

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1625

A Survey on Energy Leak Detection in Android Applications: Approaches

and Challenges
Mrs. Jayalakshmi 1, Dr.R. G Suresh Kumar2, A Divya Priya3, A Dheepika4, D Jenifer5
1Assistant professor, Dept of CSE, Rajiv Gandhi College of Engineering and Technology, Puducherry, India
2Head of the department, Dept of CSE, Rajiv Gandhi College of Engineering and Technology, Puducherry,

India.
3,4,5 UG Scholar, Dept of CSE, Rajiv Gandhi College of Engineering and Technology, Puducherry, India.

Email ID: jayalakshmi_r@rgcet.edu.in1, sureshkumar_rg@rgcet.edu.in2,

divyapriyaanbazhagan@gmail.com3, dheepikaanbu01@gmail.com4, Jeniferjenifer1205@gmail.com5

Abstract

With the rapid growth in mobile application usage, energy efficiency in Android applications has become a

critical research focus. Excessive battery consumption, often due to energy leaks such as mismanaged wake-

locks and other resource inefficiencies, degrades user experience and device longevity. This survey reviews

current methodologies for detecting energy leaks in Android applications, including static analysis, dynamic

analysis, hybrid analysis, machine learning approaches, and testing frameworks for identifying energy-related

code smells. Static analysis examines code without execution to detect potential energy inefficiencies, while

dynamic analysis observes app behavior during runtime to identify actual energy drains. Hybrid analysis

combines both approaches, enhancing detection accuracy. Recently, machine learning models have been

applied to analyze app performance data, shifting the focus from traditional testing to predictive diagnostics.

This survey highlights key advancements, challenges, and emerging trends in energy leak detection and

advocates for integrating machine learning algorithms. By leveraging app usage data, machine learning offers

a scalable, accurate, and proactive solution to energy inefficiency in Android applications, paving the way for

more sustainable mobile development.

 Keywords: Android applications; Dynamic analysis; Machine learning; Static analysis.

1. Introduction

With the proliferation of mobile applications and the

widespread adoption of smartphones, energy

efficiency has become a key area of research. The

study analyzed 32 popular apps across 16 categories,

revealing energy consumption trends. A dataset of

14,064 user reviews was collected, with 8,007

specifically addressing energy concerns, highlighting

significant user dissatisfaction. All analyzed apps

exhibited energy consumption issues, impacting user

ratings and adoption. Data was gathered over five

years to ensure relevance. Android applications, in

particular, often experience energy inefficiencies due

to improper management of power resources, leading

to excessive battery drain and a diminished user

experience. These inefficiencies frequently arise

from mismanaged wake locks, unbalanced power

control calls, and complex, event-driven app

behaviors that are challenging to predict and control

(Pathak, A. et al.,2012; Abbasai, A. et al.,2018;

Sachin C,2024). Energy leaks occur due to

inefficiencies in software that lead to unnecessary

energy consumption, particularly in mobile

applications where battery life is a critical concern.

Wake lock and resource leaks are common Android

issues that cause excessive energy consumption.

Wake lock leaks occur when a wake lock is acquired

but not properly released, keeping the device in a

high-power state. Resource leaks happen when apps

https://irjaeh.com/
mailto:jayalakshmi_r@rgcet.edu.in1
mailto:sureshkumar_rg@rgcet.edu.in
mailto:divyapriyaanbazhagan@gmail.com
file:///C:/Users/divya/AppData/Local/Microsoft/Windows/C:/Users/divya/AppData/Local/Microsoft/Windows/C:/Users/divya/AppData/Local/Microsoft/Windows/C:/Users/divya/Downloads/dheepikaanbu01@gmail.com
file:///C:/Users/divya/AppData/Local/Microsoft/Windows/C:/Users/divya/AppData/Local/Microsoft/Windows/C:/Users/divya/AppData/Local/Microsoft/Windows/C:/Users/divya/Downloads/Jeniferjenifer1205@gmail.com

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1626

allocate resources but fail to release them, leading to

unnecessary energy usage. Both types of leaks are

often attributed to inexperience among developers

and a lack of adequate guidelines or tools to identify

energy inefficiencies, making it crucial for

developers to implement best practices in resource

management to enhance energy efficiency in their

applications. These leaks can occur due to various

programming flaws, often categorized as "code

smells." Code smells are indicators of poor design or

implementation choices that can negatively impact

the performance and energy efficiency of an

application (Palomba, F et al.,2019; Khan, M. U et

al., 2020).

Figure 1 Example Code of Wake Lock Misuse in

The Open GPS Tracker App

The wake lock leak in Open GPS Tracker's

GPSLoggerService.java was caused by improper

wake lock management in the updateWakeLock()

method. The issue arose because the method acquired

a new partial wake lock every time GPS logging was

active without checking whether an existing wake

lock was already held. This led to multiple wake

locks being acquired simultaneously, preventing the

CPU from entering low-power states and causing

excessive battery consumption. To address these

issues, researchers have explored a range of

techniques, including static analysis, Dynamic

analysis, and machine learning, to detect and prevent

energy leaks in mobile applications. Building on

these techniques, Reverse engineering tools play a

crucial role in identifying energy bugs in Android

applications. Recent advancements include tools that

monitor app states more accurately and machine

learning models that predict potential energy drains,

aiming to make diagnostics both proactive and

precise. DroidLeaks is a comprehensive database

addressing resource leaks in Android apps, which can

degrade performance and cause crashes. Analyzing

124,215 code revisions from 34 open-source apps, it

identified 292 fixed resource leak bugs across various

classes. The study revealed common mismanagement

patterns, such as the mistaken belief that only non-

empty database cursors require closing, leading to

leaks in apps/ These insights enhance static analysis

tools for real-time detection and support the

development of improved checkers, such as Android

Lint plug-ins. By identifying fault patterns and

solutions, DroidLeaks contributes to better resource

management in Android development (Liu, Y et

al.,2016; Arnatovich, Y. L. et al.,2018). This

survey reviews the literature on energy inefficiency

detection in Android applications, highlighting key

methodologies and tools, such as dataflow analysis,

state-taint tracking, and predictive machine learning

models. By examining the strengths and limitations

of these approaches, this survey seeks to provide a

comprehensive overview of the current landscape,

identify gaps in existing solutions, and suggest

directions for future research toward more

sustainable and energy-efficient mobile applications.

Figure 1 shows Example Code of Wake Lock Misuse

in The Open GPS Tracker App [1][2].

2. Literature Overview

Existing approaches for detecting performance issues

in Android apps can be broadly classified into

dynamic and static analysis methods. The application

of machine learning and static analysis to detect

energy inefficiencies in mobile applications,

particularly in managing battery consumption within

Android environments, has gained significant

research attention over the years.

2.1 Early Foundations in Power Management
Pathak et al. identified "no-sleep" bugs in Android

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1627

apps caused by improper release of power resources,

leading to battery drain. Their dataflow analysis tool

effectively detected these bugs, highlighting the need

for proper wake-lock management. Their early work

laid the groundwork for understanding power

consumption issues and highlighted the importance

of wake-lock management in reducing battery drain.

Liu et al. address energy inefficiency in Android

applications caused by improper sensor and wake

lock management [3-5]. To diagnose common energy

issues, the authors developed GreenDroid, a tool for

automated detection through app analysis. Building

on this foundation, Liu et al. developed Elite, a static

analysis tool that detects wake lock mismanagement

in Android apps, helping prevent battery drain by

identifying common misuse patterns (Pathak, A et

al.,2012; Liu, Y et al.,2014; Liu, Y et al.,2016).

2.2 Static Analysis for Detecting Energy Leak

Jiang et al proposed a framework, named SAAD, that

employs a combination of static analysis techniques

to detect energy bugs by decompiling the APK files

into Dalvik bytecode, followed by an inter-

procedural analysis of the app. Wu et al. developed

Relda2, a lightweight static analysis tool that

constructs Function Call Graphs and Callback Graphs

to capture inter-procedural interactions and Android

callbacks, improving accuracy in detecting resource

leaks by reducing false positives and negatives. Xu et

al. advanced the field with Statedroid, employing

state-taint analysis to track resource usage states and

detect complex energy leaks involving multiple

resources and system states in Android apps. Pereira

extended EcoAndroid, an Android Studio plugin, to

include an inter-procedural static analysis focusing

on four Android resource types: Cursor, SQLite-

Database, Wake-lock, and camera. Campelo et al

developed E-APK (Energy-aware Android Patterns

for Kadabra), a library of detectors designed to

identify energy patterns in Java source code. This

library leverages Kadabra's Abstract Syntax Tree

(AST) model and a query-based search system to

analyze both source and decompiled code,

demonstrating that static analysis can be effectively

applied even when the application's source code is

unavailable (Jiang, H et al., 2015; Wu, T et al.,2017;

Xu, Z et al., 2018; Pereria, R.B et al.,2022; Campelo,

F.P et al.,2023).

2.3 Dynamic and Hybrid Analysis on Energy

Leak Detection

 Additional advancements in energy diagnostics are

seen in tools like E-GreenDroid and Navydroid,

which simulate Android app behaviors to monitor

sensor and wake lock usage under different states.

The researchers took a dynamic analysis approach by

simulating how apps behave under different states,

focusing on wake-lock and sensor usage. These tools

detect inefficiencies through comprehensive

execution models, enhancing diagnostic accuracy

and scalability. EnergyPatch utilizes a hybrid

analysis approach by combining static and dynamic

analysis to detect and fix energy leaks in Android

applications. It first employs static analysis to

identify potential energy bugs, followed by dynamic

analysis to validate these findings. Finally, it

generates repair expressions to enhance app energy

efficiency while addressing the challenges posed by

extensive input domains. Abbasi et al. introduce the

concept of application tail energy bugs (ATEBs) in

smartphones, which occur when apps consume more

power than expected or continue to use energy after

being closed. It presents a Java-based tool designed

to detect ATEBs by utilizing Android debug bridge

commands to extract system-related information and

evaluate its effectiveness through experiments with

real Android apps (Wang, J et al.,2016; Liu, Y et al.,

2017; Banerjee et al., 2018; Abbasi, A et al.,2018).

2.4 Machine Learning Approaches for Energy

Leak Detection

Recently, Zhu et al. applied machine learning to

energy bug detection, using a machine learning

algorithm on system call data to predict high-energy-

consumption code changes, thus enabling proactive

identification of potential leaks. Khan et al. explored

various machine learning algorithms to effectively

detect energy leaks in Android applications,

particularly focusing on wake-lock leaks. The

proposed testing framework effectively detects

energy issues in mobile applications by leveraging

insights from an empirical study on energy

inefficiencies. It employs well-designed input

sequences and runtime contexts to trigger energy

issues, particularly under conditions like poor

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1628

network performance. Machine learning techniques

cluster workloads to differentiate essential processes

from energy-draining ones. A systematic testing

approach clears unrelated threads, selects candidate

inputs, and monitors power consumption using a

power monitor, logging detected issues into a

database. The framework dynamically adjusts its

testing based on detected issues, increasing the

likelihood of uncovering further inefficiencies. With

a time-budgeted testing process and practical

implementations, it enhances energy issue detection,

outperforming existing state-of-the-art methods in

large-scale evaluations (Zhu, C et al.,2019; Khan,

M.U et al.,2021; Li, X et al.,2022).

2.5 Estimation of Power Consumption in Mobile

Apps

Le et al. introduces a novel approach to modeling and

estimating power consumption in Android apps by

defining power states for key hardware components

like GPS, Wi-Fi, CPU, and display. Using a power

consumption automaton (PCA), the framework

accurately estimates energy use and optimizes power

states through algorithmic refinements. By merging

power states into a unified model, this approach helps

developers visualize and enhance app efficiency,

improving user experience and battery life (Le, H. A

et al.,2019).

3. Methodologies and Approaches

The detection of energy inefficiencies, particularly

wake-lock leaks, in Android apps has been addressed

using various methodologies and tools over the years.

These approaches primarily focus on static analysis,

dynamic analysis, and machine learning techniques

to detect patterns of misuse and predict energy bugs.

Below is a detailed explanation of the methodologies

adopted by key studies in the field of mobile energy

management [7-10].

3.1 Dataflow-based Static Analysis for Wake-

lock Leak Detection

One of the earliest methodologies used for detecting

wake-lock leaks was developed by Pathak et al.

developed a dataflow-based static analysis tool that

detects bugs by identifying unmatched wake lock

acquire and release calls, specifically targeting paths

where components are left unnecessarily active on

applications by collecting data on battery-draining

issues from bug reports, mobile forums, and code

repositories (Pathak, A et al.,2012).

3.2 Elite: Static Analysis Tool for Wake-lock

Leak Mismanagement

Liu et al. analyzed common misuse patterns of wake

locks in Android apps by examining API calls for

acquiring and releasing wake locks across app

codebases and they created Elite, a static analysis tool

that uses dataflow analysis to automatically identify

wake lock mismanagement without relying on

predefined assumptions about usage contexts. Elite

analyzed common misuse patterns of wake locks by

examining the API calls for acquiring and releasing

wake locks across the app's codebase. Unlike earlier

approaches, Elite did not rely on predefined

assumptions about the context of wake-lock usage

(Liu, Y et al.,2016). [6]

3.3 Relda2: A Lightweight and Precise Static

Analysis Tool for Resource Leak Detection

Relda2 adopts a two-pronged analysis technique:

flow-insensitive and flow-sensitive analysis. Flow-

insensitive analysis quickly scans bytecode

sequentially to identify resource requests and release

operations, sacrificing precision for speed. In

contrast, flow-sensitive analysis constructs Control

Flow Graphs (CFGs) and Value Flow Graphs (VFGs)

to preserve control flow information, enabling more

accurate detection of resource leaks with fewer false

negatives. The tool also employs lightweight inter-

procedural analysis and optimizes performance

through multi-threading, ensuring scalability (Wu, T

et al.,2016).

3.4 Dynamic Simulation Models for App

Behavior

Wang et al. included simulating app behavior to

monitor wake lock and sensor states. They developed

E-GreenDroid, which uses the Android Execution

Model (AEM) to simulate app state transitions and

identify patterns of wake lock mismanagement and

sensor data underutilization. E-GreenDroid's

dynamic analysis provided a more detailed view of

how an app interacts with the system in real-world

conditions, such as how the app manages sensors or

wake locks during different execution states (Wang,

J et al.,2016).

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1629

3.5 NavyDroid: Extended Execution Model for

Complex Energy Bugs

Building on the E-GreenDroid methodology,

NavyDroid extended the E-GreenDroid approach by

refining its execution model to capture more accurate

app state transitions. Its methodology relied on

deterministic finite automata (DFA) to simulate

Android app state changes precisely which applies a

precise execution model to simulate app state

behavior and identify complex wake lock misuse

patterns (Liu, Y et al.,2017).

3.6 EnergyPatch: Hybrid Approach for

Repairing Resource Leaks

The EnergyPatch framework employs a combination

of static and dynamic analysis techniques to

effectively detect, validate, and repair energy bugs in

Android apps. The methodology begins with a

lightweight static analysis that quickly narrows down

potential program paths where energy bugs may

occur [11]. This initial step is crucial as it allows for

efficient identification of problematic areas without

exhaustive exploration, which is often impractical

due to the vast input domains of mobile apps.

Following the static analysis, the framework utilizes

dynamic analysis techniques to explore the identified

potentially buggy program paths. This exploration

helps in validating the reported energy bugs and

generating relevant test cases that can be used for

analysis. Finally, EnergyPatch generates repair

expressions aimed at fixing the validated energy bugs

(Banerjee, A et al.,2018).

3.7 State-Taint Analysis for Resource

Management
State-taint analysis was introduced to track resource

management in Android applications. Their

methodology involved tracking resource allocation

and release operations in type state protocols to detect

resource mismanagement patterns. They

implemented State droid, a tool that applies taint

tracking to analyze resource state transitions in

Android code, enabling the detection of complex

resource bugs. By employing state-taint analysis,

Statedroid can identify more complex resource

management patterns and detect energy leaks that

involve multiple resources and system states (Xu, Z

et al.,2018).

3.8 Machine Learning for Predicting Energy

Bugs

Zhu et al. used machine learning to predict energy

bugs by analyzing system call data from various app

revisions. Their methodology involved selecting

relevant features through recursive feature

elimination and tuning model parameters with cross-

validation. They applied Lasso regression to build a

predictive model that identifies code changes leading

to increased energy consumption. This approach

emphasized using historical revision data to

proactively identify energy-inefficient code, marking

a shift towards predictive diagnostics in mobile

energy management. In particular, Khan et al.

proposed a machine learning-based detection model

that leverages function call graphs extracted from

APK files. By employing a range of machine learning

algorithms, including Support Vector Machine

(SVM) and Stochastic Gradient Boosting (SGB), the

model achieved high accuracy rate in detecting wake

lock leak respectively. This demonstrates the

potential of machine learning in accurately detecting

wake lock leaks by recognizing complex patterns in

large-scale Android applications (Zhu, C et al.,2019;

Khan, M.U et al.,2021).

4. Findings and Trends
Over the years, the detection of energy inefficiencies

in mobile applications, particularly in Android apps,

has evolved significantly. Early research laid the

foundation for identifying common power issues,

while subsequent studies introduced more advanced

techniques, expanding the scope of detection and

improving diagnostic accuracy.

4.1 Shift Toward Predictive Energy Diagnostics

with Machine Learning

Recent developments that involve integrating

machine learning into energy diagnostics. By

applying Lasso regression to system call data, this

approach shifts from reactive to proactive

identification of potential energy leaks, enabling

developers to detect high-energy-consumption code

changes early in the development process. This trend

marks a growing interest in predictive energy

diagnostics to address inefficiencies before they

impact users. By analyzing system call data and using

recursive feature elimination, their approach could

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1630

predict high-energy-consumption code changes,

enabling developers to address energy bugs before

they impact users [12-15]. This predictive shift marks

a significant trend in the field, as researchers aim to

use machine learning models to not only diagnose

energy inefficiencies but also forecast potential

problems, allowing for earlier intervention (Zhu, C et

al., 2019).

4.2 Automated Detection and Repair of Android

Resource Leaks and Code Smells

PlumbDroid uses static analysis and resource-flow

graphs to detect leaks, fixing 26 issues in 17 apps in

under 80 seconds per leak, though it struggles with

aliasing. Similarly, Fatima et al. developed a

framework that identifies and corrects lifecycle

misuses, wake locks, and context leaks through rule-

based detection and automated fixes. Both works

emphasize the value of automated repair in Android’s

event-driven architecture (Bhatt et al., 2020; Fatima,

I et al., 2020).

4.3 Energy Consumption Analysis in Android

Applications

Ahmed et al analyzed energy usage trends in Kotlin-

based Android apps, revealing increased

consumption linked to OS upgrades, UI issues, and

inefficient use of features like coroutines and Data

Binding. Groza et al introduced a framework to detect

and fix energy smells such as HashMap usage and

unnecessary getters/setters resulting in up to 30%

battery savings. Together, these studies highlight the

importance of analyzing and addressing energy

inefficiencies for more sustainable mobile

applications (Ahmed, H et al., 2023; Groza, C et

al.,2024).

5. Challenges and Gaps

Despite significant advancements in detecting energy

inefficiencies in Android apps, several challenges

and gaps remain. This section discusses the

limitations faced by current tools and methodologies,

particularly when addressing the complex, context-

dependent, and concurrent nature of mobile

applications.

5.1 Static Analysis Tools Are Subject to Energy

Inefficiency Detection Limitations

Static analysis tools such as Elite and E-GreenDroid

are useful for detecting basic wake lock misuses and

“no-sleep” bugs but often fall short when analyzing

complex, context-sensitive energy inefficiencies.

Due to the event-driven and dynamic nature of

mobile applications, these tools struggle to capture

runtime dependencies influenced by user interactions

or app states, resulting in higher false positive rates.

Table 1 shows Performance Metrics of Energy Leak

Detection Tools. This limitation is reflected in the

performance metrics of various energy leak detection

tools, as shown in Table 1, and tools like Relda2 and

Ecodroid are subjected to relatively high false

positive rates, highlighting the challenges faced by

static analysis in accurately identifying energy-

related issues. (Pathak, A et al.,2012; Wang, J et al.,

2016, Lia, L et al 2017).

Table 1 Performance Metrics of Energy Leak

Detection Tools

RESEARCH

ACCURAC

Y/PRECISI

ON

(%)

FALSE

POSTIVE

(%)

SAAD 86.67 13.33

StateDroid 83.5 19

Zhu et al 93.4 -

Khan et al 98 7.2

5.2 Challenges in Concurrent Operations and

Multi-Threading

The asynchronous and multi-threaded nature of many

Android applications presents a challenge for static

analysis tools, which are often limited in their ability

to model concurrent operations accurately. This

limitation can lead to missed or incorrect diagnoses

of energy inefficiencies when multiple threads or

background services independently manage

resources like wake-locks [16].

5.3 Scalability Issues in Stateful Analysis Tools

Tools such as NavyDroid, which simulate

comprehensive app states, may encounter scalability

issues, especially when applied to large or complex

applications. The computational overhead associated

with stateful analysis, particularly in the presence of

nested resource states, can impede practical adoption

and limit these tools’ real-time diagnostic capabilities

(Liu, Y et al., 2017).

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1631

5.4 Data Limitations for Machine Learning

Models

Machine learning methods, such as the Lasso

regression and support vector machine require

extensive, high-quality labeled data for effective

training [17-21]. Obtaining sufficient high-quality

training data from diverse applications is resource-

intensive, and its data limitation affects the predictive

accuracy (Zhu, C et al., 2019; Khan, M. U et al.,

2021).

Conclusion

This survey provides a comprehensive overview of

the advancements in energy leak detection techniques

for Android applications, with a particular emphasis

on identifying wake-lock leaks. The literature

highlights how traditional static analysis methods

have significantly contributed to our understanding of

resource management issues. However, as Android

applications grow more complex, these methods face

limitations in detecting dynamic and context-

dependent resource leaks effectively. Consequently,

there is a notable shift in recent research toward

leveraging machine learning models that analyze app

performance data to detect energy inefficiencies.

Given these trends, this survey supports the adoption

of machine learning algorithms as an advanced

approach to energy leak detection. Machine learning

enables the analysis of diverse and complex app

usage patterns, making it possible to detect wake-lock

leaks and other resource-related issues with greater

accuracy and adaptability. By integrating app

performance data into these models, this approach

promises a more scalable and robust solution,

aligning with the evolving needs of mobile

application development. This study thus lays the

groundwork for the practical implementation of

machine learning in energy leak detection, marking

an essential step forward in optimizing app efficiency

and user experience [22-25].

References

[1]. Pathak, A., Jindal, A., Hu, Y. C., & Midkiff,

S. P. (2012). What is keeping my phone

awake? Characterizing and detecting no-sleep

energy bugs in smartphone apps. In

Proceedings of the 10th International

Conference on Mobile Systems,

Applications, and Services (MobiSys '12),

Lake District, UK. ACM.

https://dl.acm.org/doi/10.1145/2307636.2307

661

[2]. Liu, Y., Xu, C., Cheung, S. C., & Terragni, V.

(2016). Understanding and detecting wake

lock misuses for Android applications. In

Proceedings of the 2016 ACM SIGPLAN

International Conference on Software

Language Engineering (SLE '16). ACM.

https://dl.acm.org/doi/10.1145/2950290.2950

297

[3]. Wang, J., Liu, Y., Xu, C., Ma, X., & Lu, J.

(2016). E-GreenDroid: Effective energy

inefficiency analysis for Android

applications. In Proceedings of Internetware

'16, Beijing, China. ACM.

https://dl.acm.org/doi/10.1145/2993717.2993

720

[4]. Liu, Y., Wang, J., Xu, C., & Ma, X. (2017).

NavyDroid: Detecting energy inefficiency

problems for smartphone applications. In

Proceedings of Internetware 2017, Shanghai,

China. ACM.

https://dl.acm.org/doi/10.1145/3131704.3131

705

[5]. Xu, Z., Wen, C., & Qin, S. (2018). State-taint

analysis for detecting resource bugs. Science

of Computer Programming, 162, 93-109.

Elsevier.

https://doi.org/10.1016/j.scico.2017.06.010

[6]. Zhu, C., Zhu, Z., Xie, Y., Jiang, W., & Zhang,

G. (2019). Evaluation of machine learning

approaches for Android energy bug detection

with revision commits. IEEE Access, 7,

85241–85252.

https://doi.org/10.1109/ACCESS.2019.2924

953

[7]. Khan, M. U., Lee, S. U., Abbas, S., Abbas, A.,

& Bashir, A. K. (2021). Detecting wake lock

leaks in Android apps using machine

learning. IEEE Access, 9.

https://doi.org/10.1109/ACCESS.2021.3110

244

[8]. Banerjee, A., & Roychoudhury, A. (2015).

EnergyPatch: Repairing resource leaks to

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1632

improve energy efficiency of Android apps.

In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering

(FSE), 37-49.

https://doi.org/10.1145/2786805.2786827

[9]. Palomba, F., Di Nucci, D., Panichella, A.,

Zaidman, A., & De Lucia, A. (2019). On the

impact of code smells on the energy

consumption of mobile

applications. Information & Software

Technology, 105(105), 43–55.

https://doi.org/10.1016/J.INFSOF.2018.08.0

04.

[10]. Wu, T., Liu, J., Xu, Z., Guo, C., Zhang, Y.,

Yan, J., & Zhang, J. (2016). Light-weight,

inter-procedural, and callback-aware resource

leak detection for Android apps. IEEE

Transactions on Software Engineering.

https://doi.org/10.1109/TSE.2016.2547385

[11]. Arnatovich, Y. L., Wang, L., Ngo, N. M., &

Soh, C. (2018). A comparison of Android

reverse engineering tools via program

behaviors validation based on intermediate

languages transformation. IEEE Access, 6.

https://doi.org/10.1109/ACCESS.2018.2808

340

[12]. Abbasi, A. M., Al-Tekreeti, M., Naik, K.,

Nayak, A., Srivastava, P., & Zaman, M.

(2018). Characterization and detection of tail

energy bugs in smartphones. IEEE Access, 6.

https://doi.org/10.1109/ACCESS.2018.2877

395

[13]. Jiang, H., Yang, H., Qin, S., Su, Z., Zhang, J.,

& Yan, J. (2017). Detecting energy bugs in

Android apps using static analysis. In

Proceedings of the IEEE International

Conference. https://doi.org/10.1007/978-3-

319-68690-5_12

[14]. Pereira, R. B., Ferreira, J. F., Mendes, A., &

Abreu, R. (2022). Extending EcoAndroid

with Automated Detection of Resource

Leaks. International Conference on Mobile

Software Engineering and Systems, 17–27.

https://doi.org/10.1145/3524613.3527815

[15]. Campelo, F. P., Sousa, M. C. B. de O., &

Nascimento, C. L. (2023). E-APK: Energy

pattern detection in decompiled android

applications. Journal of Computer

Languages, 76, 101220.

https://doi.org/10.1016/j.cola.2023.101220

[16]. Khan, M. U., Abbas, S., Lee, S. U.-J., &

Abbas, A. (2020). Energy-leaks in Android

application development: Perspective and

challenges. Journal of Theoretical and

Applied Information Technology, 98(22),

2005–ongoing.

[17]. Liu, Y., Xu, C., Cheung, S.-C., & Lu, J.

(2014). GreenDroid: Automated Diagnosis of

Energy Inefficiency for Smartphone

Applications. IEEE Transactions on Software

Engineering, 40(9), 911–940.

https://doi.org/10.1109/TSE.2014.2323982

[18]. H. Ahmed et al., "Evolution of Kotlin Apps in

terms of Energy Consumption: An

Exploratory Study," 2023 International

Conference on ICT for Sustainability

(ICT4S), Rennes, France, 2023, pp. 46-56,

doi: 10.1109/ICT4S58814.2023.00014.

[19]. Groza, C., Dumitru-Cristian, A., Marcu, M.,

& Bogdan, R. (2024). A Developer-Oriented

Framework for assessing power consumption

in mobile Applications: Android Energy

Smells Case Study. Sensors, 24(19), 6469.

https://doi.org/10.3390/s24196469

[20]. Fatima, I., Anwar, H., Pfahl, D., Qamar, U.,

College of Electrical and Mechanical

Engineering, National University of Sciences

and Technology, & Institute of Computer

Science, University of Tartu. (2020).

Detection and correction of Android-specific

code smells and energy bugs: An Android

Lint extension. QuASoQ 2020: 8th

International Workshop on Quantitative

Approaches to Software Quality, 71

[21]. Sahin, C. (2024). Do popular apps have issues

regarding energy efficiency? PeerJ, 10,

e1891. https://doi.org/10.7717/peerj-cs.1891

[22]. Li, X., Chen, J., Liu, Y., Wu, K., & Gallagher,

J. J. (2022). Combatting Energy Issues for

Mobile Applications. ACM Transactions on

Software Engineering and

Methodology, 32(1), 1–44.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1625-1633

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0231

International Research Journal on Advanced Engineering Hub (IRJAEH)

1633

https://doi.org/10.1145/3527851

[23]. Bhatt, B. N., & Furia, C. A. (2020).

Automated Repair of Resource Leaks in

Android Applications. arXiv: Software

Engineering.

https://doi.org/10.1016/j.jss.2022.111417

[24]. Liu, Y., Wei, L., Xu, C., & Cheung, S.-C.

(2016). DroidLeaks: Benchmarking Resource

Leak Bugs for Android Applications. arXiv:

Software Engineering. https://dblp.uni-

trier.de/db/journals/corr/corr1611.html#Liu

WXC16

[25]. https://github.com/rcgroot/opengpstracker/bl

ob/8ac7905a5ac78520c63adb864eb0765eca0

8cc56/application/src/nl/sogeti/android/gpstr

acker/logger/GPSLoggerService.java

https://irjaeh.com/

