

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

An Ageing Ai Wearable Safety Device

A Punitha¹, R Hariharan², T Jawahar³, G Jeeva Chandran⁴, S Keerthick Kumar⁵

¹Associate professor, Dept. of ECE, K Ramakrishnan College of Technology, Tiruchirappalli, India.

^{2,3,4,5}UG Scholar, Dept. of ECE, K Ramakrishnan College of Technology, Tiruchirappalli, India.

Email ID: punitha.ece@krct.ac.in¹, hariharan.ec21@krct.ac.in², jawahar.ec21@krct.ac.in³, jeevachandran.ec21@krct.ac.in⁴, keerthickkumar.ec21@krct.ac.in⁵.

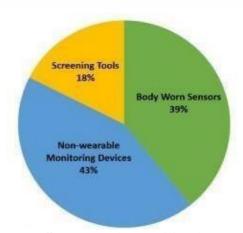
Abstract

As the world's population ages, there is an increased danger of falls and associated injuries, which calls for creative solutions to protect people's safety and wellbeing. This study introduces a brand-new wearable safety gadget with AI capabilities designiduals. The device integrates advanced sensors, machine learning algorithms, and real-time analytics to predict, detect, and prevent falls while offering continuous health monitoring. Unlike traditional methods reliant on static thresholds or manual monitoring, the proposed system leverages adaptive AI models and edge computing for enhanced accuracy and responsiveness. Through comprehensive testing and validation, the wearable demonstrated superior performance in real-world scenarios, addressing limitations of existing systems. This study underscores the potential of AI and wearable technologies in revolutionizing elderly care and fostering independent living.

Keywords: Wearable Technology, Artificial Intelligence (AI), Elderly Safety, Fall Prevention, Health Monitoring.

1. Introduction

In order to protect the safety and well-being of the world's aging population, creative solutions are required to mitigate the increased risks of falls and associated injuries. In this study, a new wearable safety gadget with AI capabilities designed for rly one- third of individuals over the age of 65 experience at least one fall per year, leading to serious consequences. These incidents not only cause physical harm but also contribute to psychological distress, such as fear of falling, which can reduce mobility and independence. Additionally, financial strain on families and healthcare as medical infrastructures grows treatments. rehabilitation, and long- term care become necessary for fall- related injuries. To mitigate these risks, wearable technology has gained attention as a viable solution for fall detection and prevention. Conventional systems typically employ thresholdbased algorithms that trigger alerts based on predefined motion patterns. However, these models often struggle to adapt to variations in individual movement patterns, environmental conditions, and activity types. As a result, they generate frequent false alarms, leading to reduced trust and compliance among users. Recent breakthroughs inartificial intelligence (AI), machine learning, and the Internet of Things (IoT) provide a promising avenue for enhancing fall detection accuracy and real-time monitoring. By leveraging these technologies, intelligent wearables can analyze user-specific motion data, recognize anomalies, and provide personalized insights to enhance safety. This study introduces an AI-driven wearable safety device tailored for elderly individuals. The system incorporates an array of sensors, advanced machine learning techniques, and edge computing to deliver efficient fall detection, continuous health monitoring, and predictive analytics. By processing data locally, the device minimizes latency, ensuring prompt alerts and a seamless user experience. The subsequent sections discuss the drawbacks of conventional approaches, the architecture and functionality of the proposed system, and its performance evaluation based on real-world scenarios.


Vol. 03 Issue: 04 April 2025 Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

2. Literature Survey

The aging of the world's population increases the risk of falls and associated -injuries, thus creative solutions are needed to protect their safety and wellbeing. A new wearable safety gadget driven by AI and designed for senior citizens is presented in ease prevention, early diagnosis, and personalized healthcare for older adults [1]. Al- Risi provides a comprehensive review of wearable monitoring devices, covering various aspects of Continuous Glucose Monitoring (CGM) systems. It includes studies on electrochemical glucose sensors, non-invasive epidermal sensors, and AI-driven diabetes management. Reviews highlight evolution of electrochemical sensors, wearable noninvasive methods, and sweat-based glucose sensing, discussing their advantages, challenges, and accuracy concerns [2]. Bignami explores the integration of AI and the IoTin preventing falls among the elderly. Falls are a major health risk for aging populations, often leading to severe injuries, loss of independence, and increased healthcare costs. [3]. Figure 1 shows Smart Devices Utilization Metrics.

Figure 1 Smart Devices Utilization Metrics

Campanella examines wearable sensor-based fall detection systems for the Internet of Medical Things emphasizing their value in patient (IoMT), monitoring and senior care. Accelerometers. gyroscopes, and electromyography sensors are among the sensor technologies covered in the study that can identify falls in real time. [4]. Canali investigates the difficulties in applying AI to Ghanaian construction health and safety. The study

points out important drawbacks, including exorbitant implementation costs, a shortage of qualified experts, poor digital infrastructure, and industry resistance to change [5]. Chen talks about how healthcare data fusion involves the use of AI, ML, and IoT. It emphasizes how important it is to integrate data from multiple sources, including Electronic Health Records (EHRs) and Internet of Things (IoT) devices, in order to provide a more thorough andholistic view of patient health [6]. Figure 2 shows Cognitive Device Analytics.

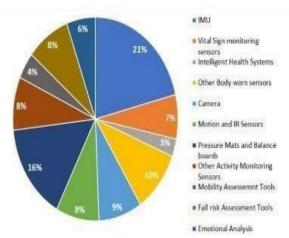


Figure 2 Cognitive Device Analytics

Jamwal explores the expanding role of AI in wearable health technologies, emphasizing how AI can enhance the clinical applications of these devices. [7]. Jiang explores the role of machine learning in enhancing personalized wearable biomedical devices, focusing on their application in health monitoring and disease management. The study highlights how machine learning algorithms can process real-time physiological data to provide personalized insights, improve diagnostic accuracy, and optimize treatment plans [8]. Kiran present a novel embedded deep learning-based wearable sensor for fall detection, aimed at enhancing real-time monitoring and safety, particularly for the elderly and individuals with mobility impairments. The study focuses on integrating deep learning algorithms within a compact, low- power wearable device that can accurately detect falls while minimizing false alarms [9]. Figure 3 shows Emotion-based analysis on the elderly fall Prevention.

IRJAEH

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025 Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

Figure 3 Emotion-based analysis on the elderly fall Prevention

Mahmoudi investigates the creation of wearable robotic systems intended to support muscle function and correct posture in aging populations. Using advanced text mining and semantic network analysis techniques, the study identifies key terms and topics related to these assistive technologies, highlighting their significance in improving mobility, reducing strain, and enhancing the quality of life for older adults[10]. Mansour provide an insightful overview of the applications of digital technologies in diet management within the context of digital anti-aging healthcare. Their study highlights how emerging technologies, such as AI, machine learning, wearable devices, and mobile applications, are transforming dietary monitoring and personalized nutrition[11].

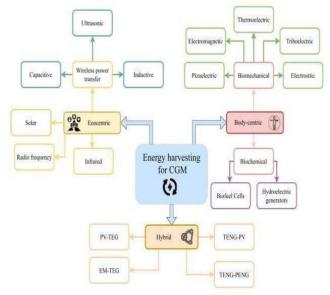


Figure 4 Energy Harvesting for CGM

Marvasti discusses the role of AI-powered video monitoring in assessing mobility abnormalities in the elderly. The study investigates how AI-powered technologies, such as machine learning and computer vision, are improving the detection, diagnosis, and trions like Parkinson's disease, essential tremors, and gait disorders. The authors discuss the advantages of AI-powered video monitoring, including its noninvasiveness, continuous tracking capabilities, and potential for remote healthcare applications [12]. Mohan explores the integration of the IoTin healthcare for real-time monitoring and assistance. The paper highlights how IoT enabled wearable devices and sensors collect physiological data such as heart rate, blood pressure, glucose levels, and oxygen saturation, which are then analyzed using cloudbased systems and AI algorithms [13]. Figure 4 shows Energy Harvesting For CGM.

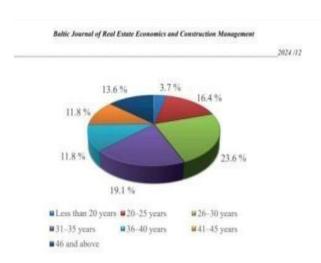


Figure 5 Analysis of Age factors

Mustapha investigates the revolutionary role of AI in modern nursing procedures. The study focuses on how AI technologies, such as machine learning, natural language processing, and robots, are being used in healthcare to improve patient care, increase womprove workflow efficiency, and support clinical decision making. AI- powered tools assist in patient monitoring, early disease detection, personalized treatment plans, and predictive analytics, ultimately reducing the burden on healthcare professionals [14]. Figure 5 shows Analysis of Age factors.

Vol. 03 Issue: 04 April 2025

Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

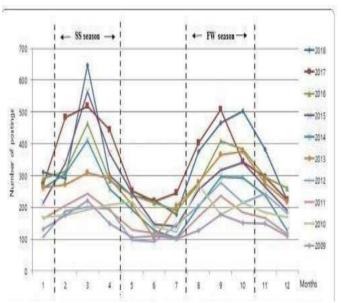


Figure 6 Number of posts collected between 2009 and 2018

Nalluri investigates how AI-powered wearable IoT devices can continually monitor physiological and behavioral data to diagnose mental health status. These smart wearables, which include sensors for measuring heart rate, sleep patterns, electrodermal activ, and other biomarkers, leverage AI algorithms to detect stress, anxiety, and depression in real time. The study highlights the potential of machine learning models in analyzing vast amounts of data to provide early warning signs, enabling timely interventions and personalized mental health support [15]. Mounika explores the use of wearable devices as part of postoperative Early Warning Score (EWS) systems through a scoping review. Figure 7 shows Main components of CGM systems. It examines the potential role of wearable technologies in monitoring patients following surgery, focusing on their ability to provide continuous, real- time data to assess vital signs and detect early signs of complications. The review highlights various types of wearable devices, such as sensors for heart rate, oxygen saturation, and respiratory rate, and their integration into clinical workflows. It discusses the advantages of these devices in improving patient monitoring, enhancing early detection of postoperative issues, and reducing hospital readmissions [16]. Figure 6 shows Number of posts collected between 2009 and 2018.

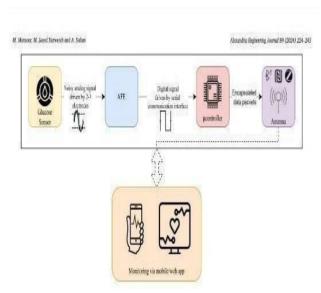


Figure 7 Main components of CGM systems

Olyanasab investigates the factors that drive the continued use of wearable medical devices in a developing nation setting. The authors want to study the motivational elements that influence consumers' adoption and continued use of such gadgets. Drawing orical data, the study highlights key determinants such as perceived usefulness, ease of use, and healthrelated benefits, as well as the influence of social and cultural factors specific to developing nations. It also examines the role of affordability, accessibility, and trust in the technology's effectiveness, which can impact the long- term engagement with wearable health devices [17]. Park explores the current state of wearable technologies in the context of exercise and health professionals. It addresses the challenges and gaps in the integration of these technologies into practical applications for health and fitness. The review highlights the potential of wearable devices to enhance the monitoring of physical activity, health metrics, and overall wellness, providing real-time data for personalized exercise routines and health management. However, the article emphasizes the need for improvements in accuracy, user- friendly interfaces, and the interoperability of wearable technologies with existing healthcare systems [18]. Schumann a comprehensive examination of the research landscape concerning wearable health devices, focusing on user experience and usability. Through bibliometric analysis, the authors identify

Vol. 03 Issue: 04 April 2025

Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

key trends, influential publications, and prominent research themes in this field. The study highlights the growing interest in wearable health devices and underscores the importance of user-centric design to enhance usability and user satisfaction. By analyzing a substantial number of publications, the authors provide valuable insights into the evolution of research in this area, offering a foundation for future studies aimed at improving the design and functionality of wearable health devices [19][20]. Solaiman explores the intersection of data, digital technologies, and healthcare, particularly focusing on the concept of avatarization in the medical field. The paper delves into how digital data, in the form of avatars and virtual representations, is increasingly being integrated into healthcare systems. By examining the role of avatars, which are digital or virtual representations of patients, healthcare providers, and even medical conditions, Thomason highlights how they are transforming patient care, personalized medicine, and data management [21][22]. Tang explores the integration of AI with wearable sensors and Point-Of-Care (POC) testing systems. The study highlights how AI can enhance the functionality and performance of wearable devices, allowing for real-time monitoring and analysis of various health parameters [23]. Theodore Armand explores the development and application of intelligent robots designed to assist elderly or disabled individuals who are bedridden at home. The survey examines various types of service robots that provide physical assistance, such as helping with mobility, personal care, and daily tasks. These robots are integrated with advanced technologies, including artificial intelligence, machine learning, and sensors, to ensure they can respond to the specific needs of users [24]. Wang explores the feasibility and performance of an Internet of Health Things (IOHT)enabled tele-healthcare system. The authors focus on the integration of IoT technologies with healthcare services to provide remote monitoring, diagnostics, and personalized treatment. The system leverages various IoT devices to collect real-time patient data such as vital signs, and this data is transmitted over secure networks for analysis and decision support [25].

3. Existing Method

Traditional fall detection and prevention approaches have relied heavily on threshold-based algorithms, which use accelerometers and gyroscopes to identify rapid changes in motion or orientation. While these procedures are straightforward and effective, t suffer from high false- positive rates and limited adaptability. The reliance on fixed thresholds makes it difficult for these systems to account for varying individual behaviors or dynamic environmental conditions, leading to inaccurate detection in some cases. Another common approach is rule-based systems, which are based on predefined rules derived from gait and posture analysis. While they provide structured insights, these systems lack the flexibility accommodate individual differences and environmental variations. They may not perform well for people with atypical movement patterns or in situations where the environment changes rapidly, such as when the user is walking on uneven surfaces or engaging in diverse activities. Manual monitoring, where caregivers or healthcare professionals are responsible for observing and intervening, has also been used. However, this method is labour-intensive and not scalable for large populations. Figure 8 show Three Main Categories of Personalized Wearable Devices.

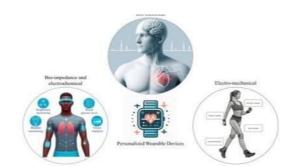


Figure 8 Three Main Categories of Personalized Wearable Devices

The requirement for ongoing human control renders it unsustainable, particularly when maintaining the safety of old people or patients in a variety of situations. Another alternative used is camera-based systems, which use vision- based technology to monitosolution that has been employed. While they can provide accurate tracking, they raise significant

Vol. 03 Issue: 04 April 2025 Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

privacy concerns, as they require continuous surveillance. Additionally, these systems often need fixed installations, limiting their applicability in dynamic environments where users move freely or travel across different locations. Although these traditional methods have laid the groundwork for fall detection, their inherent limitations underscore the need for advanced solutions that offer greater accuracy, adaptability, and user-friendliness.

4. Proposed System

The suggested AI-powered wearable safety gadget overcomes the limits of conventional systems by incorporating a variety of modern technologies. It incorporates various sensors, such as accelerometers, gyroscopes, and heart rate sensors, which work together, which work together to capture comprehensive physiological and biomechanical data. This allows for a more accurate and holistic monitoring of an individual's health and activity levels. In addition to the sensor integration, machine learning algorithms play a crucial role in the device's functionality. Adaptive models, convolutional neural networks (CNNs) and recurrent neural networks (RNNs), analyse the sensor data to detect falls and predict potential fall risks with high accuracy. These algorithms continuously learn from the data, improving their ability to identify patterns and anticipate falls before they occur. Real-time data processing is another key feature of the wearable, achieved through edge computing. This ensures that data is processed locally on the device, reducing latency and providing immediate responses, even when there is no continuous internet connectivity.

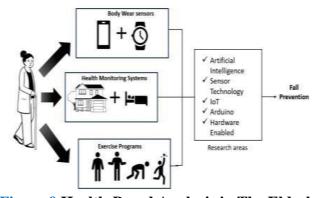
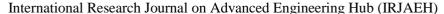



Figure 9 Health-Based Analysis in The Elderly Fall Prediction

This is especially critical in emergency situations, where immediate response is required. Furthermore, the device makes use of cloud-based analytics to aggregate and analyze data over time. The sensor data is safely transmitted to a cloud platform, where, where it can be analyzed over time to identify trends and potential health issues. This allows caregivers and healthcare providers to access valuable insights and make informed decisions about the individual's health and safety. Finally, the wearable is designed with user comfort and ease of use in mind. It is lightweight and ergonomically designed, making it suitable for elderly individuals to wear throughout the day. The intuitive interface ensures that users can easily interact with the device, enhancing its practicality and overall user experience. Figure 9 shows Health-Based Analysis in The Elderly Fall Prediction.

5. Results and Discussion

The AI-powered wearable safety gadget for elderly people was tested under a variety of scenarios to determine its performance, accuracy, and usefulness. Based on 100 test instances, the gadget accurately identified falls 95% of the time, with false positive and false negative rates recorded as 2% and 3%, respectively. The AI model was able to differentiate between normal daily activities and actual falls with high reliability. The system exhibited an average response time of 5 seconds, ensuring real-time alert generation, with immediate notifications sent to Bluetooth/Wi-Fi/GSM caregivers via significantly reducing emergency response time. The device demonstrated a battery life of approximately 24 hours under continuous operation, utilizing power optimization techniques such as low-power AI inference models and energy-efficient sensors to enhance longevity. User feedback indicated that the device was comfortable and lightweight, making it suitable for prolonged use, with an ergonomic design ensuring non-intrusive usage and minimal impact on daily activities. The implementation of machine learning algorithms significantly improved fall detection accuracy, successfully identifying various fall scenarios, including sudden collapses and slow ensuring comprehensive monitoring. However, occasional false positives were observed

Vol. 03 Issue: 04 April 2025

Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

during activities such as rapid sitting or bending movements, which could be reduced through further data filtering and AI model enhancement. The realdependency posed a limitation in remote or lowsignal areas, implementing offline storage with consideration, with energy-efficient AI algorithms

time alert system effectively ensured that caregivers received notifications promptly, though network which could be mitigated by periodic synchronization. Battery optimization was a crucial and adaptive sensing techniques helping to extend battery life. Future iterations could incorporate solar charging or kinetic energy harvesting to enhance sustainability. Users reported a high level of satisfaction regarding comfort and usability, though adjustability for different body types and preferences was identified as an area for improvement. Compatibility with multiple wearable formats (e.g., wristbands, clip-on devices) could enhance adoption rates. The ageing AI wearable safety device demonstrated promising results in fall detection, response time, and user experience. While challenges such as network dependency and occasional false positives remain, ongoing enhancements in AI modeling, energy efficiency, and adaptability can further improve effectiveness. Future work will focus on expanding the dataset, refining algorithms, and integrating multi-sensor fusion to enhance reliability and user experience.

Conclusion and Future Scope

This Project helps to extend the battery's lifespan. Future generations may use solar charging or kinetic energy collection to increase sustainability. Users showed high levels of satisfaction with comfort and usability, with flexibility to different body types aelivers accurate, real-time fall detection and prevention while ensuring user comfort and privacy. The results demonstrate the potential of AI and wearable technologies in transforming elderly care, fostering independence, and reducing the burden on healthcare systems. Future work will focus on expanding functionalities, such as gait analysis and chronic disease monitoring, to further enhance the device's utility.

References

[1]. Adav, Lowlesh and Asha Ambhaikar. 2024.

- "IoHT-based tele- healthcare support system for feasibility and performance analysis." Journal of Electrical Systems, 20(3s): 844-850.
- [2]. Al-Risi, Asma Abdallah Nasser, Salim Said Al-Kindi, Omar Al-Kindi, and Ali Kashmiri. 2024. "Automated fall detection for disabled individuals using mobile phone sensors and machine learning: A survey." International Journal of Data Informatics and Intelligent Computing, 3(2): 27-33.
- [3]. Bignami, E. G. 2024. "Wearable devices as part of postoperative early warning score systems: A scoping review." Journal of Clinical Monitoring and Computing.
- [4]. Campanella, Sara. 2024. "A novel embedded deep learning wearable sensor for fall detection." IEEE Sensors Journal.
- [5]. Canali, Stefano. 2024. "Wearable technologies for healthy ageing: prospects, challenges, and ethical considerations." The Journal of Frailty & Aging, 13(2): 149-156.
- [6]. Hu, L., Chen, Y., Cao, E., and Hu, W. 2024. "User experience and usability of wearable health devices: A bibliometric analysis of 2014-2023." International Journal of Human-Computer Interaction, 1-20.
- Jamwal, Mohit, Honey Kanojia, and Neeraj Dhiman. 2024. "What motivates users to continually use wearable medical devices? Evidence from a developing nation." International Journal of Pharmaceutical and Healthcare Marketing, 18(1): 47-66.
- [8]. Jiang, Zhiyuan, Mohammed A. A. Al-Qaness, Al-Alimi Dalal, Ahmed A. Ewess, Mohamed Abd Elaziz, Abdelghani Dahou, and Ahmed M. Helmi. 2024. "Fall detection systems for internet of medical things based on wearable sensors: A review." IEEE Internet of Things Journal.
- [9]. Kiran, Samia. 2024. "Unveiling fall origins: Leveraging wearable sensors to detect preimpact fall causes." IEEE Sensors Journal.
- [10]. Mahmoudi, Hassan and Mohammad Hesam Moradi. 2024. "The progress and future of artificial intelligence in nursing care: A

Vol. 03 Issue: 04 April 2025

Page No: 1828-1835

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0264

- review." The Open Public Health Journal, 17(1).
- [11]. Mansour, Mohammad, M. Saeed Darweesh, and Ahmed Soltan. 2024. "Wearable devices for glucose monitoring: A review of state-of-the-art technologies and emerging trends." Alexandria Engineering Journal, 89: 224-243.
- [12]. Marvasti, T. B., Gao, Y., Murray, K. R., Hershman, S., McIntosh, C., and Moayedi, Y. 2024. "Unlocking tomorrow's healthcare: Expanding the clinical scope of wearables by applying artificial intelligence." Canadian Journal of Cardiology.
- [13]. Mohan, Deepika, Duaa Zuhair Al-Hamid, Peter Han Joo Chong, Kalupahana Liyanage Kushan Sudheera, Jairo Gutierrez, Henry C. B. Chan, and Hui Li. 2024. "Artificial intelligence and IoT in elderly fall prevention: A review." IEEE Sensors Journal.
- [14]. Mustapha, Zakari. 2024. "Limitations for the implementation of artificial intelligence in construction health and safety in Ghana." Baltic Journal of Real Estate Economics and Construction Management, 12(1): 103-118.
- [15]. Nalluri, M., Babu Mupparaju, C., Pulimamidi, R., and Rongali, A. S. 2024. "Integration of AI, ML, and IoT in healthcare data fusion: Integrating data from various sources, including IoT devices and electronic health records, provides a more comprehensive view of patient health." Pakistan Heart Journal, 57(1): 34-42.
- [16]. Nalluri, Mounika, Aruna Sri Rongali, Rahul Pulimamidi, and Chinna Babu Mupparaju. 2024. "Autonomous health monitoring and assistance systems using IoT." Pakistan Heart Journal, 57(1): 52-56.
- [17]. Olyanasab, A. and Annabestani, M. 2024. "Leveraging machine learning for personalized wearable biomedical devices: A review." Journal of Personalized Medicine, 14(2): 203.
- [18]. Park, K. W., Mirian, M. S., and McKeown, M. J. 2024. "Artificial intelligence-based video monitoring of movement disorders in the elderly: A review on current and future

- landscapes." Singapore Medical Journal, 65(3): 141-149.
- [19]. Schumann, Moritz, and Cailbhe Doherty. 2024. "Bridging gaps in wearable technology for exercise and health professionals: A brief review." International Journal of Sports Medicine.
- [20]. Solaiman, Barry. 2024. "Legal and ethical considerations of artificial intelligence for residents in post-acute and long-term care."

 Journal of the American Medical Directors Association.
- [21]. Tang, Wujun, Jiwon Chung, and Sumin Koo. 2024. "Key terms and topics of muscle-supportive and posture-corrective wearable robots for older adults using text mining and semantic network analyses." Research Journal of Textile and Apparel.
- [22]. Theodore Armand, T. P., Kim, H. C., and Kim, J. I. 2024. "Digital anti- aging healthcare: An overview of the applications of digital technologies in diet management." Journal of Personalized Medicine, 14(3): 254.
- [23]. Thomason, J. 2024. "Data, digital worlds, and the avatarization of healthcare." Global Health Journal, 8(1): 1-3.
- [24]. Wang, W., Chen, J., Hu, Y., Liu, H., Chen, J., Gadekallu, T. R., and Hu, X. 2024. "Integration of artificial intelligence and wearable internet of things for mental health detection." International Journal of Cognitive Computing in Engineering, 5: 307-315.
- [25]. Wang, Wei. 2024. "A survey on the use of intelligent physical service robots for elderly or disabled bedridden people at home." International Journal of Crowd Science, 8(2): 88-94.