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Abstract 

The rapid advancements in robotics and artificial intelligence have paved the way for the development of 

sophisticated Autonomous Mobile Robots (AMRs) capable of navigating and interacting with dynamic 

environments. In this research, an intelligent autonomous mobile robot equipped with integrated visual and 

sensor-based navigation is designed and developed. The robot incorporates key functionalities, including 

teleoperation, autonomous navigation, SLAM (Simultaneous Localization and Mapping) using LiDAR and 

cameras, object detection and classification, obstacle avoidance, object following, hand gesture control, and 

advanced path planning algorithms. Control algorithms will ensure precise movement and stability. This study 

focuses on creating a versatile AMR that can adapt to complex and dynamic environments, leveraging state-

of-the-art technologies for high precision and reliability.  
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1. Introduction  

The field of Autonomous Mobile Robots (AMRs) has 

emerged as an important domain in robotics, based on 

the developments in artificial intelligence and sensor 

technology. AMRs are meant to navigate and execute 

tasks in dynamic environments independently, 

without any human control. One of the biggest 

challenges in this domain is to equip robots with the 

ability to make correct decisions from real-time 

inputs from their environment, which means 

combining visual and sensor-based navigation 

systems for optimal autonomy. As AMRs develop, 

they are gaining more and more ability to execute 

complex tasks with high accuracy, and hence 

becoming an integral component of modern 

automation. This project suggests designing an 

intelligent AMR with a set of sensors like LiDAR, 

IMU, and Cameras so that the robot can move and 

sense its environment correctly. These sensors offer 

the data required for tasks such as obstacle detection, 

localization, and path planning. Its modular 

architecture allows it to be built for other purposes. 

Its robust computational system relies on cutting-

edge microcontrollers and single-board computers 

for the rapid processing of complex data. With the 

ongoing advancements in robotics, these 

technologies allow autonomous mobile robots to 

operate more efficiently than human workers. The 

possible use cases of the robot include robotics 

education, warehouse automation, healthcare, 

surveillance, and environmental monitoring. The use 

of both visual and sensor-based navigation means the 

robot is able to work in the real world, being flexible 

and performing its task with ease. 

2. Literature Review 

Autonomous Mobile Robots (AMRs) are at the 

forefront of robotics research, particularly due to their 

ability to navigate and interact with dynamic 

environments. They have been widely used in 

industries such as logistics, healthcare, 

manufacturing, and surveillance. However, for these 

robots to operate autonomously and efficiently, they 

require integrated technologies for navigation, 

perception, and control. Below is an overview of the 

critical components of AMRs based on recent 
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research:  

2.1.Multi-Sensor Integration 

Sensor systems are a vital component for enabling 

AMRs to perceive and interact with their 

environment. LiDAR (Light Detection and Ranging) 

is widely used for mapping and obstacle detection 

due to its precision in measuring distances [1]. 

Cameras complement LiDAR by providing visual 

data, which is essential for object detection, 

classification and camera-based navigation 

techniques—such as lane detection and line 

following, which utilize visual cues to guide the robot 

along predefined paths. IMUs (Inertial Measurement 

Units) are used to provide orientation data, improving 

the robot's localization accuracy. Research by 

Thakur, A., et al. (2023) combined LiDAR and 

cameras to create more accurate maps of 

environments and enhance obstacle detection, 

demonstrating the growing importance of sensor 

fusion in AMR development [2]. 

2.2.Simultaneous Localization and Mapping 

(Slam) 

SLAM allows robots to explore and map unknown 

environments while keeping track of their location. 

Dissanayake et al. (2001) introduced probabilistic 

SLAM, which allowed robots to localize themselves 

in 2D environments [3]. More recent studies have 

improved SLAM for complex, 3D environments by 

integrating data from multiple sensors. The fusion of 

LiDAR and visual SLAM techniques has been shown 

to improve mapping accuracy in dynamic 

environments, as seen in the work by Qian, J., et al. 

(2019) [4]. These advancements are crucial for 

AMRs operating in real-world, unpredictable 

conditions where environmental features change 

frequently. 

2.3.Object Detection and Classification 

Object detection is a critical capability for AMRs, as 

it enables the robot to identify and interact with 

objects within its environment. Recent advancements 

in deep learning have improved the accuracy of 

object detection in dynamic settings. Aulia, U., et al. 

(2024) showed that Convolutional Neural Networks 

(CNNs) could successfully classify and detect objects 

in cluttered environments, improving the robot’s 

ability to safely navigate and avoid obstacles [5]. 

Real-time object detection has become a key focus, 

allowing AMRs to avoid collisions and perform tasks 

such as object manipulation and tracking [6]. 

2.4.Path Planning Algorithms 

Path planning ensures that an AMR can find the most 

efficient route while avoiding obstacles. Classical 

algorithms, such as A* and Dijkstra’s, are effective in 

static environments but are less efficient in dynamic, 

real-time conditions. To address these limitations, 

researchers have focused on more advanced 

algorithms, such as Rapidly-exploring Random Trees 

(RRT) [7], which are better suited to environments 

where obstacles change frequently. Additionally, the 

Dynamic Window Approach (DWA) allows AMRs 

to avoid collisions by dynamically adjusting their 

path in response to immediate obstacles [9]. These 

methods are essential for ensuring safe and efficient 

navigation in unpredictable settings. 

2.5.Control Algorithms for Precision and 

Stability 

Control algorithms play a key role in ensuring that 

AMRs move with precision and stability. 

Proportional-Integral-Derivative (PID) controllers 

have been widely used due to their simplicity and 

effectiveness in stabilizing robot movement. More 

sophisticated methods, such as Model Predictive 

Control (MPC), have gained popularity for their 

ability to account for both current and future states of 

the system [10]. These advanced control strategies 

allow AMRs to maintain stability and navigate 

complex environments with high precision. 

2.6.Challenges and Future Directions 

Despite the progress in AMR research, several 

challenges remain, particularly in the areas of multi-

sensor fusion, real-time decision-making, and 

adaptive navigation in dynamic environments. 

Reinforcement learning and AI-driven techniques are 

being explored to enhance decision-making and 

adaptability. These technologies will improve the 

robot’s ability to react to unforeseen changes in its 

environment, ensuring more robust and autonomous 

operations [12]. Future research will also likely focus 

on integrating new sensor technologies such as radar 

and ultrasonic sensors to enhance AMRs' capabilities, 

particularly in low-visibility or challenging 

environments. 
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3. Proposed System 

The proposed system is an Autonomous Mobile 

Robot (AMR) designed to achieve high-precision 

navigation in dynamic environments through multi-

sensor fusion, adaptive decision-making, and split-

compute architecture. Unlike conventional platforms 

reliant on single-sensor perception or static 

algorithms, this AMR integrates a 360° 2D LiDAR, 

monocular vision, and ROS2 middleware to balance 

computational efficiency with real-time 

responsiveness, addressing challenges like dynamic 

obstacle avoidance and human-robot interaction [2]. 

The System Objectives are:- 

 Teleoperation 

 Autonomous Navigation 

 Object Detection and Classification 

 Dynamic Obstacle Avoidance 

 Usage of Path Planning algorithms 

 Implementation of Control Algorithms 

3.1.System Architecture 

The proposed system uses a split-compute ROS 2 

architecture which separates perception, planning, 

and control tasks among dedicated hardware layers. 

This promotes scalability and improves real-time 

performance, using the ESP32-WROOM-32E for 

low-level control activities and the RaspberryPi-4B 

for advanced processing. The architecture modules 

are:-   (Figure 1) 

3.2.Sensor Data Acquisition 

This module collects real-time environmental data 

using multiple sensors, including the YDLIDAR-X4 

2D LiDAR for 360° range-finding, the MPU6050 

IMU for tracking motion, and the Lenovo 300 FHD 

camera for visual input. The LiDAR records high-

resolution Point Clouds for spatial mapping, with the 

IMU delivering accelerometer and gyroscope data for 

odometry correction. The monocular camera supplies 

RGB images for object detection and gesture 

recognition. Raw sensor data is published to 

specialized ROS2 topics (e.g., /scan, /imu/data, 

/image_raw) for further processing [3]. (Figure 2) 

3.3.Teleoperation Module 

This module enables keyboard control via ROS2 for 

initial testing, calibration, and human-in-the-loop 

validation in edge-case scenarios (e.g., cluttered sites 

& narrow passages) [8]. 

 

 
Figure 1 Proposed AMR System Architecture 

Block Diagram 
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Figure 2 MPU-6050 & YD LIDAR X4 

 

3.4.Sensor Data Preprocessing 

Raw sensor data are calibrated and synchronized to 

be compatible with downstream modules. The 

ESP32-WROOM-32E microcontroller filters IMU 

noise and publishes corrected odometry data to the 

/odom topic.  On the Raspberry Pi 4B, LiDAR scans 

and camera feeds are temporally aligned using ROS2 

message_filters, whereas camera images are resized 

and normalized for maximum computation 

efficiency. Noise-free, synchronized data for 

perception tasks are achieved at this step [2]. (Figure 

3,4) 

 

 
Figure 3 Gazebo Simulation (/scan & 

/camera_raw) 

 
Figure 4 Teleop_Twist_Keyboard 

 

3.5.SLAM Module 

This module uses LiDAR-based Simultaneous 

Localization and Mapping (SLAM) to create 2D 

occupancy grid maps of the environment along with 

estimating the robot pose. The point cloud 

information from the YDLIDAR-X4 is combined 

with MPU6050 IMU data for odometry correction, 

improving pose estimation accuracy in dynamic or 

rough terrains. The system prevents the use of a 

single localization method, providing flexibility to 

incorporate probabilistic, filter-based, or 

optimization-based SLAM methods as needed [3]. 

(Figure 4) 

 

 
Figure 5 Simultaneous Localization & Mapping 

 

3.6.Obstacle Detection and Classification 

Module 

Real-time obstacle detection is enabled by a light, 

modified YOLO model running on the Raspberry Pi 
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4B. The Lenovo 300 FHD monocular webcam 

provides 1080p images to the model, which detects 

and classifies obstacles with bounding boxes [6]. 

Detected objects are published on the 

/detected_objects topic, guiding navigation choices 

while favoring low-latency inference over 

computationally heavy models such as ResNet-based 

CNNs [5]. (Figure 6) 

 

 
Figure 6 Object Detection & Classification 

 

3.7.Path Planning Module 

Global and local path planning are separated to 

achieve efficiency and flexibility. The global planner 

computes optimal paths based on graph-based 

methods (e.g., A*) on pre-constructed maps, and the 

local planner adaptively corrects trajectories in real 

time based on sampling-based techniques (e.g., 

RRT*) to fit around obstacles that are sensed by 

LiDAR or vision [7]. (Figure 7) 

 

 
Figure 7 Algorithm-(A*, RRT, Dijkstra’s, DWA) 

 

3.8.Obstacle Avoidance Module 

Using current LiDAR scans and camera-detected 

obstacles, the Dynamic Window Approach (DWA) 

considers potential velocity profiles. Then, the robot 

can select safe paths with the help of Costmaps which 

dynamically update obstacle positions by merging 

LiDAR point clouds and object detection results. In 

cluttered, or uncertain environments, this reactive 

strategy lowers the risk of collisions [9]. 

3.9.Control Module 

Motor control is divided between hardware layers for 

accuracy and stability. The ESP32-WROOM-32E 

runs PID controllers to control wheel velocities 

through PWM signals to the L298N Dual-H Bridge 

motor driver, with encoder feedback from motors, for 

closed-loop control. The Raspberry Pi 4B, in turn, 

operates high-level Model Predictive Control (MPC) 

to plan trajectories, publishing velocity commands to 

the /cmd_vel topic [10]. 

3.10. Communication Interface 

Inter-module communication is handled by 

middleware Robot Operating System 2 (ROS2) based 

on protocols like DDS or Zenoh with minimal 

latency. Sensor readings and motor commands are 

transmitted in real time from ESP32-WROOM-32E 

to Raspberry Pi 4B with the help of micro-ROS. 

External devices like keyboards (for teleoperation) 

are interfaced through standard ROS2 interfaces like 

teleop_twist_keyboard [8]. 

3.11. Reporting and Analytics Module 

ROS2 inspection tools monitor system performance 

metrics including navigation latency, path error, and 

obstacle collision rate. Visualization tools like RViz, 

Foxglove and rqt_plot offer actionable data such that 

iterative parameter adjustment of SLAM, planning, 

and control can be realized [11]. (Figure 8) 

 

 
Figure 8 rqt_graph 

 

4. Methodology 

4.1.System Design 

The first step is to design the hardware and software 

architecture of the robot simultaneously in iterative 
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simulations. A custom chassis is designed using CAD 

tools like Autodesk Fusion to offer mechanical 

stability, heat sink, and optimal placement of sensors 

(LiDAR, IMU, monocular camera). Raspberry Pi 4B 

8GB RAM for high-level processing and the ESP32-

WROOM-32E Dev Kit for real-time processing, are 

selected for their low-cost and high-performance 

features. The ROS2 framework is used to develop 

modular communication interfaces between sensors, 

algorithms, and actuators to offer scalability for 

future additions. 

4.2.Sensor Integration & Data Fusion 

In the second step, sensors are calibrated and 

synchronized to allow robust perception. YDLIDAR-

X4 LiDAR and MPU6050 IMU are synchronized in 

time using ROS 2's package message_filters and 

geometric transformations to match the field-of-view 

of the camera with LiDAR scans. Raw data are 

denoised by median filtering LiDAR outliers and 

Gaussian blur for camera streams. Kalman filter-

based fusion of LiDAR odometry with IMU 

measurements improves localization in dynamic 

environments [2]. 

4.3.Algorithm Development 

In the third step, navigation algorithms are created 

and tested in simulation. SLAM is performed with 

LiDAR and a custom dataset is used to train a 

lightweight, modified YOLO algorithm for real-time 

object detection. Path planning uses A* for global 

path planning and RRT* for local obstacle avoidance 

[7], with Dynamic Window Approach (DWA) 

dynamically adjusting trajectories [9]. PID and MPC 

algorithms are co-designed such that PID gains are 

tuned on the ESP32 for motor control, and MPC 

optimizes the trajectories on the Raspberry Pi. These 

algorithms are tested in Gazebo, with different 

obstacles and lighting conditions.  

4.4.System Integration & Testing 

In the next step, the physical prototype is tested in 

limited real-world settings, e.g., indoor spaces with 

obstacles. Sensor fusion pipelines are tested against 

motion capture system ground-truth, obstacle 

avoidance against static and moving obstacles. ROS2 

bag files record navigation metrics (e.g., path 

deviation, collision rates) for iterative tuning. Fail-

safes, e.g., teleoperation override, are added to 

account for edge cases during field tests. 

4.5.Performance Evaluation 

In the final step, the robot's performance is measured 

in terms of metrics such as localization error (RMSE 

w.r.t. ground truth), task execution time, and obstacle 

detection accuracy. State-of-the-art baselines vs. 

platforms (e.g., TurtleBot3, TortoiseBot, etc.) 

evaluate cost and flexibility. Bottlenecks such as 

computation delay in high-density environments are 

detected through result analysis and applied to guide 

firmware optimizations and hardware developments 

[13]. (Figure 9) 

 

 
Figure 9 Proposed AMR System Flowchart 

 

5. Future Scope 

The proposed system sets a solid theoretical and 

architectural foundation for a smart AMR, with the 

next step of physical implementation through 

integration of modular hardware (ESP32, Raspberry 

Pi 4B, YDLIDAR-X4, and DG01D-E motors) and 

the ROS2 software stack. Controlled testing will 

verify the precision of SLAM, object detection, and 

path planning, measuring localization error (RMSE), 
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obstacle avoidance rates, and computation latency. 

Subsequent work will be in real-world deployment in 

dynamic environments like cluttered indoor 

environments and mazes, with challenges like 

synchronization of sensors, motion on uneven 

surfaces, and power optimization via hardware-

software co-design. Scalability will be 

experimentally validated through sensor addition 

(e.g., thermal cameras or depth sensors to improve 

low-light object detection) or multi-robot 

coordination software stacks like Open-RMF. Long-

term goals potentially include open-sourcing the 

robot's ROS2 packages, using edge AI accelerators 

(e.g., NVIDIA Jetson Nano) for real-time processing 

improvement, and industry partnerships. 

Conclusion 

The development of an intelligent autonomous 

mobile robot (AMR) with integrated visual and 

sensor-based navigation addresses the complexity of 

dynamic environment interaction. Using multisensor 

fusion (LiDAR, monocular camera, and IMU), 

modular ROS2 architecture, and adaptive techniques 

such as SLAM, DWA, and Hybrid Path Planning, the 

system achieves significant autonomy in unstructured 

indoor environments. The split-compute architecture, 

featuring a Raspberry Pi 4B 8GB RAM for high-level 

perception and an ESP32-WROOM-32E for real-

time control, offers a cost-effective and scalable 

solution. This design bridges the gap between 

industrial systems and academic prototypes, for real-

world applications. Future advancements could 

involve AI-driven adaptive navigation using 

reinforcement learning. The modularity allows for 

easy integration of additional sensors like thermal 

cameras, ultrasonic sensors, etc. for diverse 

applications. Open-sourcing ROS2 packages for 

diagnostics and LiDAR-camera fusion promotes 

community innovation with low-cost robots. This 

AMR has the potential to transform industries like 

robotics education, warehouse logistics, etc. by safely 

navigating dense areas, ultimately enhancing 

productivity and safety. 
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