

Vol. 03 Issue: 04 April 2025 Page No: 1427 - 1431

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0203

Automated Continuous Membrane Filtration

D Kishoure Kumar¹, S Guhaneshvar², A Arulkumar³, S Karthikumar⁴, G Arthanareeswaran⁵

^{1,2}UG, Dept. of Mechatronics Engineering, Kamaraj College of Engineering and Technology, Virdhunagar, TamilNadu, India.

³Assistant professor, Dept. of Mechatronics Engineering, Kamaraj College of Engineering and Technology, Virdhunagar, TamilNadu, India.

⁴Associate professor, Dept. of Biotechnology, Kamaraj College of Engineering and Technology, Virdhunagar, TamilNadu, India.

⁵Professor, Dept. of Chemical Engineering, National Institute of Technology, Tiruchirappalli, TamilNadu, India.

Emails: rams23249@gmail.com¹, guhanesh13@gmail.com², arulkumarmtr@kamarajengg.edu.in³, karthikumarbt@kamarajengg.edu.in⁴, arthanareeg@nitt.edu⁵

Abstract

Traditional wastewater filtering systems can need substantial manual control, resulting in inefficiencies, operating delays, and uneven water quality. This study describes an innovative filtering system aimed to improve reliability and efficiency through automation. Pumps, membrane filtering devices, and pressurized air are all controlled by solenoid valves. Furthermore, it has pH, turbidity, and pressure sensors for real-time monitoring and adaptive performance changes. This strategy maintains consistent water quality, enhances operating efficiency, and reduces maintenance requirements by eliminating the need for manual intervention. The successful deployment of a functional prototype demonstrates its promise as a viable solution to current wastewater treatment difficulties.

Keywords: Automated filtration, wastewater treatment, membrane filtration, real-time monitoring, solenoid valves, sensor-based control, process optimization, water quality management, turbidity monitoring, pH control.

1. Introduction

Large amounts of wastewater are produced by waterintensive sectors, and if improperly handled, this can result in serious environmental contamination, the depletion of natural resources, and noncompliance with legal requirements. Manual filtration systems and other traditional wastewater treatment techniques are frequently ineffective, labour-intensive, and expensive to run. These systems are not appropriate for enterprises looking for economical friendly wastewater treatment environmentally solutions since they usually have significant maintenance needs, uneven performance, and operational downtime. The capacity of membrane filtration technology to efficiently remove impurities has made it a potential alternative for the treatment of industrial wastewater. However, its broad adoption has been constrained by the expensive maintenance

and automation expenses. Existing automated filtering systems are unworkable for many sectors because they are frequently costly, complicated, and require specialized individuals for operation and maintenance. The goal of this project is to design and construct an automated continuous membrane filtering system that is both economical and effective in order to overcome these obstacles. Key elements of the suggested system include pumps, membrane filtering units, and compressed air mechanisms. These are managed by solenoid valves and are continuously observed by pressure, turbidity, and pH sensors. [1-2] The system guarantees optimal filtration performance, minimizes human interaction, and improves operating efficiency by utilizing automation and real-time monitoring. The creation of a functional prototype that converts conventional

Vol. 03 Issue: 04 April 2025

Page No: 1427 - 1431

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0203

manual filtering procedures into an automated and dependable system is shown in this study. The application of this solution is to guarantee constant water quality, reduce operating expenses, and increase wastewater treatment effectiveness. The project's results might provide industry with a useful, scalable, and sustainable method of managing wastewater, therefore aiding in resource optimization and environmental preservation. [3]

2. Problem Statement

High-water-use businesses create wastewater, which, if left untreated, depletes resources, harms the environment, and violates regulations. Traditional treatment procedures are frequently inefficient, laborintensive, and expensive, resulting in variable water quality and downtime. Existing automated solutions are too expensive, making them inaccessible to small and medium firms. The goal of this study is to create a low-cost, fully automated membrane filtering system that includes solenoid valves, pumps, membrane units, and real-time pressure, turbidity, and pH sensors. The suggested system improves wastewater treatment efficiency, assures regulatory compliance, and promotes environmental sustainability while requiring little human interaction. (Figure 1)

3. Methodology

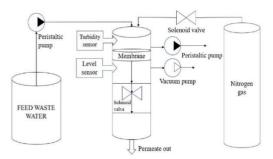


Figure 1 Schematic Representation of Filtration System

The suggested automated continuous membrane filtering system is intended to treat industrial wastewater effectively with little operator intervention. The procedure starts with a peristaltic pump that moves wastewater from the feed tank to the membrane filtering unit. The device has turbidity and level sensors for real-time monitoring, assuring

optimal performance and constant water quality. Solenoid valves are strategically located to regulate water flow and allow for automatic control throughout the system. Treated water, or permeate, exits the membrane module and is ready for reuse or safe disposal. To maintain membrane efficiency, a nitrogen gas-assisted backwashing mechanism is used to remove fouling and impurities, resulting in constant filtering performance. Vacuum pumps help to clean the system and regulate the flow. This integrated strategy combines Automation. monitoring, and an efficient cleaning process combine to provide a dependable, cost-effective, and wastewater long-term solution for industrial treatment. (Figure 2)

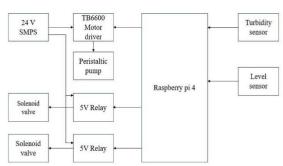


Figure 2 Control System Architecture for Automated Membrane Filtration

This diagram depicts the control system architecture of the automated membrane filtering system. The Raspberry Pi 4 acts as the core controller, handling sensor inputs and regulating numerous components. Sensors like as the turbidity and level sensors offer real-time data to the Raspberry Pi, allowing it to monitor the filtering process. A 24V SMPS (Switched Mode Power Supply) powers the system, including the motor driver (TB6600) and other components. The TB6600 motor driver powers the peristaltic pump, which controls the flow of water through the filtration unit. Two 5V relays are linked to operate the solenoid valves, allowing for automatic flow regulating and backwashing operations. The combination of these components guarantees that the filtration system operates precisely, automatically, and efficiently. [4]

3.1.Raspberry Pi 4 Model B

The Raspberry Pi 4 acts as the system's brain,

Vol. 03 Issue: 04 April 2025

Page No: 1427 - 1431

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0203

processing data for the automated membrane filtering system. It takes real-time data from sensors, such as turbidity and level sensors, and uses this information to make judgments. The Raspberry Pi controls the pump's motor driver and uses relays to trigger the solenoid valves, regulating flow and initiating backwashing. Its function is crucial in attaining real-time monitoring and automation with little human interaction. [5]

3.2. Turbidity Sensor

The turbidity sensor measures the clarity of water as it enters and exits the filtering system. It offers critical information to the Raspberry Pi about concentrations of suspended particles contaminants in the water. This information is useful in calculating filter efficiency and the requirement for backwashing. The turbidity sensor guarantees that the system constantly satisfies water quality requirements.

3.3.Level Sensor

The level sensor monitors the water level in the filtration unit to ensure that it operates safely and efficiently. It prevents problems like overflow and dry running, which can harm the system. The level sensor transmits real-time signals to the Raspberry Pi, which changes the pump's operation or generates alarms as needed. This component is essential for ensuring operational stability.

3.4.TB6600 Motor Driver

The TB6600 motor driver uses Raspberry Pi signals to regulate the peristaltic pump's functioning. It adjusts the pump's speed and direction to provide continuous water flow. This component guarantees that the pump performs efficiently under fluctuating system demands, which improves overall system performance. [6]

3.5.Peristaltic Pump

The peristaltic pump is an essential component for moving water through the filtration system. It works by compressing and relaxing a flexible tube, resulting in a steady and exact flow of water into the membrane unit. The pump is critical for maintaining a consistent feed flow and good filtering.

3.6. Solenoid Valve

Solenoid valves regulate the flow of water and cleaning chemicals during the filtering process.

During filtration, they control the flow of water across the membrane. Backwashing allows the passage of nitrogen gas or cleaning chemicals to clean the membrane. Their automation enables smooth operation and uniform cleaning while decreasing manual involvement and maintenance requirements. (Figure 3)

4. Electrical Design

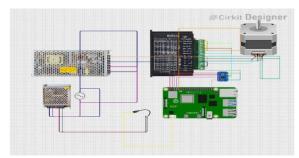


Figure 3 Electrical Design for Peristaltic Pump Control

This circuit diagram depicts the electrical architecture for regulating the automated filtration system. The Raspberry Pi 4 serves as the central computing unit, communicating with the Micro step Driver to regulate the stepper motor that powers the peristaltic pump. The system is supplied by a 24V SMPS that gives the appropriate voltage to the Micro step Driver, assuring the motor's reliable functioning. The Micro step Driver receives enable (ENA), direction (DIR), and pulse (PUL) signals from the Raspberry Pi, allowing for precise control of the motor's speed and direction. An extra 5V SMPS is supplied to power low-voltage components connected to the Raspberry Pi. The configuration is intended to handle power requirements efficiently while preserving operational dependability. This architecture shows the integration of critical components for seamless automation This circuit diagram depicts the electrical connections for sensor integration and system monitoring in an automated filtration system. The Raspberry Pi 4 acts as the primary controller, communicating with a variety of sensors and components to collect real-time information. The flow sensor checks the rate of

Vol. 03 Issue: 04 April 2025

Page No: 1427 - 1431

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0203

fluid movement, while the ultrasonic sensor detects liquid levels in the tank to provide accurate control. A relay module operates valves or pumps depending on (Figure 4) [7]

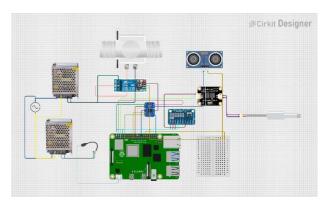


Figure 4 Electrical Design for Sensor **Integration and Monitoring**

data. The ADS1115 analog-to-digital sensor converter is used for sensors that need analog inputs, assuring interoperability with the Raspberry Pi's digital GPIO pins. The system is powered by 24V and 5V SMPS units, which provide the voltage required for various components. This modular design enables efficient operation and dependable automation for real-time monitoring and control. (Figure 5)

5. Results and Discussion

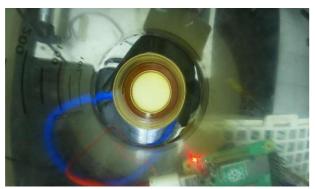


Figure 5 Membrane Before Filtration

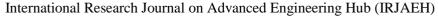

The photos above show the state of the membrane used in the filtering process prior to and after treatment. At first glance, the membrane surface (Fig 5) seems rather clean, yet it includes visible particle impurities and pollutants that stick to it. These pollutants most likely came from suspended particles, organic matter, and small debris in the untreated water. Following the filtering procedure, the membrane surface (Fig 6) changes noticeably. The accumulation of pollutants has been greatly decreased, demonstrating the efficiency of the filtering system in eliminating particulate matter and suspended particles. However, traces of residue can still be seen, which may indicate the existence of extremely small particles or chemicals that were not completely eliminated due to the membrane's pore size restrictions or blockage over extended use. This result indicates the system's efficacy in increasing water quality through filtration, as well as the importance of cleaning or replacing the membrane on a regular basis to guarantee constant performance. The findings are consistent with the system's design goals of producing effective filtering using a combination of mechanical and automated controls, bv sensors and microcontroller-based monitoring. [8]

Figure 6 Membrane After Filtration

Conclusion and Future Works

This project successfully created an automated water filtration system that combines sophisticated sensors, microcontrollers, and stepper motors to accomplish efficient and exact filtering. The system effectively monitors factors such as flow rate, pressure, and temperature to ensure maximum performance and membrane life. The findings demonstrate the system's potential to enhance water quality, eliminate dependability and ensure pollution, continuous monitoring and management. The design offers a scalable and viable solution for water treatment applications, with great room for additional

Vol. 03 Issue: 04 April 2025

Page No: 1427 - 1431

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0203

improvement and optimization. Future improvements to the device include integrating a camera for realtime monitoring of the membrane surface and using image processing techniques to examine membrane conditions. This method will allow for exact detection of blockages, contamination levels, and membrane expiry status. Furthermore, picture analysis can assist identify if blockages are caused by bacterial biofilms or other particles, allowing for prompt maintenance and guaranteeing the system's long-term efficiency and dependability. [9] Reference

- [1]. Cheng-Yuan Kuo, Co-Chih Chang, Chun Biao, Cheng-Hua Yang, Tzong-Yueh Chen, Sheng- Chih Shen, "Automated system of tubular filtration for rotifer production" J World Aquac Soc. 2022.
- Suna Ozden Celik, Nese Tufekci and Ismail [2]. Koyuncu, "Self-forming dynamic membrane filtration for drinking water treatment" Water Supply published by IWA 2022.
- Gifuni, L. Lavenant, J. Pruvost, A. Masse, [3]. "Recovery of microalgal protein by threesteps membrane filtration: advancements and feasibility" published by Elsevier 2020
- Chun Ming Chew, Mohamed Kheireddine [4]. Aroua, Mohd Azlan Hussain, "Advanced process control for ultrafiltration membrane water treatment system" C.M. Chew et al. / Journal of Cleaner Production 179 (2018)
- Zakariah Yusuf, Norhaliz Abdul Wahab and [5]. Shafishuhaza Sahlan, "Dynamic modelling and control of membrane filtration process" Int. J. Nanotechnol., Vol. 13, Nos. 10/11/12, 2016.
- [6]. Linhua Fan, Thang Nguyen, Felicity A. Roddick, John L. Harris, "Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction" L. Fan et al. / Journal of Membrane Science 320 (2008)
- Jong Woo Nam, Jun Young Park, Ji Hoon Kim, Yong Soo Lee, Eui Jong Lee, Min Jung Jeon, Hyung Soo Kim & Am Jang, "Effect on backwash cleaning efficiency with TDS concentrations of circulated water and

- backwashing water in SWRO membrane" J.W. Nam et al. / Desalination and Water Treatment 43 (2012).
- [8]. Paul James Smith. Saravanamuth Vigneswaran, Huu Hao Ngo, Roger Ben-Aim, Hung Nguyen, "A new approach to backwash initiation in membrane systems" Journal of Membrane Science 278 (2006).
- [9]. Ghamdi, Mohanned: Al Alhadidi, Abdulsalam; Ghaffour, NorEddine, "Membrane backwash cleaning using CO2 nucleation" 2019 Published by Elsevier Ltd.