction, affinity 

prediction, and result visualization. Each stage is 

implemented in Python, leveraging open-source 

libraries for seamless integration and high 

performance [5]. 

2.1.Data Acquisition 

The system sources data from benchmark datasets, 

such as Davis [1] and KIBA [2], which provide 

SMILES strings for drugs, amino acid sequences for 

proteins, and experimentally validated binding 

affinity values (e.g., Kd, Ki). These datasets are 

preprocessed to ensure consistency, with SMILES 

strings validated for chemical correctness and 

sequences checked for length and residue validity [6]. 

2.2.Graph Construction 

 Molecular Graphs: SMILES strings are 

converted into 2D molecular graphs using 

RDKit. Nodes represent atoms, with features 

including atom type, atomic number, degree, 

hybridization, and formal charge. Edges 

represent bonds, with features such as bond 

type (single, double, triple, aromatic) and 

stereochemistry. This representation captures 

the topological structure and chemical 

properties of molecules. 

 Protein Graphs: Protein sequences are 

processed using ESM [3] to predict contact 

maps, estimating residue interactions based 

on evolutionary patterns. Weighted protein 

graphs are constructed, where nodes represent 

amino acid residues (with features like 

residue type, hydrophobicity, and polarity) 

and edges are weighted by contact 

probabilities (0 to 1), reflecting spatial 

proximity in the folded protein [7]. 

2.3.Feature Extraction with GNNs 

A dual-GNN architecture, implemented using 

PyTorch and DGL, processes molecular and protein 

graphs. Graph Attention Networks (GAT) [4] are 

employed to assign importance weights to 

neighboring nodes during message passing, 

enhancing feature extraction. For molecular graphs, 

three GAT layers aggregate atom and bond features 

to capture local chemical environments, producing a 

128-dimensional latent vector. For protein graphs, 

two GAT layers’ model residue interactions, 

leveraging edge weights to prioritize significant 

contacts, yielding a 256-dimensional latent vector. 

Batch normalization and ReLU activations are 

applied to stabilize training and improve 

convergence. 

2.4.Affinity Prediction 

The latent vectors from molecular and protein graphs 

are concatenated (384-dimensional vector) and fed 

into a multi-layer perceptron (MLP) with three fully 

connected layers (512, 256, 1 neurons), culminating 

in a regression layer that outputs the predicted 

binding affinity (e.g., pKd or pKi). The model is 

trained using mean squared error (MSE) loss, 

optimized with the Adam algorithm (learning rate: 

0.001), and regularized with dropout (p=0.3) and L2 

regularization (weight decay: 0.0001) to prevent 

overfitting. Hyperparameters are tuned via grid 

search, optimizing the number of GAT layers (2–4), 

hidden dimensions (64–512), and learning rate 

(0.0001–0.01) [9]. 

2.5.Frontend Visualization 

A Streamlit-based interface enables real-time 

interaction, displaying: 

 Input fields for SMILES strings and protein 

sequences, with validation checks [10].  

 Visualizations of molecular graphs (using 

RDKit’s MolDraw2D) and protein contact 

maps (as heatmaps). 

 Predicted affinity values, confidence 

intervals, and feature importance scores 

(derived from GAT attention weights).  

 Interactive controls to explore alternative 

drug candidates or protein variants. The 

interface updates dynamically, with 

predictions rendered in an average of 2.8 
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seconds, ensuring an intuitive and engaging 

user experience. 

  

 
Figure 1 System Architecture of The GNN-Based 

DTA Prediction System, Illustrating The Flow 

from Data Input to Affinity Prediction and 

Visualization 
 

The system architecture (Figure 1) integrates RDKit 

for graph construction, GNNs for feature extraction, 

and Streamlit for visualization, ensuring efficient 

processing from input to output. 

3. Results and Discussion 

3.1.Results  

The system was evaluated on the Davis and KIBA 

datasets using five-fold cross-validation. 

Performance metrics are summarized in Table 1.  

 

Table 1 Performance Metrics on Davis and KIBA 

Datasets 

Dataset MSE Rp    CI 
Davis 0.40 0.87 0.82 

KIBA 0.38 0.89 0.84 
                                                                   

These results outperform baseline methods, such as 

DeepDTA (MSE: 0.48, Rp: 0.80 on Davis) and 

KronRLS (MSE: 0.55, Rp: 0.75 on Davis). A sample 

prediction for a kinase inhibitor (SMILES: Cc1cc (c 

(c(c1)C)Nc2nccc(n2)c3cccnc3)C(=O)Nc4ccc(cc4)O

C) and EGFR sequence (UniProt: P00533) yielded a 

predicted pKd of 7.85, closely matching the 

experimental value of 7.90, with a processing time of 

2.7 seconds (Figure 2). 

 
(a) Molecular Graph Visualization 

  

 
(b)  Protein Contact Map 

Figure 2 Sample Prediction Output Showing 

Molecular Graph, Protein Contact Map 

 

3.2.Discussion 

The GNN-based approach excels by capturing 

structural and interaction features absent in sequence-

only or docking-based methods. The use of ESM-

derived contact maps significantly enhances protein 

graph representations, as validated by improved Rp 

scores compared to unweighted graphs. The GAT 

layers prioritize relevant node interactions, 

contributing to the system’s high accuracy and 

robustness across diverse drug–protein pairs (.  
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Key Challenges Include: 

 Noisy Inputs: Invalid SMILES strings or 

incomplete sequences can lead to prediction 

errors. Preprocessing with RDKit and 

sequence validation mitigates this, but robust 

error handling (e.g., automatic SMILES 

correction) is needed.  

 Generalization: Performance on novel 

protein families is limited due to dataset 

biases toward well-studied targets (e.g., 

kinases). Transfer learning with pre-trained 

models like ESM-2 [4] could improve 

generalization.  

 Computational Cost: GNN training requires 

GPU acceleration (e.g., NVIDIA RTX 3080, 

16GB VRAM), with training times of 

approximately 12 hours for KIBA. Inference 

is lightweight, supporting real-time use. 

 Interpretability: While attention weights 

provide feature importance, complex GNN 

models can be opaque. Visualizing attention 

maps in Streamlit helps, but further 

interpretability tools (e.g., SHAP values) 

could enhance trust. 

Future Enhancements Include:  

 Integrating pre-trained protein language 

models (e.g., ESM-2) for richer residue 

embeddings.  

 Incorporating multi-task learning to predict 

additional properties (e.g., toxicity, 

solubility).  

 Optimizing GNN architectures for edge 

devices using model pruning or quantization. 

 Expanding training data to include diverse 

protein families and rare chemical scaffolds 

via data augmentation or synthetic data 

generation. 

The system’s real-time performance and interactive 

interface make it suitable for both research and 

educational applications, enabling users to explore 

drug–target interactions intuitively. 

Conclusion 

This project developed a GNN-based system for 

predicting drug–target binding affinity, leveraging 

molecular graphs and protein sequences to achieve 

high accuracy (MSE: 0.40, Rp: 0.87 on Davis; MSE: 

0.38, Rp: 0.89 on KIBA). The system’s real-time 

processing, coupled with a Streamlit interface, makes 

it a practical tool for virtual screening, drug 

repurposing, and educational research. By 

eliminating the need for 3D structural data, it reduces 

computational barriers and enhances accessibility. 

Despite challenges with noisy inputs, generalization, 

and computational cost, the approach demonstrates 

significant potential for pharmaceutical applications. 

Future work will focus on integrating pretrained 

models, expanding datasets, and optimizing for low-

resource environments to enhance scalability and 

impact in drug discovery pipelines. 
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