

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 740-745

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0103

International Research Journal on Advanced Engineering Hub (IRJAEH)

740

A Survey on Transformer-based Models in Code Summarization
Suraj Nate1, Om Patil2, Shreenidhi Medar3, Dr. Jyoti Deshmukh4
1,2,3,4Dept. of AI&DS, Rajiv Gandhi Institute of Tech., Mumbai, Maharashtra, India.

Emails: surajnate29@gmail.com1, ompatil9819@gmail.com2, shreenidhimedar@gmail.com3,

jyoti.deshmukh@mctrgit.ac.in4.

Abstract

Code summarization in software engineering refers to the task of automatically generating short natural

language descriptions for source code, which has been addressed by the development of transformer-based

models such as CodeBERT, CodeT5, and CodeSearchNet in deep learning. These approaches have played a

significant role in enhancing the capability of automated code documentation and producing good summaries.

This paper provides an in-depth review of the latest transformer-based models for code summarization in

terms of architectures, performance metrics, and diverse applications. Through the analysis of the strengths

and weaknesses of these models, we aim to give insights that could guide future research and development in

the area of automated code documentation. Through this survey, we will evaluate the progress of transformer-

based models and give a foundation for further advancements in code summarization technologies.

Keywords: Code summarization, natural language descriptions, transformer-based models, BERT, CodeT5,

CodeBERT, performance metrics, automated code documentation.

1. Introduction

The field of artificial intelligence (AI) and machine

learning (ML) has witnessed a transformative shift

with the advent of transformer-based architectures.

These models have set new benchmarks across

various natural language processing (NLP) tasks,

including machine translation, text summarization,

and question answering [1]. A significant application

of these advancements is in the realm of automated

code summarization, a task of generating concise

natural language descriptions of source code. This is

critical in modern software engineering for

improving code readability, maintainability, and

developer productivity. Traditional methods for code

summarization relied on rule-based or statistical

approaches, which were limited in their ability to

capture the complex semantics and syntax of

programming languages [2]. The introduction of

transformers by Vaswani et al. (2017) revolutionized

the field by addressing these limitations through the

self-attention mechanism, which enables efficient

parallel processing and captures context more

effectively [4]. Building on this foundation,

transformer-based models such as CodeSearchNet

[5], CodeT5 [6], and CodeBERT [7] have been

adapted to understand and generate code. This survey

aims to provide a comprehensive review of

transformer-based models in code summarization.

We explore their architectures, datasets, evaluation

metrics, and practical applications. By analysing their

strengths and limitations, we highlight areas for

future research and innovation, contributing to the

development of robust and efficient automated code

documentation tools.

2. Need of Transformer Based Model

Traditional methods to code summarization such as

rule-based approaches or classical machine learning

models fail to grasp the complex syntax and

semantics which are inherent in programming

languages [5]. This is mainly because of the

following reasons:

 Semantic Context: There exist some dynamic

behaviors of programming languages including

variable dependencies and control flows that

could be able to properly interpret the

functionality of the code. These kinds of subtle

connections are usually omitted from classical

https://irjaeh.com/
mailto:jyoti.deshmukh@mctrgit.ac.in4

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 740-745

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0103

International Research Journal on Advanced Engineering Hub (IRJAEH)

741

models. Transformer models leverage this by

learning both local and global contexts in the

code, by which they can create meaningful

semantically summaries that seize the

underlying logic and purpose of the code [6].

 Scalability: Traditional models often fail to

generalize when applied to diverse

programming languages or large-scale datasets.

The transformers' ability to pretrain on massive

multilingual and multimodal datasets enables

them to adapt across different programming

contexts, improving scalability and

performance for varied summarization tasks

[7].

 Cross-modal Challenges: Code

summarization presents unique challenges as it

requires connecting the structured syntax of

programming code with the natural language

used in summaries. Transformers are

particularly effective in this area because they

can encode both types of information at the

same time, leading to strong cross-modal

representations that produce high-quality,

human-readable summaries [8].

3. Transformer Models in Code Summarization

The Transformer architecture was proposed by

Vaswani et al in 2017. It overcame a number of

limitations of seq2seq models due to the introduction

of self-attention that captures relationships between

distant tokens quite efficiently. Some key

transformer-based approaches for code

summarization are as follows:

 CodeBERT: In 2020, Feng et al. extended the

BERT architecture to include both

programming and natural languages. Pre-

trained on large-scale code datasets,

CodeBERT produced tremendous

improvements over creating accurate, context-

aware summaries. As illustrated in Table 1,

CodeBERT produced outstanding performance

metrics, such as a BLEU score of 75.4,

ROUGE-L of 83.2, and Exact Match (EM) of

61.7, proving its efficiency. CodeBERT

extends BERT for programming languages by

training on a bimodal dataset consisting of

natural language and source code [4].

Pretraining includes two primary objectives:

MLM, where the model learns to predict

random tokens masked in the input, and

replaced token detection, where the model

determines whether a token has been replaced

by a random token [4]. The bimodal data pair is

natural language with its code, like function

names and their corresponding

implementations, which enables the model to

learn cross-modal representations. [21-27]

 Performance Metric: CodeBERT has been

evaluated using several standard benchmarks

and metrics. Below is a summary of its

performance:

Table 1 Performance Metric of CodeBERT

Metric Score

BLEU 75.4

ROUGE-L 83.2

Exact Match (EM) 61.7

 Limitation of CodeBERT Model: Despite its

effectiveness, CodeBERT has certain

limitations. It relies heavily on token-level

representations, which can overlook the

hierarchical and structural nuances inherent in

source code. The model does not explicitly

account for syntax trees or data flows, which

are crucial for understanding complex code

relationships. Furthermore, its performance can

be biased toward programming languages and

datasets that are overrepresented during

pretraining, limiting its generalizability across

underrepresented languages and domains.

Lastly, the computational overhead of

pretraining and fine-tuning large transformer

models like CodeBERT is a significant

challenge [4]. In fine-tuning, CodeBERT is

adapted to specific tasks such as code

summarization using supervised datasets

annotated with code-text pairs. The self-

attention mechanism captures both token-level

and semantic dependencies, allowing the model

to generate accurate and contextually relevant

summaries. [28]

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 740-745

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0103

International Research Journal on Advanced Engineering Hub (IRJAEH)

742

 CodeT5: CodeT5 is the adaptation of T5, that

is, Text-to-Text Transfer Transformer to

programming tasks [7]. CodeT5 relies on a

unified framework for code-related tasks by

using span denoising and dual-generation

objectives for pretrained models [7]. This

helps CodeT5 efficiently handle a wide range

of code understanding and generation tasks.

As illustrated by Table 2, CodeT5

demonstrated drastic performance

improvements for BLEU: 79.1, ROUGE-L:

87.4, and CodeBLEU: 81.33 to demonstrate

its proficiency in generating well-informed

code summaries that contain accurate context.

The span denoising objective masks

contiguous spans of tokens within the input

sequence and asks it to be predicted; the dual-

generation objective combines both code-to-

text and text-to-code objectives. These tasks

will enhance the capacity of the model to

grasp the concept of bidirectionality

associated with programming language tasks.

CodeT5 would be fine-tuned on a task-

specific dataset for code summarization and

related tasks so that it could make use of the

syntactic and semantic information that has

been encoded during pretraining because of

its transformer-based encoder-decoder

architecture to generate good-quality

summaries.[29]

 Performance Metric: The performance of

CodeT5 is evaluated on retrieval tasks, with

the following results:

Table 2 Performance Metric of CodeT5

Metric Score

BLEU 79.1

ROUGE-L 87.4

CodeBLEU 81.33

 Limitations of CodeT5 Model: While

CodeT5 achieves state-of-the-art results, it has

certain limitations. The model’s computational

requirements are significant, making it

resource-intensive for both pretraining and

fine-tuning. Additionally, its reliance on

transformer-based architecture limits its ability

to effectively handle extremely long input

sequences, which are common in real-world

programming scenarios. The bidirectional

pretraining objectives also introduce challenges

when applied to highly domain-specific

programming tasks that may require additional

fine-tuning or domain adaptation [7].

 Code Search Net: CodeSearchNet is a dataset

and model for the task of semantic code search,

which is finding relevant code snippets based on

natural language queries. The model has been

pre-trained on a diverse set of six programming

languages. Pre-training emphasizes

representation learning, which is important both

for natural language processing and source code

understanding.[9] Contrastive learning is used

when fine-tuning the model in this phase, where

it can learn to encode code snippets based on

their appropriate textual descriptions along with

unrelated pairs. It keeps improving its relevance

in matching only the relevant information. The

difference between these is what helps train the

model more effectively in relating the semantics

behind code and natural language. As evident

from Table 3, the performance of

CodeSearchNet is determined with respect to

various evaluation metrics, namely, BLEU,

ROUGE-L, and CodeBLEU, which shows that

it is an efficient model for semantic code search.

The architecture for CodeSearchNet in

particular - fine-tuning employs the bi-encoder

model. This kind of setup can be achieved

through two totally distinct encoders; one

specific to code snippets and the other towards

natural language queries. Therefore, utilizing

these two differing types of encoders, it is

possible that the model to obtain correctly that

code snippet suitable for any particular query.

For this reason, the above strategy enhances the

effectiveness of the approach for semantic code

search tasks toward better returning right and

useful outputs. [30]

 Performance Metric: The performance of

CodeSearchNet is evaluated on retrieval tasks,

with the following results:

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 740-745

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0103

International Research Journal on Advanced Engineering Hub (IRJAEH)

743

Table 3 Performance Metric Code Search Net

Metric Score

BLEU 65.3

ROUGE-L 67.8

CodeBLEU 69.2

4. Limitations of CodeSearchNet Model

CodeSearchNet is incredibly efficient and robust in

retrieving the right code snippet for the job. However,

this model has its own limitations. The model was

designed for use in code-to-text and text-to-code

retrieval tasks. That makes it rather unsuitable for use

in generative tasks, where a description is produced to

summarize what a code block does or why it works a

certain way. The model does not make full use of

cross-modal representations in such diverse

applications. Additionally, CodeSearchNet’s

performance is closely tied to the languages and

datasets it has been pretrained on, which poses

challenges for underrepresented programming

languages and niche domains. Unlike models like

GraphCodeBERT, it does not incorporate structural

information such as Abstract Syntax Trees (ASTs),

reducing its ability to understand and retrieve code

snippets based on deeper code relationships and

functionality. It further depends on the quality of the

dataset used; hence, it is sensitive to noise, imbalance,

or biases, which may deteriorate retrieval accuracy.

Lastly, although efficient for smaller-scale tasks,

scalability issues remain in the model when handling

large repositories or real-time applications, pointing

out a need for architectural optimizations to overcome

such challenges.

5. Discussion

The recent transformer-based models have

significantly improved the field of automated code

summarization and become an essential part of

modern software development workflows.

CodeBERT, CodeT5, and CodeSearchNet all rely on

different strengths when handling code-related tasks:

CodeBERT in cross-modal understanding, CodeT5 in

flexibility in multi-tasking scenarios, and

CodeSearchNet in retrieval-based applications.

However, high computational costs, biases in the

dataset, and scalability concerns remain significant

issues in these models. Thus, structural information

was incorporated as an example, particularly with the

recent GraphCodeBERT models. Their work was in

demonstrating syntactic and semantic contexts in code

to enhance code representations. Therefore, future

studies must improve generalization capabilities in

cross-variety programming languages and minimize

computation complexity and implement multimodal

learning in the incorporation process for accuracy

refinement of code summarization. In turn, these

issues will continue to drive transformer-based

models toward new efficiencies and solutions for

automated code documentation and retrieval. [18-20]

Conclusion

Transformer-based models have greatly advanced

the field of automated code summarization by

challenging traditional strategies. Such models

provide summaries that can be human-like for any set

of codebases, enhance code comprehension, and

improve developer productivity. However, some

open issues exist: extra computational overhead,

much lower scalability for low-resource

environments, and a potential lack of generalizability

across a variety of programming languages. Further

research should lean toward lightweight

architectures with efficiency, multimodal data

integration, and advanced structural modeling. The

transformers are a good candidate to rewrite the rules

of software development and maintenance, therefore

becoming an important part of today's programming

practices.

Acknowledgements
We give thanks to all the researchers and developers

whose work served as a foundation for the

development of progressions in transformer-based

models and their application in code summarization.

Their works in the fields of natural language

processing and software engineering have paved the

way for this survey. Finally, we are thankful to the

open-source community that has given us the

datasets, tools, and frameworks for us to experiment

and build upon these techniques. We acknowledge

the academic support that institutions, peers, and

mentors have given us through their guidance and

constructive criticism throughout the course of this

research. [10-17

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 740-745

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0103

International Research Journal on Advanced Engineering Hub (IRJAEH)

744

References

[1]. Allamanis, M., Barr, E. T., Bird, C., &

Sutton, C. (2018). A survey of machine

learning for big code and naturalness. ACM

Computing Surveys (CSUR), 51(4), 1-37.

[2]. Sutskever, I., Vinyals, O., & Le, Q. V.

(2014). Sequence to sequence learning with

neural networks. Advances in Neural

Information Processing Systems, 27, 3104-

3112.

[3]. Vaswani, A., Shazeer, N., Parmar, N.,

Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, Ł., & Polosukhin, I. (2017). Attention

is all you need. Advances in Neural

Information Processing Systems, 30, 5998-

6008.

[4]. Devlin, J., Chang, M. W., Lee, K., &

Toutanova, K. (2018). BERT: Pre-training of

deep bidirectional transformers for language

understanding. arXiv preprint

arXiv:1810.04805.

[5]. Feng, Z., Guo, D., Tang, D., Duan, N., Feng,

X., Gong, M., Shou, L., Qin, B., Liu, T., &

Zhou, M. (2020). CodeBERT: A pre-trained

model for programming and natural

languages. Findings of EMNLP 2020, 1536-

1547.

[6]. Husain, H., Wu, H., Gazit, T., Allamanis, M.,

& Brockschmidt, M. (2019). CodeSearchNet

challenge: Evaluating the state of semantic

code search. arXiv preprint

arXiv:1909.09436.

[7]. Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D.,

Duan, N., & Zhou, M. (2020).

GraphCodeBERT: Pre-training code

representations with data flow. Findings of

ACL 2021, 1294-1306.

[8]. Ahmad, W., Chakraborty, S., Ray, B., &

Chang, K. (2021). PLBART: Unified pre-

trained model for programming and natural

languages. In Findings of ACL 2021.

[9]. Wang, Y., Liu, C., Tang, D., Duan, N.,

Zhang, M., & Feng, Z. (2021). CodeT5:

Identifier-aware unified pre-trained encoder-

decoder models for code understanding and

generation. In Proceedings of EMNLP 2021.

[10]. Ahmad, W. U., & Chakraborty, S. (2022).

Domain adaptation in pre-trained models for

code-related tasks. Proceedings of NAACL

2022, 452–462.

[11]. Zhang, D., Liu, H., & Li, Y. (2022).

Enhancing code summarization with static

and dynamic analysis. ACM Transactions on

Software Engineering and Methodology,

31(4), 1-25.

[12]. Zhang, Y., Yu, L., Liu, Y., & Wang, Q.

(2021). Fine-tuning transformer models for

code summarization tasks. Journal of

Artificial Intelligence Research, 70, 489-507.

[13]. Zhang, L., & Zhou, M. (2022). Multimodal

approaches for code summarization:

Combining code, comments, and execution

traces. Proceedings of the IEEE International

Conference on Software Engineering, 978-

987.

[14]. Brown, T., Mann, B., Ryder, N., et al.,

“Language Models are Few-Shot Learners,”

in Advances in Neural Information

Processing Systems, vol. 33, pp. 1877–1901,

2020.

[15]. Barone, J. T., & Sennrich, R. (2017). A

Parallel Corpus of Python Functions and

Documentation Strings for Automated Code

Summarization. Proceedings of EMNLP

2017, 40–45.

[16]. Alon, U., Brody, S., Levy, O., &

Yahav, E. (2019). code2vec: Learning

Distributed Representations of Code.

Proceedings of PLDI 2019, 40–49.

[17]. Iyer, S., Konstas, I., Cheung, A., &

Zettlemoyer, L. (2016). Summarizing Source

Code using a Neural Attention Model.

Proceedings of ACL 2016, 2073–2083.

[18]. Tufano, M., Watson, C., Bavota, G., &

Poshyvanyk, D. (2018). Deep Learning

Similarities from Different Representations

of Source Code. Proceedings of ICSE 2018,

425–435.

[19]. Ahmad, W. U., Chakraborty, S., Ray, B., &

Chang, K.-W. (2021). Unified Pre-training

for Program Understanding and Generation.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 740-745

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0103

International Research Journal on Advanced Engineering Hub (IRJAEH)

745

Proceedings of NAACL 2021, 2655–2668.

[20]. LeClair, A., McMillan, C., & Linares-

Vásquez, M. (2020). Neural Code

Summarization: A Survey of the State of the

Art. arXiv preprint arXiv:2004.05688.

[21]. Raffel, C., Shazeer, N., Roberts, A., et al.,

“Exploring the Limits of Transfer Learning

with a Unified Text-to-Text Transformer,”

JMLR, vol. 21, pp. 1–67, 2020.

[22]. Bansal, T., Sharma, T., & Goel, C. (2021).

Improving Code-to-Code Translation Using

Transformers. Proceedings of AAAI 2021,

7120–7127.

[23]. Pei, J., Wang, W., Tang, J., & Yu, H. (2021).

Fine-Tuning Pretrained Transformer Models

for Code Refactoring and Summarization.

Proceedings of ASE 2021, 650–659.

[24]. Jain, M., & Jain, S. (2022). An Improved

Pretraining Strategy for Multimodal

Transformer Models in Code Summarization.

Proceedings of IEEE BigData 2022, 2385–

2392.

[25]. Kanade, A., Maniatis, P., Balog, G., &

Novak, E. (2021). Pre-trained Models for

Code: GPT-Coder and Its Applications.

arXiv preprint arXiv:2102.04664.

[26]. Das, S., Mukherjee, A., & Chakrabarti, S.

(2020). Improving Code Summarization with

Edit-Based Attention Mechanisms.

Proceedings of COLING 2020, 3401–3413.

[27]. Li, S., Chen, Z., Yin, H., & Yu, Y. (2023).

Attention-guided pre-training for code

summarization tasks. Proceedings of ICSE

2023, 1505–1515.

[28]. Zhou, J., & Li, X. (2023). Graph-enhanced

transformers for semantic code

summarization. Proceedings of AAAI 2023,

3460–3471.

[29]. Lin, C., & Sun, M. (2023). Leveraging

runtime traces for dynamic code

summarization. Proceedings of PLDI 2023,

985–995.

[30]. Hossain, M., & Rashid, M. (2023). Exploring

pre-trained multilingual code models for low-

resource programming languages.

Proceedings of ACL 2023, 1356–1366.

https://irjaeh.com/

