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Abstract 

The effective integration of photovoltaic (PV) systems into the grid which facilitates better planning and 

resource allocation depends on accurate day-ahead solar power forecasts. This paper proposes a Long Short-

Term Memory (LSTM) model for forecasting solar power generation one day in advance with the algorithm 

inspired by Ant Colony Optimization (ACO). A year's worth of real-time data for a 4.5 kW PV system is used 

to train and test the model with input characteristics including temperature, PV power production and solar 

irradiation. Over the course of three seasons—summer, winter, and monsoon—the performance of the ACO-

optimized LSTM model is contrasted with that of a simple LSTM model and an LSTM model enhanced by 

particle swarm optimization (PSO). This encompasses metrics like R-squared (R²) values, Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE). The PSO-optimized LSTM model (MAE of 0.31 kW, RMSE 

of 0.38 kW and R² of 0.88) and the baseline LSTM model (MAE of 0.35 kW, RMSE of 0.42 kW and R² of 0.85) 

couldn't match the ACO-optimized LSTM model's summertime MAE of 0.27 kW, RMSE of 0.33 kW and R² of 

0.92. Similar trends also surfaced throughout the monsoon and winter seasons, with the ACO-optimized model 

consistently outperforming the others. In the winter, for instance, it obtained an R² of 0.93, an RMSE of 0.26 

kW and an MAE of 0.22 kW. With regard to hyper parameter optimization and overall performance, these 

findings demonstrate the ACO-optimized LSTM model's superiority over the baseline and PSO-optimized 

LSTM models highlighting its improved prediction precision for all seasons. The effectiveness of ACO in 

bolstering solar power forecast models is confirmed by this study and provides a solid basis for deep learning 

model improvement in practical PV applications. 

Keywords: PV system, LSTM, Hyper parameter tuning, PSO, ACO. 

 

1. Introduction

Accurate solar power forecasting for the coming day 

is fundamental to the seamless integration of 

Renewable solar systems into modern energy 

networks. With the increasing reliance on renewable 

energy sources, precise solar power output estimates 

are critical to grid stability, energy distribution 

optimization, and reducing reliance on non-

renewable backup power. An energy infrastructure 

that is more robust and sustainable may be achieved 

by better planning and management of energy 

resources, which is made possible by accurate 

forecasting, the potential to forecast solar power 

generation contributes significantly to the stability of 

the grid, planning for energy, and resource allocation. 

Solar power is inherently volatile, dependent on 

weather patterns like temperature, cloud cover, and 

humidity, which makes forecasting particularly 

difficult for grid operators. Erroneous forecasts can 

cause inefficiencies in the distribution and 

management of energy, and therefore raise the 

demand for accurate forecasting models [1], [2]. In 

response to these issues, researchers have proposed 

several models broadly classified as physical, 

statistical, and machine learning-based approaches, 

each having different strengths and weaknesses. 

Physical models mimic the process of converting 

solar irradiance into electricity using site-specific 

weather information. Though these models proved 

useful in stable weather conditions, their dependence 

on precise weather information like Numerical 

Weather Prediction (NWP) restricts them from 

performing well in highly variable climates, tending 

to bring in large forecasting biases [3]. Time-series 

forecasting frequently uses The Autoregressive 
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Moving Average model (ARMA) is a statistical 

model used to describe time series data by combining 

auto regression and moving average components. 

ARMA prototype combine moving average (MA) 

components that take historical error terms into 

account with autoregressive (AR) components that 

rely on the series' history values. Since ARIMA adds 

differencing to ARMA, it may be used with non-

stationary time-series data that exhibits seasonality or 

patterns. Compared to machine learning or deep 

learning models, these models cannot handle 

complex, non-linear patterns, but they perform well 

for linear connections and short-term projections 

have improved upon physical models in that they 

recognize patterns within historical data, but they still 

experience difficulties in addressing abrupt changes 

in weather, e.g., under cloudy or stormy conditions 

[4] [5]. Through precise modeling of the intricate, 

non-linear relationships between weather and 

photovoltaic (PV) generation, machine learning (ML) 

and artificial intelligence (AI) techniques have 

transformed solar power forecasting. Long Short-

Term Memory (LSTM) networks and Gated 

Recurrent Unit (GRU) networks are among the most 

powerful deep learning architectures for modeling the 

temporal patterns of time series data. [6], [7]. LSTMs 

can learn long-term relationships in sequential data, 

which makes them especially well-suited for time-

series forecasting. Fortunately LSTM models' success 

is heavily reliant on optimizing hyper parameters 

such the number of hidden units, learning rate, batch 

size, and training epochs. These factors are crucial in 

establishing the model's learning capacity and 

generalization ability [8]. Hyper parameter tuning 

plays a crucial role in improving the effectiveness of 

LSTM models in forecasting solar power. The 

conventional manual techniques are time-consuming 

and tend to result in suboptimal performance. This 

has triggered the use of optimization strategy 

optimization algorithms, including Particle Swarm 

Optimization (PSO) and Ant Colony Optimization 

(ACO) are used to fine-tune and streamline the hyper 

parameter selection process. [9], [10]. PSO has been 

effectively utilized to optimize LSTM hyper 

parameters for numerous forecasting tasks, including 

water level forecasting and energy consumption 

forecasting, with the result being more accurate and 

efficient [11]. ACO recently showed potential as a 

better alternative, providing a better balance between 

searching vast spaces and exploring them through 

imitating ant colonies' behavior, where the hunt for 

the best answers is guided by pheromone trails [12]. 

The use of ACO in the optimization of LSTM's hyper 

parameters has proven to be significantly better 

compared to conventional approaches. ACO has been 

specifically impressive in optimizing combinatorial 

optimization challenges, such as the Quadratic 

Assignment Problem (QAP), which showcases the 

capability to explore vast search spaces effectively 

and obtain high-quality solutions [13]. ACO has been 

used recently in LSTM models for time series 

forecasting, with it being utilized to avoid over fitting 

and enhance model generalization, especially in cases 

where there are complicated datasets such as solar 

power production [14]. Additionally, hybrid 

techniques that combine Ant Colony Optimization 

(ACO) with other optimization algorithms, including 

Particle Swarm Optimization (PSO) techniques have 

been designed to improve solution quality and 

accelerate convergence in energy management and 

solar power applications [15], [16]. In spite of the 

considerable merits of ACO, there are issues, 

including computational complexity and algorithm 

parameter tuning like pheromone evaporation rates 

and the number of ants. In spite of these, ACO's better 

exploration-exploitation trade-off renders it an 

appealing option for hyper parameter optimization for 

solar power prediction. With better day-ahead 

prediction accuracy of solar power, ACO-optimized 

LSTM models are capable of furnishing more robust 

solutions for real-world PV operations, supporting 

grid operators in efficiently balancing supply and 

demand. In conclusion, ACO for the optimization of 

LSTM hyper parameters is of great potential to 

improve the forecasting ability of solar power 

prediction models. With the capability to overcome 

the weakness of conventional techniques and provide 

an efficient mechanism to fine-tune deep learning 

models, ACO has the potential to greatly enhance the 

scalability and performance of the models and, 

therefore, promote a greater level of integration of 

renewable energy into contemporary energy systems. 

https://irjaeh.com/
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2. ACO-LSTM Optimization 

ACO is a bio-inspired Optimization strategy that 

mimics the foraging process of ants. ACO works by 

mimicking how ants communicate through 

pheromone trails to discover the shortest routes 

between their nests and food sources. Every ant in the 

algorithm builds a solution by transitioning from one 

state to another based on the intensity of pheromone 

deposited by the ants before it and the visibility or 

desirability of the next state [1], [2]. The probability 

of state transition is given by: 

 

 

The algorithm will seek to maintain a balance of 

exploration (probing new parts of the solution space) 

and exploitation (stepping up search around the 

highest-rated solutions) [1]. Evaporation of 

pheromones keeps the algorithm from rapidly 

converging toward poor solutions, and the rule for 

updating the pheromones is: 

 

 

Where ρ is the pheromone evaporation rate. 

Long Short-Term Memory (LSTM) networks, a type 

of Recurrent Neural Network (RNN), are designed to 

capture long-term dependencies in sequential data. 

Unlike traditional RNNs, LSTMs employ memory 

cells that store information for extended periods, 

addressing the vanishing gradient problem. An LSTM 

consists of three primary gates: the input gate, forget 

gate, and output gate, each of which regulates the 

flow of information through the memory cell. The 

LSTM's functionality is governed by the following 

update equations. To ensure that important context is 

stored and redundant or irrelevant information is 

discarded in order to achieve efficiency and accuracy, 

the LSTM network's gates allow it to pay close 

attention to which informational chunks to remember 

and which to forget while processing lengthy data 

strings and this makes LSTMs extremely effective for 

time-series forecasting applications such as solar  

 

power prediction [4]. Adjusting the LSTM model's 

hyper parameters (such as the number of hidden units, 

learning rate, and batch size) is crucial for improving 

the model's precision and generalizability in solar 

power forecasting. By using Ant Colony 

Optimization (ACO) for hyper parameter tuning, the 

hyper parameter space may be searched more 

methodically [2], [5]. 

 

ACO stands for every set of hyper parameters as a 

candidate solution, and ants search for various 

configurations in each iteration [5]. The effectiveness 

of each solution is evaluated in terms of the LSTM 

model's quality, which is often assessed using metrics 

such as R-squared (R²) values, Mean Absolute Error 

(MAE), or Root Mean Square Error (RMSE) [5, 6]. 

In every iteration, ACO updates the levels of 

pheromone on the hyper parameter configurations 

that were explored. Good-performing configurations 

are reinforced with more pheromone, which makes 

the ants in the future explore them [5]. This helps in 

ensuring that ACO maintains a balance between 

exploitation of good areas and exploration of the 

hyper parameter space, and this enhances 

convergence and performance [7]. The strength of 

ACO for hyper parameter optimization is that it can 

efficiently search in large, intricate search spaces. In 

contrast to grid search or random search, which use 

pre-specified hyper parameter ranges, ACO adapts in 

exploring the search space utilizing pheromone trails 

[7], [8]. Empirical results indicate that ACO-

optimized LSTM networks perform better than 

conventional LSTM networks, especially in avoiding 

over fitting and enhancing generalization [6]. ACO's 

capacity to trade exploration and exploitation results 

https://irjaeh.com/
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in improved convergence and performance in 

practical solar forecasting applications [9]. By 

utilizing ACO, LSTM-based solar power forecasting 

models can be optimized to better predict day-ahead 

solar power output. This technique has been reported 

to perform better than other met heuristics, including 

PSO, in a number of applications [7], [10]. Because 

of ACO's iterative approach, the algorithm may 

constantly enhance the search for optimal hyper 

parameters, which enables the LSTM model to 

successfully learn and adjust to variations in solar 

conditions throughout the year [10]. 

 

 

Figure 1 Data Gathering and Preparation 
 

The data for the present study has been obtained from 

a 4.5 kW solar photovoltaic (PV) system that is 

installed at Kanchipuram, Tamil Nadu, India 

(12.8373° N, 79.7042° E). The database covers one-

year duration and the hourly fluctuations in the major 

meteorological parameters of solar irradiance, 

temperature, and wind speed, along with the 

respective output of PV power generation. This 

abundant dataset, recorded at hourly frequencies, 

captures various seasons—summer, winter, and 

monsoon—thereby offering a perfect platform to 

create and validate a predictive model that can take 

into consideration the variability of weather 

conditions. The addition of multiple meteorological 

parameters, particularly wind speed, adds to the 

complexity of the data set, thus making it a good 

candidate to test the generalization capability and 

robustness of sophisticated machine learning 

algorithms like Long Short-Term Memory (LSTM) 

networks. Preprocessing of the dataset is essential to 

enabling the LSTM model to learn optimally and also 

make the most accurate predictions. Raw data 

sometimes have missing values, noise, or outliers, 

which, when not removed or handled, tend to impede 

the performance of the model. Hence, the data was 

thoroughly preprocessed through several steps 

involving the treatment of missing values via 

interpolation techniques, scaling the numerical 

attributes (e.g., solar irradiance and temperature) into 

a standard scale, and the splitting of data into relevant 

training and testing datasets. The temporal aspect of 

the dataset, particularly the seasonality, also called for 

meticulous management of how data was partitioned 

for training the LSTM. A seasonal split was utilized 

to make sure that the model would be able to predict 

PV power generation well for three seasons—

summer, winter, and monsoon—thus capturing the 

inherent variability in solar irradiance and weather 

patterns characteristic of each season in 

Kanchipuram. The LSTM model, which is suitable 

for time-series forecasting, was fine-tuned with Ant 

Colony Optimization (ACO) for hyper parameter 

tuning. The most important hyper parameters that 

were adjusted include the size of hidden units, the 

learning rate, batch size and number of epochs. These 

hyper parameters are significant since they have a 

direct impact on the ability of the model to learn from 

past data and make precise future predictions. ACO 

was selected because it is robust in tackling 

combinatorial optimization problems by simulating 

the natural process of ants, with pheromone trails 

influencing the search for optimal solutions. For 

every season, individual hyper parameter tuning was 

conducted, taking into consideration the unique 

features of solar irradiance and meteorological 

conditions during summer, winter, and monsoon. 

This approach ensures that the LSTM model is both 

seasonally adaptable and robust across various 

weather conditions, providing high accuracy in day-

ahead solar power forecasting, shown in Figure 1. 

https://irjaeh.com/
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3. Experimental Setup and Evaluation Metrics 

Long Short-Term Memory (LSTM) models were 

trained and tested in a setting that took seasonality 

and variations in solar power output into account. 

Hourly sun irradiance, temperature, wind speed, and 

PV production records were collected for a year from 

a 4.5 kW photovoltaic (PV) plant in Kanchipuram, 

Tamil Nadu (12.8373° N, 79.7042° E). To allow for 

efficient model learning while conserving a portion 

for validation, the data was divided into 80% training 

and 20% test sets. To account for the impact of 

seasonal weather, the data was divided into three 

categories: summer, winter, and monsoon. LSTM 

models were used with hyper parameters such hidden 

units, learning rate, batch size, and epochs that were 

tuned using the Ant Colony Optimization (ACO) 

technique because of its suitability for handling time-

series data. The ACO method experimented with 

several hyper parameter setups to optimize the 

LSTM's predicting capabilities. Several assessment 

metrics, including Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and the coefficient of 

determination (R²), were used in the current study to 

thoroughly assess the LSTM model's prediction 

capacity for distinct seasons. Regardless of the 

direction of the forecast, MAE calculates the average 

magnitude of error. The RMSE calculates the model's 

error magnitude, with larger mistakes carrying more 

weight. The accuracy of projected values compared 

to real data is determined by the value of R², where a 

larger number denotes greater accuracy. When taken 

as a whole, these steps ensure that the model's 

forecasting capabilities are properly examined. MAE 

is computed using the following formula 

 
 Where yi  represents the actual PV power output, y^i 

is the predicted value, and n denotes the number of 

observations. 

 
RMSE places greater emphasis on large errors and is 

often utilized when large errors are especially 

undesirable. It is calculated by: 

 
 Lastly, the R-squared (R²) metric measures how well 

the model predicts the data; it performs better when 

the numbers are near The calculation of the R² 

statistic is as follows: 

 
the mean of the actual values is represented by y 

BAR. These three measures were assessed for all 

seasons so that the ACO-optimized LSTM model 

could be comparatively evaluated with a PSO-

optimized LSTM model and a baseline LSTM model. 

The experimental framework and measures enabled 

the ACO-optimized LSTM model to be precisely 

tested for different seasonal scenarios, proving to be 

robust and effective in day-ahead solar power 

generation forecasting. 

4. Findings and Analysis 

The performance of the models in three distinct 

seasons—summer, winter, and monsoon—showcases 

the benefits of the ACO optimized LSTM model over 

the baseline LSTM and the PSO-optimized LSTM 

models when comparing the models for day-ahead 

solar power forecasting. The accuracy and resilience 

of each model are quantitatively indicated by the 

Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), and R2 values. The performance of 

the models in three distinct seasons—summer, 

winter, and monsoon—showcases the benefits of the 

ACO optimized LSTM model over the baseline 

LSTM and the PSO-optimized LSTM models when 

comparing the Accurately calculating the quantity of 

solar power that will be created in the next 24 hours 

given a variety of inputs is the main focus of models 

designed to estimate one-day solar power production. 

The accuracy and resilience of each model are 

quantitatively indicated by the Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), and R2 

values. As seen in Fig (2), the ACO-optimized LSTM 

has the consistently achieves the lowest RMSE and 

MAE values, implying and showing its better 
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performance in reducing prediction errors throughout 

the year. For instance, during the summer season, the 

ACO-optimized LSTM attains an MAE of 0.27 kW 

and an RMSE of 0.33 kW, performing far better than 

the baseline LSTM (MAE: 0.35 kW, RMSE: 0.42 

kW) and the PSO-optimized LSTM (MAE: 0.31 kW, 

RMSE: 0.38 kW). Equally good enhancements are 

seen during winter and monsoon, wherein ACO-

optimized model consistently retains an upper hand in 

the value of MAE as well as RMSE, Figure 2. 

 

 
Figure 2 Comparison of LSTM, LSTM-PSO & 

LSTM- ACO Models 
 

 
Figure 3 Chart Comparison 

 

 
Figure 4 Charts Comparing R², MAE & RMSE 

Values in LSTM, LSTM-PSO & LSTM-ACO 

Models 

The ACO-optimized LSTM performs well in all 

seasons, as shown in Fig (3), and the R² 

measurements highlight the models' predicting 

capabilities. As can be shown, the ACO-optimized 

LSTM exhibits more precision with an R² value of 

0.92 for the summer. This demonstrates how well 

ACO optimizes LSTM for seasonal prediction. While 

the baseline LSTM produces an R² of 0.85 and the 

PSO-optimized LSTM produces an R² of 0.88. These 

enhancements in R² values show that the ACO-

optimized model is more capable of explaining the 

variance in the solar power data, leading to more 

accurate and trustworthy predictions. The radar chart 

in Fig (3) offers a visual representation of the MAE 

and RMSE values for each model over the three 

seasons, clearly showing the exceptional 

functionality of the ACO-optimized LSTM, Shown in 

Figure 3 & Figure 4. 

 

 
Figure 5 Daily Power Generation Plots for 

Summer, Winter & Monsoon 
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The daily power generation plots for summer, winter, 

and monsoon, as shown in Fig (4), further validate 

these findings by comparing the actual PV power 

generation data with the predictions from each model. 

The ACO-optimized LSTM closely follows the actual 

power generation curve in all three seasons, 

particularly during peak solar hours, where prediction 

accuracy is most critical. On the other hand, the 

baseline LSTM and PSO-optimized With regard to 

seasonal patterns, the model's ability to adapt to 

fluctuating solar irradiance and power levels is 

significantly improved by the ACO hyper parameter 

tuning based on the previously listed features, such as 

hidden units, learning rate, and batch size. The model 

is tuned to better fit changes, particularly those that 

take place in the mornings and afternoons. The 

predictions become more accurate when these 

parameters are adjusted because the LSTM model 

becomes more sensitive to changes in the patterns of 

solar energy throughout the day. The model's capacity 

to track variations in power output during peak and 

off-peak times is enhanced by the fine-tuning 

procedure. As a result, the optimized LSTM model 

performs better by effectively adjusting to seasonal 

variations in solar energy, Shown in Figure 5. 

Conclusion 

The ACO-optimized LSTM model consistently 

outperforms both the PSO-optimized LSTM and 

baseline LSTM models across all key performance 

metrics and showcases its superior predictive 

accuracy. This is reflected in the significantly lower 

MAE and RMSE values alongside higher R² scores 

which validate the effectiveness of Ant Colony 

Optimization (ACO) in fine-tuning the 

hyperparameters of LSTM models for accurate day-

ahead solar power forecasting. By harnessing 

historical data patterns and weather trends, the model 

effectively predicts solar energy output over a 24-

hour period. These results can confirm that ACO is a 

highly efficient optimization method and enhances 

the precision of machine learning models in real-

world photovoltaic applications. Looking ahead, 

there are several promising directions for further 

research. Incorporating real-time data streams and 

investigating hybrid optimization strategies could 

elevate prediction accuracy even further. 

Additionally, expanding the model’s scope to account 

for longer-term solar generation forecasts and 

integrating advanced weather prediction models 

could provide more actionable insights for energy 

management. Exploring more sophisticated deep 

learning techniques such as attention mechanisms or 

ensemble models hold the potential to push the 

boundaries of model performance especially in 

extremely variable and dynamic environments. 
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