Labor Pain Sensing Technologies: Unveiling the Current State and Future Directions

Jeya Daisy I, Sreeja G S2, Aakash S3, Arjun M4
1 Assistant Professor II Electronics and Instrumentation Engineering, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India.
2, 3, 4 UG, Electronics and Instrumentation Engineering, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India.

Emails: jeyadaisy.i.eie@kct.ac.in1, sreeja.20ei@kct.ac.in2, aakash.20ei@kct.ac.in3, arjun.20.ei@kct.ac.in4

Abstract
This review paper focuses on the development of the Labour pain Detector, a device designed to accurately differentiate between labor pain and false contractions during childbirth. The objective of this research is to provide a reliable and user-friendly tool that can assist healthcare professionals in identifying genuine labor pain and detecting potential complications. The paper explores the utilization of electromyography (EMG) signals and advanced signal processing techniques to analyze and interpret pain signals. By monitoring key parameters such as cervical dilation, fetal ejection, and rotation, the Labour Pain Detector aims to enable early recognition of labor difficulties, ultimately improving outcomes for both the mother and the fetus. The review concludes that the Labour pain Detector has significant potential in the biomedical field, serving as a valuable bridge between healthcare assistants and doctors, and reducing the risk of labor complications.

Keywords: Biomedical Field, Cervical Dilation, Electromyography, False Contractions, Fetal Ejection, Fetal Rotation, Healthcare Professionals, Signal Processing, Labor Pain

1. Introduction
Childbirth is a transformative and complex process that is accompanied by various physiological changes and sensations. Distinguishing between labor pain and false contractions is crucial in providing appropriate medical care and ensuring optimal outcomes for both the mother and the fetus. However, the subjective nature [4] of pain perception and the variability of symptoms pose challenges in accurately assessing the onset of labor and detecting potential complications. The objective of this research is to develop a reliable and user-friendly device, the Labour Pain Detector, which can aid healthcare professionals in differentiating between [5] labor pain and false contractions. The Labour pain Detector utilizes electromyography (EMG) signals, which measure electrical activity in the uterine muscles, to analyze and interpret pain signals. By capturing and analyzing the EMG data, the device can determine the presence of labor pain Based on specific patterns and characteristics. [6] In addition, the detector monitors key parameters such as cervical dilation, fetal ejection, and rotation, which are important indicators of labor progression and potential complications. [7]

2. Smart Maternal Care: An Advanced IoT-Based Labor Monitoring System
2.1 Quantifying Uterine Activity and Labor Pain
Efficient contractions of the uterine myometrium are essential for normal labor and delivery. The complex interplay of hormonal, mechanical, and electrical elements that initiate and regulate uterine activity during labor is still not fully understood. [8]

Monitoring uterine activity during term labor and suspected preterm labor is crucial to prevent maternal and newborn complications. Inadequate or excessive uterine activity can lead to significant morbidity and mortality. Labor dystocia is a common reason for in-labour cesarean births, while insufficient labor progress is a challenge in intrapartum care. Accurate measurement of uterine activity can aid in managing protracted labor by identifying insufficient
contractions and adjusting uterotonic medications before prematurely [11] ending the trial of labor. However, in situations of impending preterm labor, tachysystole, or when patients are undergoing a trial of labor after a previous cesarean section, spotting excessive or unnecessary uterine activity is crucial. Monitoring uterine activity can help with tocolytic drug delivery or alert medical professionals to the possibility of uterine rupture. However, the medical management of term and preterm labor is hampered by poor diagnostic skills. [12]

2.2 Quantifying Labor Pain: Methodological Approaches

2.2.1 Traditional Methods for Uterine Activity Monitoring

There are several methods for determining uterine activity during labor, including manual palpation, external tocodynamometry, intrauterine pressure monitoring, and electrical uterine myometrial activity tracing. Each approach has benefits and drawbacks. Due to its non-invasiveness and capacity to time contractions with [13] the fetal heart rate, external tocodynamometry is frequently utilized. However, it is constrained by signal loss brought on by maternal movements and is deficient in information regarding contraction intensity. While measuring contraction force, intrauterine pressure catheters are intrusive, risky, and have little clinical benefit. [14]

2.2.2 Emerging Technologies in Uterine Monitoring

The adoption of newer monitoring techniques, like non-invasive electrical uterine monitoring, has increased. This method does not require rupturing the membranes but is hindered by limited availability, high cost, and the need for specialized training. Efforts are needed to enhance the accessibility and implementation of this technology. [15] Future research should focus on developing practical and effective ways to monitor uterine contractions during labor. Additionally, cutting-edge uterine contraction monitoring techniques show promise in advancing our understanding of labor physiology, delivery, and preterm labor, ultimately leading to improved patient care. [16]

2.3 Critical Perspectives on Intrauterine Pressure Monitoring

2.3.1 R. S. Lucidi’s Viewpoint

R. S. Lucidi [1] questions the value of using an intrauterine pressure catheter (IUPC) to monitor uterine contractions during oxytocin induction or augmentation of labor and to identify labor arrest. Clinical studies that are properly conducted have demonstrated that the frequency of uterine contractions derived from external tophography is sufficient for the clinical management of labor. Its usefulness is further diminished by the variation in pressure records [17] and the potential for rare risks related to IUPC implantation. Notably, no proof employing an IUPC in this situation results in better outcomes for the mother or the infant.

2.3.2 Freke A. Wilmink's Perspective

On the other hand, Freke A. Wilmink [2] discusses fetal complications after placing an IUPC and points out that both IUPC and external tocodynamometry can be used to monitor uterine contractions during labor. While IUPC may be more accurate as it evaluates the frequency, strength, and duration of contractions, research on its impact on maternal and perinatal outcomes is limited. Additionally, using IUPC may pose difficulties for the fetus. [18]

2.3.3 Comparative Study on Monitoring Methods

Another study [3] compares non-invasive electrical uterine monitoring (EUM), tocodynamometer (TOCO), and intrauterine pregnancy monitor (IUPC) for uterine activity during childbirth. In the study, women who were actively in labor were subjected to continuous and simultaneous measures of uterine activity using EUM, TOCO, and IUPC. The findings revealed that whereas TOCO had a significantly lower rate (67.5%), both EUM and IUPC had comparable rates of interpretable tracings (87% for EUM and 94.8% for IUPC). When compared to IUPC, EUM and TOCO showed a substantial difference in contraction frequency and timing. [19]

2.4 Clinical Application of Electrohysterography

In another article [9], the clinical application of electrohysterography (EHG) for continuous uterine monitoring during term labor is discussed. Obstetricians need to be aware of the limitations, advantages, and diagnostic value of using EHG. The
study's objectives included evaluating EHG from the viewpoints of users and patients, contrasting its diagnostic utility with [20] that of IUPC and TOCO, and evaluating its ability to predict labor outcomes, particularly in cases of maternal obesity.

2.4.1 Wet Electrodes and Ag/AgCl Redox Chemistry
Wet electrodes based on Ag/AgCl redox chemistry are the most widely used type of electrodes for EHG in the context of external electrohysterography [10]. They are situated slightly below the navel, typically around the vertical median axis, on the pregnant woman's abdomen. [22] Depending on the author, the arrangement may have varied numbers of source, reference, and ground electrodes as well as different spacing between them. With the lowest inter-electrode distance ranging from 17.5 to 25mm, two source electrodes on the vertical median axis, a ground electrode on the hip's right [21] side, and a reference electrode on the left, an effective external EHG recording signal can be achieved.

2.4.2 Advantages, Limitations, and the Need for Further Research
In conclusion, the methods for detecting uterine contractions during [23] labor are diverse, ranging from traditional approaches like IUPC and external tocodynamometry to newer techniques like non-invasive electrical uterine monitoring (EUM) and electrohysterography (EHG). Each method has its advantages and limitations, and further research is needed to fully understand their diagnostic value and impact on maternal and fetal outcomes. [24]

2.5 Non-Invasive EMG For Labour Pain Detection: Ensuring Safety and Simplicity
Utilizing electromyography (EMG) for non-invasive labor pain detection presents several advantages. EMG measures [25] electrical activity in muscles, providing a direct and objective assessment of contractions during labor. Non-invasiveness eliminates potential risks associated with invasive methods, ensuring the safety of both mother and fetus. The simplicity [26] of the application involves attaching surface electrodes to the skin, making it a user-friendly and feasible technique for healthcare professionals. [27]

Advantages
Safety: EMG is non-invasive, eliminating the risk of harm to the mother or fetus. [28]
Objectivity: EMG provides direct measurements of muscle contractions, offering an objective assessment of labor pain. [29]
User-friendly: The application involves attaching surface electrodes, making it straightforward for healthcare professionals.
Real-time Monitoring: EMG allows continuous monitoring, aiding in the early detection of complications.

3. ML Predictions

Figure 1 LSTM Model
Integrating machine learning, such as LSTM models, enhances the [30] system's predictive capabilities. ML algorithms can analyze patterns in EMG signals to predict the onset and progression of true labor pain, allowing for timely interventions and reduced complications. While providing valuable insights, caution should be exercised [31] in addressing potential false predictions and ensuring clinical validation for widespread implementation. The LSTM model is shown in Figure 1.

Conclusions
The Labour Pain Detector exhibits promise as a dependable tool for precisely identifying labor pain and potential childbirth complications. Through the utilization of EMG signals and advanced signal processing techniques, this device offers valuable, unbiased information to healthcare professionals, assisting them in making informed decisions. Its user-
friendly design and portability render it suitable for diverse healthcare settings, particularly in remote areas with limited access to specialized gynecological care. The introduction of the Labour Pain Detector can enhance communication and collaboration between healthcare assistants and doctors, leading to more effective labor and delivery management. Early recognition of labor difficulties and timely intervention facilitated by the device can reduce the risk of complications for both mother and fetus. Moreover, its integration of technology contributes to biomedical field advancement, improving the quality of care for pregnant women. Continued research must focus on enhancing the accuracy and reliability of the Labour Pain Detector. Ongoing validation studies and clinical trials are imperative to assess its effectiveness across varied healthcare settings and patient populations. Collaboration among engineers, healthcare professionals, and researchers is crucial for driving innovation and ensuring successful device integration into clinical practice. In conclusion, the Labour Pain Detector represents a noteworthy breakthrough in obstetrics, offering a reliable and user-friendly tool for distinguishing between labor pain and false contractions, potentially enhancing maternal and fetal outcomes and elevating childbirth care quality.

References

[3]. A comparison between electrical uterine monitor, tocodynamometer, and intrauterine pressure catheter for uterine activity in labor Eran Hadar 1, Tal Biron-Shental, Oz Gavish, Oded Raban, Yariv Yoge, August 2015 (Clinical Trial)
[5]. Emily Singer, “A cheap, portable way to Monitor Unborn Babies” (Blog), MIT (Manipal Institute of Technology) Technology Review, April 2011.
[9]. Clinical Use of Electro hysterography During Term Labour: A Systematic Review on Diagnostic Value, Advantages, and Limitations Vlemminx, Marion W.C. MD; Rabotti, Chiara PhD, MSc; van der Hout–van der Jagt, M. Beatris PhD, MSc Oei, S. Guid MD, PhD, May 2018
[15]. Alfirevic Z, Devane D, Gyte GML. Continuous cardiotocography (CTG) is a form


