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Abstract
Privacy-preserving machine learning is the development and deployment of Machine learning (ML) models

whereby the data should be shielded from personal privacy concerns during model training. This is the main
problem in a distributed system when data is spread over several sites, possibly exposing sensitive information
while training the data, particularly in the healthcare and finance industries. There are several ways to
address these privacy issues, including differential privacy, secure multi-party computation (SMPC),
homomaorphic encryption (HE), and federated learning. Techniques for deep learning and machine learning
(ML) have a lot of promise for raising productivity. To get decent results, however, the data used to train
machine learning models must be of very high quality. Only when there is a large amount of flawless data
provided for training can any machine learning algorithm function exceptionally well. In this paper, we offer
strategies and provide detailed survey and analysis of privacy-preserving ML techniques such as HE, Multi-
party Computation, Federated Learning and Differential Privacy. The proposed work includes analysis of
existing techniques and information on the design and implementation of various PPML protocols. We also
cover the benefit of privacy during computation in real time applications, which, because to its distributed,
secure, and private nature, has the ability to address the security issues raised above.

Keywords: Machine Learning, Deep Learning, Security, Homomorphic Encryption, Privacy Preserving.

1. Introduction

Because data and computational resources constantly
change, machine learning serves as essential for data
analysis and decision-making. A key component of
Artificial Intelligence (Al) techniques is the
collection of vast amounts of data, which are then
used to build forecasting techniques by Machine
Learning (ML), the core component of Al. But
gathering data and using it to identify patterns in its
behavior are two distinct things. Furthermore,
managing it presents a number of challenges for both
people and businesses, including concerns about
privacy like data compromises, monetary losses, and
damage to one's reputation. Bridging the gap between
privacy and gaining the advantages of machine
learning is the aim of privacy-preserving machine
learning. It is a vital resource for compliance with
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data privacy regulations and restructuring a data.
Despite the advantages of machine learning
applications, there is always a risk to data privacy.
Take intrusion detection or healthcare apps, for
instance. Data leaks and cyber-attacks are growing
more frequent and costly to respond to. Because they
can steal information that can be used to recognize
individuals or additional important details that can be
sold, cybercriminals are attracted to massive
collections of data stored for use as training.
Furthermore, because sensitive data can be extracted
from ML models, the models themselves are
vulnerable. The privacy-preserving machine learning
approach was born out of the current cloud-based
situation for deep learning, security of various assets
of any organization, and security of data. There won't
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be a single way to handle all application types using
this PPML methodology. Different applications call
for different types of privacy care. Additionally, we
need to combine the need to create robust, platform-
independent  procedures with  scenario-specific
considerations. Despite the recent explosion in
research on safeguarding privacy machine learning,
there is still a disconnect between theory and practical
applications. Massive data privacy concerns surround
the benefits of machine learning applications; take
intrusion detection or healthcare apps, for example.
Data breaches and cyber-attacks are becoming more
prevalent and pricier to respond to. Cybercriminals
get drawn to large data sets stored for use as training
since they seek to steal information that can be used
to identify specific people or additional worthwhile
data that can be sold. Furthermore, because sensitive
information can be extracted from ML models, the
models themselves pose a threat. Shokri et al., for
example, illustrate how to determine if a record was
utilized in the data set used to train for an exact
machine acquiring model. They gained 74% and 94%
accuracy, respectively, while evaluating the approach
they developed on machine learning systems from
Google Cloud and Amazon. Significant progress has
been achieved in a broad variety of sectors as a
consequence of the machine learning algorithm’s
outstanding ability to discover patterns and predict
outcomes using massive amounts of data. However,
using machine learning requires sensitive data, such
as personal information. Due to the possible negative
effects of disclosing such sensitive information,
including identity theft, financial fraud, and
prejudice, privacy issues emerge. The use of sensitive
data in machine learning processes prompted the
development of a new field titled PPML, which
specializes on constructing techniques and tools for
training and employing machine learning models
while respecting the privacy of sensitive data. The
purpose of PPML [24,25] is to guarantee sensitive
data privacy while still enabling the use of machine
learning’s advantages. PPML is a multidisciplinary
field that combines the areas of cryptography,
distributed systems, and machine learning, and it
presents several technical challenges such as privacy,
accuracy, scalability, and robustness [26,27]. The
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development of PPML algorithms [4,5] and
techniques is crucial for the responsible and ethical
use of sensitive data in machine learning.

1.1.Motivation
The primary concern in a distributed setting, where
the data is dispersed across many sites, maybe that
sensitive data might be exposed while the data is
being trained, especially in the healthcare and
banking industries [7,8]. The rising accessibility of
massive volumes of data across multiple
organizations or entities has led to the emergence of
broadly distributed information systems in which
each entity or organization keeps a portion of the
data. When attempting to use machine learning
algorithms to analyze and derive insights from the
aggregate data while maintaining the secrecy of
individual data samples, privacy problems might
arise. The goal is to make it possible for several
entities to collaborate and share knowledge while
guaranteeing that sensitive data is kept secure and
private.

1.2.Applications

e Statistical Analysis: Differential privacy can

be used for analyzing data while preserving
individual privacy, such as in health data to

study trends without exposing patient
information.
e Social Science Research: Differential

privacy can be used for researching sensitive
topics, like political inclinations or sexual
behavior, without exposing the identity of
participants.

e ML.: Differential privacy is a technique that
may be used to train ML models on info while
securing the identification of specific data
points.

e Government Surveillance: Differential
privacy may be used to safeguard people’s
privacy in government surveillance programs
and stop phone and inter- net activity from
being tracked.

e Smart Cities: Differential privacy may be
utilized in smart city initiatives to safeguard
people’s privacy and stop surveillance based
on their movements or energy use sensitive
data might be exposed
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1.3.Privacy Preserving Machine Learning
PPML [11,12] is the creation and implementation of
neural network models where the data must be
shielded from personal privacy concerns during
model training. There can't be a single way to deal
with all application kinds using this PPML approach.
Numerous applications call for different types of
privacy care. Additionally, we need to combine the
need to create robust, platform-independent
procedures with scenario-specific factors to consider.
1.4.PPML is Required in Several Phases

Compliance: Machine learning models that make
use of personally identifiable information must be
developed in line with the stringent regulations that
many firms are required to abide by regarding the
protection of person- ally identifiable information.
Ethics: The use of personal data in machine learning
presents ethical questions, especially when the data is
used to inform choices that might have a substantial
influence on a person’s life, such as those relating to
healthcare or credit scoring.

Trust: People are becoming more worried about how
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their personal information is used, therefore in order
to earn and keep the confidence of their clients;
businesses must be able to show that they are treating
it appropriately.
Data security: Since personal information is a
valuable resource that may be targeted by
cybercriminals, businesses must take precautions to
safeguard it in order to avoid data breaches and other
types of data misuse.
Data ownership: People have a right to manage their
personal information, and businesses should uphold
these rights by letting people decide how their
information is used and shared. (Figure 1)
2. Approaches to Privacy Preserving Machine
Learning
PPML techniques [13,14] are modern cyber security
techniques that help to protect the data while sharing,
processing, performing computations, or analysis.
There are several approaches to PPML. Some of the
most commonly used techniques include Differential
Privacy, Federated Learning, SMPC, and HE.

Table 1 Different PPML Techniques
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Figure 1 PPML Model Architecture
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Various methods are used to build guidelines for
reliable multi-party operations, based on the
recognized enemy type. The traditional setup for the
semi-fair enemy model is a distorted circuits plot.
This convention for evaluating Boolean circuits is
just two-party, but it is not a "building block" for
other conventions, such as n-party ones. A few
rounds were conducted in relation to the depth of the
plan [38], which addresses this problem for the multi-
party scenario and applies to both logic and number-
crunching circuits. Limitations on the graded effort,
the number of rounds, the computational complexity,
and the various nuances of the opponent model are all

[1] introduced privacy-preserving data mining. aspects where many different strategies diverge.
Table 2 Literature of Existing Technigues and its Drawbacks
Author/ Journal/ Title Drawbacks/ Limitations
Reference Conference
. . . “An Efficient Approach for . .
P N. Annem Journal for Re_sean_:h in Applied Science Privacy Preserving Data -ltis very_SlmpI_e and_
and Engineering Technology. . ; constant R is obtained it
et.al.,[2] . Mining using SMC . .
April 2018 - iS easy to retrieve the
Techniques and Related
: N values
Algorithms”,
“Practical Privacy-
Jiawei Yuan | IEEE Transactions on Cloud Computing Preserving MapReduce Computational cost is
etal, [3] | Volume: 7, Issue: 2, pp. 568 — 579, 2019 | Based K-means Clustering higher.
over Large-scale Dataset”
Privacy-preserving
Yangetal | 2005 SIAM international conference on | classification of customer The approach is not
[7] data mining. SIAM; 2005, p. 92-102 data without loss of efficient and useless.
accuracy.
8th International Conference, KSEM Privacy-preserving naive | Costly and compromises
Huai et al [8] | 2015, Chongging, China, October 28-30, b y pl ifi 9 y and comp
2015 ayes classification. privacy
i 91977 Privacy-preserving . .
Lietal., [9] J.Cluster Computing. 2018 Mar;21:277 outsourced classification in High processing cost and
86. ; poor accuracy
cloud computing
Skarkala ME PPDM-TAN: A Multi-
et.al J.Computation. 2021 Jan 16:9(1):6 party C|aSSIf!EI’ that protects |  This is not practical
[10] privacy protocol.
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4. Practical  Privacy Machine

Learning Techniques

In this section, we present very important PPML
techniques for real time applications. The use-case,
the assets to be safeguarded, and other considerations
all influence the choice of a privacy-preserving
machine learning technique. Understanding the many
elements’ aids in choosing the best course of action;
there is no magic bullet. Furthermore, we must strike
a balance between the requirement to provide
portable and reusable methods and scenario-specific
requirements. It is important to note that every
dataset used in machine learning can theoretically
benefit from anonymisation approaches. By doing
this, we can prevent or lessen de-anonymization
attacks and safeguard people's privacy. These
methods can also be used to create a synthetic dataset,
which is a new dataset that retains only a few of the
original's statistical characteristics but is not
produced from it. Furthermore, the model builder can
utilize pre-existing, widely-used frameworks rather
than particular privacy-preserving ones thanks to
anonymisation approaches. However, the accuracy of
the target ML model may be impacted if
anonymisation approaches are applied
independently. Therefore, we address methods that
have been specifically studied in relation to machine
learning in the sections that follow.

At Initial stages, numerous parties can work together
to compute a function on their private data using the
confidential multi-party calculating (MPC) technique
without compromising their data to one another.
While letting them to check out the results of the
computation, this method ensures that no one party
may access or derive whatever about the private data
of the different parties.

4.1.Secure multi-party computation

e Data Encryption: Each side employs a safe
encryption technique to encrypt its private
input data.

e Data sharing: The parties exchange
encrypted data. Various methods, such as
secret sharing, where one party gives the other
parties access to a piece of their data, may be
used to accomplish this.

e Computation: The parties collaborate in

Preserving
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order to calculate the encrypted data. This is
made possible via homomorphic keys, which
allows the parties to perform computations
directly on the information that is encrypted
by employing encrypted gates. Result
Decryption of the computed result occurs
after it has been encrypted and distributed to
the parties. The parties then decode the output
to get the final plaintext output using their
decryption keys. (Figure 2)
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Figure 2 Implementation Diagram of Secure
Multi-Party Computation

4.2.Homomorphic Encryption
HE [26,35] is a cryptographic technique that allows
encrypted data to be processed without revealing the
underlying data. Homomorphic encryption allows
machine learning models to be trained on encrypted
data while protecting the anonymity of individual
data sources.

e Data Encryption: The first step is to encrypt
the data using a homomorphic encryption
algorithm. The encryption algorithm converts
the plaintext data into cipher text, which is
unreadable without the decryption key.

e Encryption Key Generation: To perform
computations on the encrypted data, a special
key is needed. This key is generated during
the encryption process and can be used for
encrypting and decrypting the data.

e Data Transformation: The encrypted data is
translated into a particular for- mat that
permits calculations to be conducted on it.
This format is intended to allow mathematical
operations on encrypted data without
disclosing the underly ing plaintext data.

1198


https://irjaeh.com/

IRJAEH

e Computation: Once the data has been
changed, it may be used to do calculations.
Certain mathematical operations, such as
addition and multiplication, may be
performed on encrypted data using
homomorphic encryption. More sophisticated
procedures, on the other hand, may need extra
phases.

e Result Decryption: After the computation is
performed, the result is trans- formed back
into its original encrypted format. The
decryption key is then used to decrypt the
result and obtain the final plaintext result.
(Figure 3)

Client

—— B Encrypted
Encryption Data

Data  ER— ) =

Public Key

PN
W v

{ C o) .

<
" Model
Owner

Encrypted
Result i
Secret Key \_ d

Figure 3 Implementation Diagrram of
Homomorphic Encryption

Since Gentry’s [25,26] first bootstrapping approach
was published in 2009, several additions to FHE have
been made. A number of surveys compile the work
done in FHE and give scholars a good knowledge
base.

5. Future Research Directions

Zero-knowledge protocols can be used to stop hostile
activity in certain real-life situations [42] where the
prover has to establish the verifier. Identifying some
more effective techniques made for adversarial
computational models in this privacy-preserving
distributed rule mining for association’s scenario is
an additional field of study focus. Developing more
computationally efficient mechanisms for adversarial
computational models in multi-cloud-based privacy-
preserving distributed rule mining of association
environments with more precise and accurate rule-
sets is our main research priority for the future.
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Several organizations such as Google, MasterCard,
and Facebook are using MPC. Numerous PPNBC
[12] (Privacy-Preserving Naive Bayes Classifier)
solutions have been put out for a number of
applications, including malware detection systems,
medical data analytics, and recommendation systems.
Conclusion
A thorough overview and analysis of privacy-
preserving machine learning techniques, such as
homomorphic cryptography multiparty processing,
federation of learning, and differential privacy, is
included in this work. The proposed work entails
examining current methodologies and data on the
development and execution of several Privacy-
Preserving Machine Learning (PPML) protocols. We
also discussed the advantages of privacy in real-time
computation systems, which, due to their dispersed,
safe, and confidential characteristics, are capable of
addressing the aforementioned security concerns. In
conclusion, we will now delineate prospective
avenues for further research.
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