
 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 03 March 2025 

Page No: 941-948 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0134 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

941 

 

A Novel Framework for Detection of Facial Paralysis Using Cascaded 

Convolutional Neural Networks  
Vijay Suresh G1, Thriveni Gorantla2, Vijaya Reddy Athunuru3, Chinmaya Lahari Y4  

1Professor, Dept. of CSE, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India. 
2,3,4UG Scholar, Dept. of CSE, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, 

India. 

Emails: vijaysuresh.g@gmail.com1, gorantlathriveni789@gmail.com2, vijayareddyathunuru@gmail.com3,  

chinniyerroju2004@gmail.com4  

 

Abstract 

Early detection and accurate diagnosis of facial paralysis are vital because of timely medical treatment and 

improved patient outcomes. Traditional diagnostic techniques are based on subjective evaluations, thus 

leading to unnecessary delays in diagnosis. This work attempts to solve this challenge by introducing a 

cascaded convolutional neural network (CNN) for the automatic diagnosis of facial paralysis signs from 

recorded facial images in real-time. Our proposed system uses advanced image preprocessing and feature 

extraction techniques to classify facial paralysis symptoms with great accuracy. The model was trained on a 

dataset composed of diverse facial expressions; it achieved a training accuracy of 98% and a testing accuracy 

of 99.86%. The cascaded CNN architecture is capable of detecting very effectively by combining many feature 

layers for correct classification. This system has enormous applicability in real-time telemedicine, remote 

diagnostics, and in continuous monitoring of patients. Thus, the project will tackle a relevant gap between 

advanced machine learning technology and health by providing a more scalable and efficient solution, 

accessible to many.  

Keywords: Automated diagnosis; Cascaded CNN; Early Detection; Facial Paralysis; Healthcare AI; Image 

Classification; Real-Time Diagnosis; Telemedicine. 

 

1. Introduction  

Facial paralysis, commonly referred to as Bell's 

palsy, is a condition characterized by extreme 

impairment of the individual's ability to control facial 

muscles. Oftentimes, such a condition could arise due 

to any damage caused by the seventh cranial nerve 

which could originate from trauma, brain tumors, or 

other neurological conditions such as stroke. The 

person suffering from paralysis of the face would 

have to bear severe complications, which include 

chronic pain, unhealed ulcers in the eyes, or 

deformities for life [1,2]. Clinical diagnosis for facial 

paralysis usually relies on mere observation and 

expert analysis called subjective criteria. Variability 

in expertise and the subtlety of early findings may 

lead to inconsistencies in the process of diagnosis. As 

a means of bridging this gap, the supply of an 

automated diagnostic tool allows a reasonable level 

of consistency in their analysis and objective 

measurement of facial asymmetry and movements 

[3,4]. It is becoming increasingly important to 

establish an early diagnosis as delayed intervention 

increases the risk of further nerve damage and 

consequent recovery time [5]. Deep learning 

approaches are revolutionizing medicine, including 

facial images, in medical imaging. Such 

Convolutional Neural Networks automatically 

extract relevant features from images of facial 

structure, dispensing with entirely manual 

annotations. Particularly for multi-stage processing 

cases, where a coarse-to-fine feature extraction is 

required, cascaded architectures have been effective 

[6,7]. In light of and on top of these advancements, 

this study presents a cascaded CNN-based framework 

for detecting facial paralysis with a very high degree 

of accuracy and reliability [8-12]. 

2. Literature Review 

After exploring the topic of the approaches used for 

the detection of facial paralysis, a large group of them 

started to accumulate. The earliest efforts were 

largely derivative of traditional image-processing 
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techniques, which include the manual detection of 

features for the measurement of facial symmetry 

indices. However, those methods were hampered in 

their approaches due to their dependence on 

handcrafted features and the inability to deal with 

complicated cases involving facial asymmetry 

properly. More recent developments in deep learning 

are able to counteract such weaknesses. Chen et al. 

(2020) showed that the ResNet-based CNNs, with the 

capability to detect asymmetry of the face, have an 

accuracy of 92 percent in performing these tasks. The 

work showed the feasibility of deep feature 

extraction, catering for minute changes in the facial 

regions. Support Vector Machines (SVMs), as well, 

have been used here for classifying facial paralysis: 

however, with only an 85% accuracy [2], Table 1. 

A Gradient Boosting Trees based model for grading 

the severity of facial paralysis was presented by Zhao 

et al. in 2018, establishing the powers that machine 

learning strategies enjoy in clinical applications, 

specifically for visualizing changes in facial 

expressions. More recently, Wang et al. proposed the 

combination of CNN-SVM classifiers and utilized 

the capabilities of both to achieve an accuracy of 90% 

[4]. Another striking current development is the 

emergence of transfer learning as an idea. In a recent 

work, Silva and Rodriguez applied MobileNet, a 

small CNN architecture, making it feasible to detect 

facial paralysis in real-time. The system achieved an 

accuracy of 89%, showing the potential for deploying 

such models in resource-constrained settings [3].  

 

 

Table 1 Summary of Related Works  

SNO 

 

Previous Research Paper Details 

 

Title/ 

Author 

Methodology Key Findings 

1 Chen et al.(2020) RegNet-based CNN Extracted deep facial features to detect 

asymmetry 

2 SVM-based 

Approach 

Support Vector Machines 

(SVM) 

Classified facial paralysis but had lower 

accuracy 

3 Zhao et al. (2018) Gradient Boosting Trees Graded severity of facial paralysis 

4 Wang et al. CNN-SVM Hybrid Model Combined deep learning and traditional ML for 

detection 

5 Patel et al. (2021) VGG-16 CNN Model Improved classification of facial asymmetry 

using deep features 

6 Silva & Rodriguez MobileNet (Transfer 

Learning) 

Enabled real-time detection in resource-limited 

environments 

3. Methodology 

3.1. Overview of Methodology 

The general methodology of the facial paralysis 

detection system is shown in Figure 1. This diagram 

illustrates the sequential process, starting from data 

collection and preprocessing, followed by cascaded 

CNN feature extraction, model training, and final 

classification of facial paralysis. The multi-stage 

hierarchical feature extraction in the Cascaded CNN 

enhances the model’s ability to detect subtle facial 

asymmetries with improved accuracy and robustness. 

complicated cases involving facial 

3.2. Data Collection and Preprocessing 

The dataset employed in this work consists of labeled 

facial expression images, comprising people with and 

without facial paralysis. Apart from public datasets, 

real-time video streams from OpenCV were 

employed to demonstrate variability in training 

samples. This guarantees a wide and representative 

dataset capturing various facial expressions, lighting 

conditions, and view angles for enhanced 

generalization. Several preprocessing procedures 

were applied to the data: 
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 Face Detection: Haar cascades and DNN 

modules were used to accurately detect facial 

regions. 

 Resizing: All images were resized to a 

uniform shape of (150,150,3) to maintain 

consistency. 

 Normalization: Pixel values were scaled to 

the range [0,1] to reduce variations between 

individual samples and prevent overfitting. 

 Data Augmentation: Various 

transformations, including rotation, flipping, 

shearing, zooming, and cropping, were 

applied using ImageDataGenerator() to 

increase dataset diversity and model 

robustness. 

 Class Weighting: Class imbalance was 

addressed using 

class_weight.compute_class_weight() to 

ensure balanced learning from both 

categories. 

 

 
Figure 1 A Summary of The 

Recommended Facial Paralysis Detection 

Model 

 

3.3. Cascaded CNN Feature Extraction 

Cascaded Convolutional Neural Networks (CCNNs) 

are utilized for extracting hierarchical facial features 

from an image sequentially. Cascaded CNNs process 

the images in more than one step unlike typical 

CNNs, and feature extraction in each step enhances 

the amount to increase classification accuracy. 

 Convolution Layers: It contains several 

blocks of convolution using filter sizes in 

increasing order (32, 64, 128, 256) each with 

ReLU activation to gain primary visual 

features. 

 Batch Normalization: Utilized after each 

convolution layer for normalization of the 

activations and speedy training. 

 Pooling Layers: Dimensions are reduced 

without losing major features through max-

pooling layers, thereby inducing more 

computations. 

 Feature Concatenation: Features from 

various convolutional blocks are concatenated 

to enhance the feature space and improve 

classification accuracy. 

 Dropout Regularization: Dropout is applied 

to avoid overfitting by deactivating neurons 

randomly during training. 

3.4. Model Compilation and Training 

Post-feature extraction, the model is trained and built 

stepwise for the optimal performance. 

 Optimizer: The weights are updated by Adam 

optimizer with the learning rate of 0.001. 

 Loss Function: Binary cross-entropy for 

handling the two-class classification problem. 

 Early Stopping: Training is monitored to 

terminate in the absence of an increase in 

validation accuracy in order to prevent 

overfitting. 

 ReduceLROnPlateau: The learning rate gets 

automatically decreased whenever the 

performance gets stuck for best convergence. 

 Batch Size & Epochs: It is trained on 32 batch 

sizes for 20 epochs. 

It is trained with real-time data augmentation 

methods to provide real-world variability flexibility. 

3.5. Model Evaluation 

To confirm model efficacy, various performance 

measures are employed on the test data. 

 Accuracy: It gauges the total accuracy of 

predictions. 

 Precision: It measures the ratio of actual 

positive predictions out of all the positive 

classifications. 

 Recall: It gauges the capability of the model to 

identify all positive cases correctly. 

 F1-Score: It combines precision and recall to 

yield an overall performance measure. 

 Confusion Matrix: It examines the errors in 

classifications and model efficiency in 

differentiating paralysis and non-paralysis 

cases. 

https://irjaeh.com/
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3.6. Performance Analysis 

The model's learning behavior is analyzed through 

visualization techniques to assess its convergence and 

generalization ability. 

 Training vs. Validation 

Accuracy: Identifies potential overfitting or 

underfitting issues. 

 Training vs. Validation Loss: Monitors 

model convergence and stability over epochs. 

These analyses provide insights into improving 

hyperparameter tuning and model architecture for 

better real-world deployment. 

epochs. 

4. Cascaded Convolutional Neural Networks 

Cascaded convolutional neural networks (CNNs) 

stand tall as one of the most novel approaches to deep 

learning and hierarchical feature learning tasks. 

Architectures link together multiple CNN 

architectures in a cascade manner, progressively 

yielding predicted results. While exploiting the 

feature extraction powers of CNN architecture, the 

approach overcomes some limitations associated with 

one-stage processing [17]. Initial stages would 

recognize rather global patterns, like coarse facial 

asymmetry, while subsequent stages undertake to 

detect more localized details so as to enhance the 

model's accuracy as well as robustness [18]. In 

cascaded CNNs, each stage builds on the outputs of 

its preceding counterparts, providing a mechanism 

for coarse-to-fine analysis. In facial paralysis, the 

first stage might involve establishing the general 

contour of the face, while further stages could focus 

on zones like the eyes, lips, and cheeks, all areas 

where asymmetry could be quite easily detected [18]. 

This architecture allows for the similitude of initial 

processes to extract important low-level features, 

such as edges and textures that are significant for 

detecting slight irregularities in facial structure [19]. 

The advantages of cascaded CNNs include reduced 

false positives and tighter classification boundaries. 

Each stage of the cascade can be viewed as a filter 

allowing the model to rule out certain classes based 

on a more complex feature hierarchy. This property 

has been successfully used in applications such as 

facial expression recognition, with cascaded 

architectures showing great performance as they 

focus on higher-order complex features of the input 

image [20]. These architectures permit modularity in 

the sense that components may be bootstrapped in 

different sequences and training configurations. For 

example, a cascaded CNN framework may resort to 

the use of different CNN architectures, such as 

ResNet and MobileNet, thus retaining the strengths 

of these architectures in deep feature extraction and 

computational efficiency. By using techniques like 

transfer learning and due to data augmentation, 

cascaded CNNs are scalable solutions to complex 

tasks such as setting real-time paralysis detection and 

emotion analysis [20,21], Figure 2. 

  

 
Figure 2 Architecture of the Cascaded 

 

5. Convolutional Neural Network 

A feature map representing the existence of specific 

features identified by the filters, subjected to an 

activation function such as ReLU to introduce non-

linearity, is the result of the convolution process. By 

learning to recognize complex patterns such as facial 

characteristics (eyes, nose, and mouth) and spatial 

relationships, the second multilayer operation 

expands on the features extracted by the initial filters. 

In deeper layers, convolutional filters grow 

increasingly specialized, capturing higher-level data 
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such as particular emotional expressions. These 

layers enable the network to concentrate on abstract 

data, progressively refining its ability to identify 

patterns corresponding to facial asymmetry or 

paralysis. Pooling operations like max pooling 

minimize the dimensions of feature maps without 

discarding critical information, while fully connected 

layers classify the features into respective categories 

[11,12]. Another explanation is illustrated in Figure 

3, which shows the architecture of the proposed 

cascaded CNN [13-16].  

 

 

 

 
Figure 3 Architectural Summary of the 

Cascaded Convolutional Neural Network 
The type of each layer, its output shape, and the 

number of parameters have all been accounted for. 

Such an in-depth overview summarizes the multi-

stage feature extraction, from the first convolution 

operation to the dense layers where classification 

eventually takes place. The process starts with 

convolutional layers to extract low-level features like 

edges and textures. Such are interspersed with 

pooling operations that compress spatial dimensions 

while retaining critical features. As the process 

continues, deeper layers deal with more complex 

forms, which allow for the most accurate 

identification of facial asymmetry. A fully connected 

dense layer at the end assembles features into one 

output signal classified as either paralyzed or not 

paralyzed. 

6. Results and Discussions 

The proposed cascaded CNN framework achieves 

great progress toward the effective detection and 

classification of facial paralysis. Such an architecture 

yielded as high as 99.86% accuracy in comparison to 

classical methodologies and previously established 

CNN architectures. Precision, recall, and F1-score 

also performed on an equally commendable level, 

reporting 99.63%, 100.00%, and 99.81% correct 

predictions, respectively, showing a balanced 

performance across all evaluation metrics. We report 

accuracy, recall, f1 score, and precision for training 

and testing. Precision measures the number of 

samples where a sample falls outside the total sample. 

Precision measures the ability of the model to avoid 

errors in negative classes (non-paralysis classes) and 

Recall is the ability of the model to find all good 

models (class paralysis). Precision and Recall are 

defined accordingly. 
          TP 

Precision      =  

                                                           TP + FP 

 

               TP 

Recall       =  

       TP + FN 

 

Where TP is the true positive, FP is the false positive, 

and FN is the false negative. F1-score is the weighted 

average of precision and recall and gives the holistic 

measure of performance. 

F1 Score =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Comparative analysis with baselines establishes the 

efficacy of the cascaded CNN architecture. Notably, 

single-stage CNNs, with an accuracy of 92%, have 

been reported by Chen et al. (2020) to highlight the 

benefits of the cascaded approach [1]. Similarly, the 

hybrid methods proposed by Wang et al. (2020), 

combining CNNs with SVMs, offer accuracy still at 

90% but are highly complex and less scalable [4]. 

Therefore, whole discussions above expose how the 

proposed system is superior to traditional approaches 

in terms of performance. The visualizations of 

intermediate layers explain how the features are 

refined as they are fed to the cascaded network. 

Coarse feature extraction is involved at the primary 

step, emphasizing facial geometry and general 

symmetry. Progressing through the networks will 

emphasize a more detailed analysis of unevenness in 

localized areas like the eyes, mouth, and cheeks. For 

instance, the second-stage filters could identify 

mouth curvature deviations or eyelid asymmetries, 

both of which are critical clues in diagnosing facial 

paralysis [7]. Finally, the aggregation stage takes care 

of combining these features so that a holistic and 

accurate classification of the severity of facial 

paralysis can be executed. Moreover, the cross-

validation results obtained from experiments across 

varied data set families proved the framework's 

robustness. The model was tested with images from 

different backgrounds and environmental conditions 

which showed it always derived consistent 

performance from many external testing datasets, 

reinforcing its generalizability. Further reinforcement 

of such a framework comes from its robust training, 

which incorporated data augmentation techniques: 

for example, horizontal flipping, rotation, or adding 

Gaussian noise, targeting some of the variability you 

can expect in the real world. operation to the dense 

layers where classification eventually takes place. 

The process starts with convolutional layers to extract 

low-level features like edges and textures. Such are 

interspersed with pooling operations that compress 

spatial dimensions while retaining critical features. 

As the process continues, deeper layers deal with 

more complex  

6.1. Training and Validation Accuracy 

Figure 4 shows the evolution of training and 

validation accuracy throughout epochs.  

 
Figure 4 Accuracy of Training Versus 

Validation Over Epochs 

 

6.2. Training and Validation Loss 

Figure 5 shows the training and validation loss over 

epochs. 

 

 
Figure 5 Training Versus Validation Loss 

Over Epochs 

 

6.3. Detailed Analysis of Metrics 

The model was validated by performing qualitative 

analysis and using the quantitative metric in 

determining whether the facial images classify into 

"Paralyzed" or "Not Paralyzed." The cascaded CNN 

was shown to be successful in recognizing 

asymmetries in the face as signs of paralysis, as well 

as successfully identifying cases that had not been 

affected by the paralysis. Examples of results from 

the classification are shown in Placeholder for 

Images. For "Paralyzed" cases, these include features 

like hazy closure of the eyes, drooping corners of the 

https://irjaeh.com/
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mouth, and uneven lines of eyebrows. These features 

are consistent with clinical features of facial paralysis 

and do indicate the CNN's subtle localization and 

discrimination of deviations. In the cases labeled "Not 

Paralyzed", the network demonstrated a high capacity 

for recognizing symmetric existing facial particulate 

faces from a noisy background with an acceptable 

level of variability for a broad illumination range. 

This is a good indicator of the way the different 

working mechanisms will interact with ideal imaging 

data sets while recognizing what's nonideal. Also, the 

extracted feature maps from intermediate layers 

accelerated the understanding of the cascaded CNN's 

hierarchical processing. Low-level and early 

processing should describe general information such 

as the general shape of the face, while deeper 

processing extracts detail in all kinds of local 

asymmetries of different facial landmarks. These 

results prove that the arrangement in cascaded 

architecture works well in integrating the global and 

the local representation. The results of classification 

illustrate the feasibility of employing the cascaded 

CNN for early detection of facial paralysis, 

demonstrating that the model generalizes well across 

the different categories of patients and different 

conditions. Future work will focus on the deployment 

of the CNN in actual clinical environments to further 

validate the model's performance and use, shown in 

Figure 6 & 7.  

 

 
Figure 6 CCNN Model prediction on images as 

Paralyzed or Non-Paralyzed 
 

 
Figure 7 CCNN Model prediction on images as 

Paralyzed or Non-Paralyzed 

6.4. Comparison with Previous Research 

As shown in Table 2, our model performs better than 

several current methods in the literature. 

 

Table 2 Comparison with Previous Research  
Study Accuracy 

Chen et al. [1] 92% 

Wang et al. [4] 90% 

Silva et al. [5] 89% 

Our Model 99.86% 

 

6.5. Upcoming Projects 

By adding more datasets and optimizing the model 

architecture to lower misclassification rates in 

difficult situations, future research could concentrate 

on enhancing the model's generalizability even 

further. 

Conclusion 

It can be seen that the proposed framework is a log of 

good promise in effectively detecting early signs of 

facial paralysis, overcoming the hindrances 

associated with traditional diagnostic systems. With 

respect to a multi-stage approach that has a 

hierarchical end system, the model adequately 

extracts features on a global scale as well as features 

on a localized scale for the discrimination of facial 

asymmetry, with any aspect being the origin of 

paralysis. A performance of accuracy 99.86, 

precision 99.63, recall 100, and F1-score 99.81 are 

just a few data that show there is a chance for this 

framework to take the lead in this field of medical 

technology. The combined cascade has also 

emphasized the strength of feature learning through 

cascade layers, which aid in identifying slight facial 

asymmetries. Future work includes real-time 

integration, a bigger dataset, and ultimately clinical 

evaluation trials to make the solution more 

generalizable. The findings put forth this framework 

as a promissory next step toward advanced early 

diagnostic methods and tailoring a better patient 

outcome in a medical scenario.  
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