

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

Conversational AI-Chatbot Powered by BERT for Enhanced Voice Interaction

Mrs.Elakia k¹, Dr. R.G. Suresh Kumar², Ms. Akshara pavithran³, Ms. Sreenandana T M ⁴, Ms. Vismaya A K⁵ ¹Assistant Professor, Computer Science and Engineering, RGCET, Pondicherry University, India.

Emails: hodcse@rgcet.edu.in¹, elakia1692@gmail.com², aksharapavithran7@gmail.com³, sreenandanatm9988@gmail.com⁴, aniyerivismaya@gmail.com⁵

Abstract

AI is a set of technologies that enables computers to perform a variety of advanced functions, including the spoken and written language, analyse data, make suggestion. The existing system developed a chatbot that support quality education to give prospective users with accurate information about universities and their unique courses. The chatbot give accurate information that can be available in any time. Traditional chatbot, which can affect in inaccuracies in information. Students face confusion due to disagreement in information Universities frequently fail to instantly answer user's queries. System cannot support voice interactions. To overcome these limitations, we utilize Bidirectional Encoder Representations from Transformer (BERT), a more advanced technology that significantly improves accuracy. Also, the chatbot is integrated into a mobile operation built with React Native, enabling both text and voice. The voice feature enhances accessibility, offering a more accessible and user-friendly experience. This upgraded chatbot system ensures that user can receive reliable and precise information.

Keywords: Artificial Intelligence, NLP, chatbot, machine learning, BERT, Reactive Native, voice interaction.

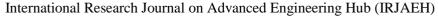
1. Introduction

In the digital age, educational institutions face numerous challenges in providing efficient services to students, faculty, staff, administrators, parents and other users. To address these challenges, chatbots have emerged as a viable solution, offering personalized assistance and streamlining communication. Chatbot have become essential tools for engaging people in the era of rising adoption of artificial intelligence(AI). This document outlines the chatbot needs of various users in educational highlighting benefits institutions, the implementing AI-powered chatbot solutions. With the increasing prevalence of online learning and the diverse needs of modern students, the demand for efficient and responsive student services has never been greater. The integration of chatbots in student services has indeed gained significant traction in recent years. Chatbots have emerged as essential AIpowered tools that facilitate user interactions through web browsers, allowing individuals to ask questions

on various topics and receive immediate responses. These conversational agents harness the capabilities of Artificial Intelligence (AI) and Natural Language Processing (NLP) [1] to deliver accurate answers, drawing from a predefined knowledge base. By processing and understanding human language, chatbots can interpret user queries effectively and provide relevant information or assistance. There are three primary types of chatbots: Rule-based, Retrieval based, and Generative-based models. Rulebased chatbots function according to a set of predefined rules [2]. They can only respond to a limited range of queries and typically rely on straightforward input patterns. This restricts their ability to engage in complex conversations, making them suitable for basic question-and-answer scenarios where user needs are straightforward. In contrast, Retrieval based chatbots utilize a more advanced approach by selecting the most appropriate response from a

²Professor, Computer Science and Engineering, RGCET, Pondicherry University, India.

^{3,4,5} UG, Computer Science and Engineering, RGCET, Pondicherry University, India.



Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

curated set of predefined answers. These chatbots are capable of understanding the context of a conversation, allowing for a more interactive experience. They can handle variations in user queries by matching input with corresponding responses, which enhances their effectiveness in realworld applications. The most sophisticated type is the Generative-based chatbot, which generates responses based on previous interactions and learned data patterns. These chatbots require complex computational models and extensive training data to operate effectively.

2. Methodologies and Approaches

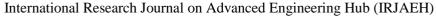
The research work on "Advanced NLP Models for Technical University Information Chatbots: Development and Comparative Analysis"[1] employs a multi-faceted methodology to develop and evaluate chatbots designed to provide information about technical universities. Initially, the study begins with a comprehensive literature review to identify existing NLP frameworks and their applications in educational contexts. development phase involves selecting and finetuning various advanced NLP models, such as BERT, GPT, and other transformer-based architectures, to enhance understanding and generation of university-related queries. Data collection is crucial; the researchers gather diverse datasets from university websites, student forums, and FAQs to ensure a rich training corpus. Subsequently, the work outlines the implementation of rigorous evaluation metrics, including precision, recall, F1score, and user satisfaction surveys, to compare the performance of each model. A/B testing is also utilized to assess realtime interactions with users. Finally, the study concludes with a comparative analysis of the models, highlighting strengths and weaknesses based on the metrics collected, and provides recommendations for future improvements in chatbot systems for educational institutions. This systematic approach ensures a thorough examination of both the technical and user experience aspects of the chatbots.

 Retrieval-based: approach involves selecting the best response from a predefined database based on user input, using techniques like keyword matching, semantic similarity, and machine learning algorithms to rank and choose the most contextually relevant response. On the other hand

- **Generative-based:** This approach creates the responses dynamically, employing models such as sequence-to-sequence architectures or transformer-based models. This generative models to generate responses based on patterns learned from training data, offering flexibility and creativity beyond fixed replies. The study compares these methods, noting retrieval-based chatbots' strength providing accurate and contextually relevant responses, while generative chatbots are praised for their adaptability and ability to personalize interactions [2].
- Machine Learning Techniques: This involves using algorithms that learn from data. Models are trained on large datasets to decipher user intents and generate appropriate responses. This includes employing algorithms like decision trees, support vector machines, or neural networks, which can adapt to new inputs based on the training they receive.
- Lexicon-Based Techniques: This method uses predefined rules and dictionaries to process user inputs. It relies on keyword matching and pattern recognition to generate responses, using a fixed lexicon of terms and phrases to understand and react to what the user says. The study compares the effectiveness, accuracy, and user satisfaction of these methodologies, evaluating each for their strengths and weaknesses in different chatbot applications [5].

3. Literature Overview

A study by Girija Attigeri, (member, IEEE), Sucheta v. Kolekar, (member, IEEE) and Ankit Agrawal, emphasized a chatbot comparison "Advanced NLP Models for Technical University Information Chatbots: Development and Comparative Analysis" explore the implementation of chatbots for university information dissemination, comparing five NLP models. Neural network-based models, particularly



Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

sequential modeling, demonstrated higher accuracy and effectiveness in providing consistent, real-time responses compared to TFIDF and pattern matching approaches[1]. "A comparative study of retrievalbased and generative-based chatbots using Deep Learning and Machine Learning "(2023) by Sumit Pandey, Srishti Sharma[2] compares retrieval based and generative-based chatbots for health-related applications, finding that generative based chatbots with encoder-decoder designs achieve 94.45% accuracy, outperforming retrieval-based chatbots like Bi-LSTM at 91.57%. Generative models excel in creating new text, while retrieval models rely on preexisting responses. "Enough of the chit-chat: A comparative analysis of four AI chatbots for calculus and statistics" (2023) analyzed by David Santandreu CalongeA, Linda Smail ,Firuz KamalovC that compares ChatGPT, GPT-4, Bard, and LLaMA for their potential in mathematics and statistics education. The study finds GPT-4 excels in calculus and statistics learning compared to the other chatbots and suggests that AI chatbots can significantly enhance higher education [3]. The study of "Comparative analysis of various chatbot framework". (2023)[4] developed by Nachiket Kapure describe three chatbot models using different frameworks to evaluate their features effectiveness. The analysis table helps users select the most suitable chatbot framework for enhancing customer service and automating tasks. comparative analysis by Karthik Konar researched "A Comparative Study on Chatbot Based on Machine Learning and Lexicon technique"[5](2020).they compares lexicon-based and machine learning approaches for sentiment analysis in chatbots, using Python to develop two chatbots: one for classifying movie reviews and another (DocBot) for providing information on kidney disease. The study aims to determine which approach delivers more accurate results for chatbot implementations. An Evaluation of General-Purpose AI Chatbots: A Comprehensive Comparative Analysis (2024)[6] analyse an in-depth evaluation of eight leading AI chatbots, using confusion matrices and pairwise comparisons across eight criteria to determine their efficiency. The research offers

valuable insights and recommendations developers and users, guiding them towards improving chatbot performance and ensuring they meet evolving needs and preferences in the AI industry. Another study that compares chatbots of -"COMPARATIVE ANALYSIS CHATBOTS(2020)" [7] researched by Shivang Verma , Lakshay Sahni , Moolchand Sharma evaluates and compares the accuracy of eight chatbots: they are Rose, Google Assistant, Siri, Comprehension Chatbot. Machine Mitsuku. Jabberwacky, ALICE, and Eliza—based on their responses to predefined questions. The analysis covers three main parameters: factual accuracy, conversational attributes, and handling of exceptional queries, leading to a ranked performance assessment of each chatbot. "A comparative study of medical chatbots" [8] by Jitendra Chaudhary, Vaibhav Joshi, Atharv Khare, Rahul gawali, Asmita Manna proposed HEALTHBOT aims to streamline medical interactions by managing patient symptoms, test reports, and basic prescriptions in English and Marati. This chatbot will assist medical practitioners and enhance efficiency by reducing administrative

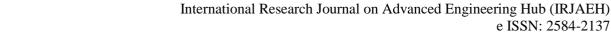
4. Findings and Trends

The findings and trends in "Advanced NLP Models for Technical University Information Chatbots: Development and Comparative Analysis" reveal significant advancements in the deployment of natural language processing (NLP) technologies within educational contexts. One notable trend is the increasing adoption of transformer-based models, such as BERT and GPT, which have demonstrated superior capabilities in understanding and generating human-like responses. BERT's bidirectional context comprehension allows chatbots to interpret user queries more accurately, thereby enhancing the relevance of the information provided. In contrast, GPT models excel in generating fluent and coherent text, fostering engaging interactions that can improve user satisfaction.

and bridging the treatment gap (refer table 1).

5. Literature Comparison Table

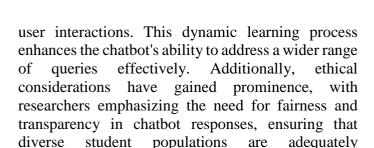
Another significant finding is the integration of reinforcement learning techniques, which allow chatbots to adapt and improve over time based on



Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440 https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204



represented. Overall, these findings underscore a shift toward creating intelligent, user-centered chatbots that not only deliver accurate information but also contribute positively to the educational experience.

Table 1 Literature Comparison

SI.no	Title	Technique used	Algorithm
01	Advanced NLP Models for Technical University Information Chatbots: Development and Comparative Analysis.	Conversational AI, Natural language processing, neural networks, sequential modelling ,pattern matching, semantic analysis.	Neural network
02	A comparative study of retrieval-based and generative-based chatbots using Deep Learning and Machine Learning.	Deep learning, Machine learning, vanilla RNN, CNN, Bidirectional LSTM, GRU	Neural network
03	Enough of the chit-chat: A comparative analysis of four AI chatbots for calculus and statistics.	Natural Language Processing, Statistics, calculus, Bard, LLAMA,	Neural network
04	Comparative analysis of various chatbot framework.	NLP, chatbot frameworks, API, Webhook, AI,	Natural language processing
05	A Comparative Study on Chatbot Based on Machine Learning and Lexicon Based Technique	Chatbot, Lexicon, Machine learning, Polarity, Subjectivity, Tokenization.	Natural language processing

- Model Performance: Evaluated different NLP models for their efficiency in processing and responding to queries specific to university information.
- **User Interaction:** Found that advanced NLP models significantly enhance user experience by delivering more precise and context-aware responses.
- Comparative Analysis: In this method, conducted a comparative evaluation, noting the relative strengths and weaknesses of various models in different applications.
- Implementation Challenges: Here this method discussed challenges, such as ensuring data quality and integrating chatbots seamlessly with existing university information systems.

- **User Satisfaction:** Users expressed higher satisfaction when using chatbots driven by sophisticated NLP models compared to conventional systems.
- Future Research Directions: Identified future research avenues, including expanding model training datasets and improving support for multiple languages.

6. Challenges and Gaps

Students encounter significant challenges when navigating the myriad of information sources available about universities, as discrepancies across websites, rankings, and brochures often lead to confusion. This lack of consistent information can hinder their ability to make informed decisions regarding their education. Furthermore, universities frequently struggle to respond promptly to student

Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

inquiries, which exacerbates this uncertainty and diminishes the overall student experience. Additionally, existing systems inadequately protect sensitive data, leaving it vulnerable to unauthorized access and tampering, raising concerns about privacy and security. Compounding these issues is the limited support for voice interaction in current chatbot implementations, which restricts accessibility and convenience for users who prefer or require voicebased communication. These challenges highlight significant gaps in the current landscape of university information dissemination, indicating the need for more robust and secure solutions that prioritize timely responses and user-friendly interfaces.

7. Result and Discussion

The proposed system successfully enhances information retrieval and user interaction through the language integration of **BERT** for natural understanding and React Native for cross-platform accessibility. The BERT model significantly improves response accuracy by understanding the context of user queries, ensuring that students receive relevant and precise answers. Additionally, the system's voice access feature enhances usability, making it more inclusive for users who may face difficulties with traditional text input. The automated query response mechanism minimizes response time, offering real-time assistance to students. Moreover, the React Native-based mobile-application provides a seamless and efficient user experience across Android and iOS devices. The ability to maintain a codebase reduces development maintenance efforts while ensuring optimal app performance. The system's combination of text-based and voice-enabled queries ensures that students can access information conveniently, fostering better engagement and decision-making. Overall, the results indicate that the proposed system provides a highly responsive, accessible, and efficient solution for educational support.

7.1.Input Embedding Layer

The Input Embedding Layer in BERT is responsible for converting raw text into numerical representations that the model can process. Unlike traditional word embeddings that assign a single fixed vector to each word, BERT's embedding layer captures additional

contextual information. It consists of three components: Token Embeddings, Segment Embeddings, and Positional Embeddings.

$$E i=T (i)+S i+P i$$

Where:

E_i=Final embedding for token i

T_i=Token embedding of i

S_i=Segment embedding

P_i=Positional embedding

Token Embeddings represent individual words or sub words using Word Piece tokenization, allowing the model to handle out-of-vocabulary words. Segment Embeddings distinguish between different sentences in input sequences, which is crucial for tasks like question-answering. Positional Embeddings provide information about word order, ensuring that the model understands the sequence of words in a sentence.

7.2.Multi-Head Self-Attention Layer

The Multi-Head Self-Attention Layer in BERT allows the model to capture relationships between words regardless of their position in a sentence. Unlike traditional sequence models, which process text sequentially, self-attention enables BERT to analyse all words in parallel, improving efficiency and context understanding. Each token attends to every other token in the sentence, determining how much importance should be given to different words using attention scores. This mechanism is computed as:

$$Attention(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right) V$$

Where Q (Query), K (Key), and V (Value) are linear transformations of the input embeddings. Multi-head attention extends this by computing multiple attention mechanisms in parallel, capturing diverse contextual meanings. The outputs of these attention heads are concatenated and transformed, allowing BERT to understand complex dependencies across different parts of a sentence. This makes BERT highly effective in tasks requiring deep contextual comprehension.

7.3. Feedforward Layer

The Feedforward Layer in BERT is responsible for transforming the output from the Multi-Head Self-Attention Layer and adding non-linearity to the

Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

model. It consists of two fully connected layers with an activation function in between. The first layer applies a linear transformation using learned weights, followed by a ReLU (Rectified Linear Unit) activation function to introduce non-linearity. The second layer then projects the transformed representation back to the original dimension. This process is mathematically represented as:

FFN(x)=max[fo](0,xW_1+b_1) W_2+b2 Where W1, W2 are weight matrices, and b1, b2 are bias terms. This component allows BERT to learn complex representations by applying transformations beyond attention-based computations. The feedforward layer operates independently on each token, ensuring that the model captures both local and global patterns efficiently before passing data to the next transformer block.

7.4.Output Layer

The Output Layer in BERT is the final stage that processes the transformed representations from the previous layers to generate task-specific predictions. Depending on the application (e.g., classification, question-answering, or text generation), this layer varies in structure. Typically, it consists of a fully connected (dense) layer followed by an activation function such as soft-max for classification tasks or sigmoid for binary outputs. Mathematically, it is represented as:

y=Activation(XW+b)

where X is the input from the last transformer layer, W is the weight matrix, and b is the bias term. For classification tasks, the soft-max function ensures that the output represents probability distributions over different classes. In masked language modelling (MLM), the output layer predicts masked words based on learned contextual relationships. This final step allows BERT to provide meaningful predictions tailored to specific NLP tasks.

7.5. Precision

Precision is a performance metric used to assess the accuracy of a classification model, particularly focusing on how many of the instances that the model predicted as positive are actually true positives. It is especially useful when the cost of false positives is high, such as in medical diagnoses where misclassifying a healthy person as sick can lead to

unnecessary treatments or interventions. Precision is calculated using the formula:

recision

True Positives(TP)

 $= \frac{1}{True \ Positives(TP) + False \ Positives(FP)}$

Here, True Positives (TP) refers to the number of correctly predicted positive instances, while False Positives (FP) represents the number of instances that were incorrectly classified as positive when they were actually negative. A high precision value, close to 1 or 100%, indicates that the model is making very few errors in predicting positive cases. Conversely, low precision suggests that the model is frequently misclassifying negative cases as positive, which can lead to costly mistakes, particularly in sensitive areas like healthcare or fraud detection. Thus, precision helps in evaluating the reliability of a model when the focus is on minimizing false positive predictions.

7.6. Recall

Recall, also known as sensitivity or true positive rate, is a metric used to evaluate how well a classification model identifies positive instances. It measures the proportion of actual positive instances that were correctly identified by the model. In the context of the proposed system, recall is crucial for ensuring that the system doesn't miss important queries or information requests from students. For example, if a student asks a question, high recall means the system is effective at recognizing and providing an answer, reducing the chances of missing out on crucial inquiries that could affect a student's decision-making process. In the proposed system, recall is important because students may ask a wide variety of questions, and the system needs to correctly identify and respond to as many of these inquiries as possible. A high recall ensures that the application is thorough in addressing user needs, especially in educational settings where missing an important query could lead to confusion or incomplete understanding. Recall is calculated using the formula:

Recall

$$= \frac{True\ Positives(TP)}{True\ Positives(TP) + False\ Negatives(FN)}$$

Where True Positives (TP) are the correctly identified positive cases, and False Negatives (FN) are the

Vol. 03 Issue: 04 April 2025 Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

actual positive cases that were missed by the model. A higher recall indicates that the system is less likely to overlook relevant user queries, ensuring that students receive comprehensive and timely responses.

7.7. F1-Score

The F1 score is a crucial metric that combines both precision and recall into a single value, providing a balanced measure of a model's performance, especially when there is an uneven class distribution. In the proposed system, the F1 score is particularly important as it ensures that the application not only provides accurate answers (precision) but also effectively identifies all relevant queries from students (recall). By considering both precision and recall, the F1 score helps in evaluating the system's overall effectiveness in responding to student inquiries, balancing the trade-off between false positives and false negatives. A high F1 score indicates that the system is both precise in its responses and thorough in addressing as many queries as possible.

$$F1 \, Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

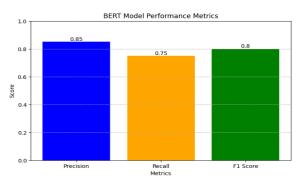


Figure 1 Score

This formula ensures that both precision and recall contribute equally to the final score. In the context of the proposed system, a higher F1 score means that the application is effectively balancing accuracy and completeness in answering student queries, providing a more reliable and efficient support platform. A low F1 score, on the other hand, would indicate that the system is either too focused on accuracy but misses many relevant queries (low recall), or it casts a wide net and incorrectly classifies many responses as

relevant (low precision), both of which could hinder the user experience.

7.8.Accuracy

Accuracy is a key metric for assessing the overall performance of a classification model, as it calculates the ratio of correct predictions (both true positives and true negatives) to total predictions made by the model.It measures the proportion of correct predictions (both positive and negative) made by the model out of all the predictions it makes. In the context of the proposed system, accuracy reflects how well the model is performing in providing correct responses to student queries. A higher accuracy indicates that the system is generally effective in delivering the right answers, whether it is identifying specific course details, institutional information, or answering other queries accurately. However, while accuracy is useful, it might not always be sufficient in situations where the classes are imbalanced, as it doesn't distinguish between types of errors (false positives or false negatives). Where:

TP: Correctly predicted positive instances.

TN: Incorrectly predicted negative when they are negative.

FP: Incorrectly predicted as possible when they are negative

FN: Incorrectly predicted as a negative when they are positive.

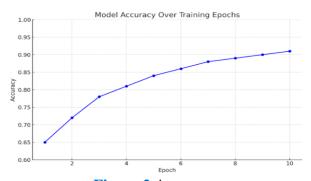


Figure 2 Accuracy

In the proposed system, a high accuracy indicates that the model is consistently making the correct predictions for the majority of queries, providing a reliable platform for students. However, it is essential to monitor other metrics like precision, recall, and F1 score, especially if the system needs to handle a wide

Vol. 03 Issue: 04 April 2025 Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

variety of queries, some of which may be more critical than others.

7.9.Loss

The loss function is a critical component in any machine learning model, as it quantifies how far off a model's predictions are from the actual outcomes. In the context of the proposed system, the loss function helps the model assess the error when it provides incorrect answers to student queries. By minimizing this error during training, the model improves its ability to respond accurately and effectively to user input. A well-chosen loss function ensures that the model learns to prioritize the most important aspects of the query while adjusting its predictions to become more accurate over time.

$$Loss = -\sum_{i=1}^{c} y_i log(\widehat{y}_i)$$

where:

ŷi is the predicted portability for class i.

C is the number of classes(Eg: different types of like course info, faculty details, etc). Yi is the predicted probability for class i, as given by the model's output.

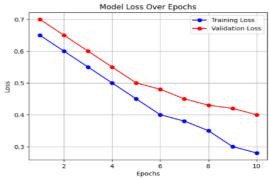


Figure 3 Loss

This formula calculates the logarithmic loss for each class and sums it across all classes. The log function penalizes predictions that are further from the actual labels, meaning the model is more strongly corrected when it makes larger errors. By using categorical cross-entropy, the model can learn to make better predictions by minimizing the error between predicted and actual query classes. As the model trains, the loss value will decrease, indicating better alignment between predictions and real-world outcomes. This leads to an improved user experience

where students receive more accurate and relevant information.

Conclusion

In conclusion, the exploration of advanced NLP models for technical university information chatbots reveals a promising pathway toward enhancing student engagement and decision-making processes. various comparative analysis of architectures, such as BERT and GPT, underscores the strengths and limitations of each model in understanding and generating contextually relevant While transformer-based responses. demonstrate significant improvements in accuracy and user experience, the integration of user feedback and engagement metrics is crucial for developing effective chatbot solutions. Additionally, addressing challenges such as data security and the need for voice interaction capabilities remains essential for creating more inclusive and user-friendly systems. The findings of this survey highlight the necessity for approach that combines technical a holistic performance with ethical considerations, ensuring fairness and transparency in chatbot interactions. As universities continue to face challenges related to inconsistent information and delayed responses, the implementation of advanced NLP-driven chatbots could bridge these gaps, providing students with reliable support and information. Future research should focus on refining these models and incorporating adaptive learning mechanisms to enhance their responsiveness over time. Ultimately, the advancement of NLP technologies in educational chatbots holds the potential to significantly improve the overall student experience, fostering informed decision-making and engagement in the academic journey.

Reference

girija attigeri, (member, ieee), ankit agrawal, [1]. and sucheta v. kolekar, (member, ieee) "advanced nlp models for technical university information chatbots: development and comparative analysis" , department of information and communication technology, digital object identifier 10.1109/access.2024.3368382,volume12,202 4,https://creativecommons.org/licenses/bync-

Vol. 03 Issue: 04 April 2025

Page No: 1432 - 1440

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0204

nd/4.0/

- [2]. sumit pandey, srishti sharma "a comparative study of retrieval-based and generative-based chatbots using deep learning and machine learning". the north cap university school of engineering & technology, gurugram, haryana, 122017,india ,https://doi.org/10.1016/j.health.2023.100198
- [3]. david santandreu calonge, linda smail, firuz kamalov," enough of the chitchat: a comparative analysis of four ai chatbots for calculus and statistics", vol.6 no.2(2023), issn:

 2591-801x
 http://journals.sfu.ca/jalt/index.php/jalt/index
- [4]. nachiket kapure "comparative analysis of various chatbot frameworks", department of computer science & engineering, birla college of arts, science & commerce, kalyan, india. volume:04/issue:09/september-2022, e-issn: 2582-5208, www.irjmets.com
- [5]. karthik konar. mca, nmims mukesh patel"a comparative study on chatbot based on machine learning and lexicon based technique", school of technology management & engineering, vile parle(west) mumbai. volume 5, issue 5, may 2020, issn no:-2456-2165. www.ijisrt.com
- [6]. oleksii chalyi, "an evaluation of generalpurpose ai chatbots: a comprehensive comparative analysis", faculty of informatics, vytautas magnus university, kaunas, 44404, lithuani, https://www.isjtrend.com/
- [7]. shivang verma, lakshay sahni, moolchand sharma, "comparative analysis of chatbots", department of computer science and engineering, maharaja agrasen institute of technology, ggsipu, delhi, india, department of electrical and electronics engineering, delhi technological university,delhi,india(icicc2020), https://ssrn.com/abstract=3563674
- [8]. jitendra chaudhary,vaibhav joshi,atharv khare,rahul gawali,asmita manna, "a comparative study of medical chatbots", volume: 08 issue: 02 | feb 2021, e-issn: 2395-0056, www.irjet.net

- [9]. chandan, m. chattopadhyay, and s. sahoo, "implementing chat-bot in educational institutes," ijrar j., vol. 6, no. 2, pp. 44–47, 2019.
- [10]. t.lalwani, s.bhalotia, a.pal, v.rathod, and s.bisen, "implementation of a chatbot system using ai and nlp," int. j. innov. res. comput. sci. technol. (ijircst), vol. 6, no. 3, pp. 26–30, 2018.
- [11]. J. Thukrul, A. Srivastava, and G. Thakkar, "Doctorbot—An informative and interactive chatbot for COVID-19," Int. Res. J. Eng. Technol. (IRJET), vol. 7, no. 7, pp. 3033–3036, 2020.
- [12]. S. Maher, "Chatbots & its techniques using AI: A review," Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 12, pp. 503–508, Dec. 2020.
- [13]. M. Aleedy, H. Shaiba, and M. Bezbradica, "Generating and analyzing chatbot responses using natural language processing," Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 9, 2019.
- [14]. P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, "Stanza: A Python natural language processing toolkit for many human languages," 2020, arXiv:2003.07082.
- [15]. M. M. H. Dihyat and J. Hough, "Can rule-based chatbots outperform neural models without pre-training in small data situations? A preliminary comparison of AIML and Seq2Seq," in Proc. 25th Workshop Semantics Pragmatics Dialogue, 2021, pp. 22–26.