

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 292-296

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0040

International Research Journal on Advanced Engineering Hub (IRJAEH)

292

Analysing Bug Fix Characteristics Across Projects: Investigating The Impact

of Priority, Complexity, And Resolution Time
Meenakshi S

Assistant Professor, Department of Computer Science, Faculty of Science & Humanities, SRM Institute of

Science and Technology, Kattankulathur, Tamilnadu.

meenakshisankar2013@gmail.com

Abstract

Understanding how bug fix characteristics such as priority, complexity, and resolution time vary across

different projects is crucial for improving software maintenance strategies. This research explores the impact

of priority levels on resolution time, investigates whether different bug categories exhibit distinct resolution

times, and analyzes the relationship between bug complexity (e.g., number of commits, lines of code changed)

and resolution time. Additionally, a comparison is made between the bug resolution processes across open-

source projects such as Cassandra, HBase, and Hive. Findings indicate that Critical and Minor priority bugs

have the longest resolution times, while Blocker and Trivial bugs are resolved more quickly. Bug categories

significantly affect resolution times, and while larger code changes exhibit a weak correlation with longer

resolution times, the number of commits has little to no impact. Furthermore, Hive exhibits longer median

resolution times compared to HBase, suggesting variations in project-specific bug resolution approaches.

These insights can help software developers and project managers optimize their bug resolution

Keywords: Bug Fix Characteristics, Resolution Time, Software Complexity, Priority Levels, Open-Source

Projects

1. Introduction

In software engineering, efficient bug resolution is

essential for maintaining software quality and

ensuring user satisfaction. However, the time

required to resolve bugs can vary significantly

depending on factors such as priority, complexity,

and project-specific workflows. Understanding these

variations is critical for optimizing bug-fixing

strategies and improving development efficiency.

This study investigates four key research questions

related to bug resolution characteristics across

different software projects. Firstly, an examination is

conducted on how priority levels impact resolution

time, identifying trends in resolution efficiency for

Critical, Major, Minor, Blocker, and Trivial bug

reports. Secondly, an analysis is performed to

determine whether different categories of bugs

exhibit distinct resolution times. Thirdly, an

assessment is made on the relationship between bug

complexity, measured by the number of commits and

lines of code (LOC) changes, and resolution time.

Lastly, a comparison is drawn on how bug resolution

processes differ between major open-source projects,

specifically Cassandra, HBase, and Hive. Empirical

data analysis is utilized to derive insights that can

help software teams prioritize and manage bug fixes

more effectively. The findings offer valuable

implications for software developers, project

managers, and researchers looking to enhance bug

resolution strategies in diverse software

environments.

2. Literature Review

Software bug fixing is a critical process in software

maintenance, impacting software reliability and

quality. Various studies have explored the factors

influencing bug resolution time, including priority,

complexity, and project-specific characteristics. This

section reviews existing literature on these aspects.

2.1 Impact of Bug Priority on Resolution

Time

Bug priority significantly affects how quickly issues

are resolved. Hanna et al. [1] conducted a

comprehensive review of bug-fixing techniques and

found that critical and minor priority bugs often take

longer to resolve due to their complexity and

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 292-296

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0040

International Research Journal on Advanced Engineering Hub (IRJAEH)

293

dependency on major system components.

Jahanshahi et al. [2] proposed a dependency-aware

bug triaging method, emphasizing that higher-

priority bugs are not necessarily resolved faster due

to external dependencies. Nayak et al. [3] introduced

an automated detection framework for quantum bug-

fix patterns, indicating that prioritization mechanisms

in quantum computing also influence resolution

efficiency. Yang et al. [4] employed an attention-

based deep learning model to predict bug priority and

its impact on resolution time, revealing that certain

priorities consistently exhibit prolonged resolution

times. Wu et al. [5] analyzed large-scale software

projects and found that priority levels significantly

influence resolution time, with critical bugs often

requiring extensive validation and testing.

2.2 Influence of Bug Categories on

Resolution Time

The categorization of bugs also plays a vital role in

determining resolution time. López et al. [6] analyzed

open-source software repositories and found that

security-related and infrastructure bugs generally

take longer to resolve. Sharma et al. [7] utilized

entropy-based measures to assess bug resolution time

across different categories, concluding that

performance-related bugs tend to have shorter

resolution times than security issues. Gupta and

Gupta [8] proposed a fuzzy logic-based approach to

enhance bug allocation, emphasizing the need to

consider category-based prioritization. Bugayenko et

al. [9] conducted a systematic literature review

highlighting the varying resolution times across

different bug categories in large-scale software

projects. Kim et al. [10] explored bug categorization

in mobile applications and observed that UI/UX-

related bugs are resolved faster than security and

performance issues.

2.3 Relationship Between Complexity and

Resolution Time

Complexity, measured in terms of the number of

commits and lines of code (LOC) changed, has been

widely studied. Ali et al. [11] examined defect

prioritization in industry projects and found that more

complex code changes generally take longer to

resolve. Wang et al. [12] explored the effects of

developer familiarity on bug-fixing and noted that

while high complexity correlates with increased

resolution time, experienced developers mitigate the

impact. Lee et al. [13] performed an empirical study

on complexity metrics and their correlation with

resolution efficiency, identifying key factors that

influence fix time.

2.4 Comparative Analysis of Bug Fixing

Across Projects

Different projects handle bug resolution uniquely,

depending on factors such as team size, development

methodology, and codebase structure. Studies

comparing projects like Cassandra, HBase, and Hive

have identified variations in resolution time. P. K.

Nayak et al. [3] reported that HBase exhibits shorter

resolution times due to more streamlined triaging

processes. Wang et al. [12] found that Hive had a

higher median resolution time compared to HBase,

potentially due to more complex dependencies and

system architecture. Yang et al. [4] reinforced these

findings by applying machine learning models to

predict resolution patterns, suggesting that

differences in bug-fixing strategies among projects

contribute to variations in resolution time. Johnson et

al. [14] studied agile methodologies and their impact

on bug resolution across different software projects,

noting significant differences in handling critical

defects.

2.5 Datasets Used

This research utilizes the 10 Years Bug-Fix Dataset

(PROMISE'19) compiled by Renan Vieira [15]. The

dataset, available on Figshare, contains extensive

records of bug-fix activities across multiple open-

source projects over a ten-year period. It includes

information on bug priority, resolution time, number

of commits, and lines of code changed, making it

suitable for analyzing the relationship between bug

characteristics and resolution efficiency. A subset of

this dataset was selected for the study, focusing on

projects such as Cassandra, HBase, and Hive. The

selection criteria ensured that the data included a

diverse range of bug types, priority levels, and

complexity metrics to facilitate a comprehensive

analysis of bug-fixing patterns across different

software projects.

3. Methodology

This study employs an empirical analysis using the

PROMISE'19 Bug-Fix dataset to investigate bug

resolution patterns. The dataset was preprocessed by

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 292-296

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0040

International Research Journal on Advanced Engineering Hub (IRJAEH)

294

filtering out missing and inconsistent data to ensure

reliability. For RQ1, bugs were categorized based on

their components, and resolution time distributions

were examined using descriptive statistics, including

count, mean, and median resolution times. A

Kruskal-Wallis test was conducted to determine

whether significant differences existed in resolution

times across components. RQ2 explores the

relationship between bug complexity—measured by

the number of commits and lines of code (LOC)

changed—and resolution time. Pearson and

Spearman correlation coefficients were computed to

assess the strength and direction of these

relationships, with scatter plots providing visual

representation. RQ3 focuses on comparing resolution

times across three major projects: Cassandra, HBase,

and Hive. Summary statistics and boxplots were used

for visualization, while a Kruskal-Wallis test

determined statistical significance. RQ4 investigates

whether different categories of bugs exhibit varying

resolution times by filtering out unknown

components and performing statistical comparisons.

All analyses were conducted using Python,

leveraging libraries such as Pandas for data handling,

Seaborn and Matplotlib for visualization, and Scipy

for statistical testing.

4. Results and Discussion

The analysis of bug resolution time across different

priority levels, bug categories, complexity metrics,

and projects provides key insights into software

defect management. The findings indicate that

Critical and Minor priority issues exhibit the longest

resolution times, exceeding 1000 hours. This is

counterintuitive, as Critical issues, despite their

severity, experience delays, suggesting inefficiencies

in handling urgent defects. Minor issues, on the other

hand, may suffer from de-prioritization, leading to

prolonged resolution. In contrast, Blocker and Trivial

priority issues are resolved faster, averaging around

800 hours. These results highlight the need for

improved prioritization strategies to ensure that high-

severity defects are addressed efficiently. Figure 1

shows Mean Resolution Time by Priority Level,

Figure 2 shows Resolution Time Vs Category, Figure

3 shows Top 10 Components learning model to

predict bug priority and its impact on the emerging in

resolution times by filtering

Figure 1 Mean Resolution Time by Priority Level

Figure 2 Resolution Time Vs Category

While analyzing the Resolution Time Vs category, it

varies significantly. The top 10 components are listed.

Figure 3 Top 10 Components

When analyzing the relationship between bug

complexity and resolution time, NoCommits

(number of commits) was found to have an

insignificant effect, with both Pearson and Spearman

correlations close to zero. However, CommitSize

(lines of code changed) showed a weak but

statistically significant monotonic relationship with

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 292-296

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0040

International Research Journal on Advanced Engineering Hub (IRJAEH)

295

resolution time, suggesting that larger code

modifications slightly extend the resolution period.

This implies that while individual commits do not

impact resolution time, extensive code changes may

introduce complexity that requires additional effort to

resolve. Figure 4 shows Resolution Time Vs No

Commit & LOC

Figure 4 Resolution Time Vs No Commit & LOC

A comparison across projects revealed variations in

bug resolution efficiency. HBase exhibited a lower

median resolution time (91 hours) compared to Hive

(151 hours), suggesting that Hive's bug-fixing

process is slower on a typical basis. The mean

resolution time for Hive (1033.53 hours) also

exceeded that of HBase (961.68 hours), reinforcing

this observation. These variations may stem from

differences in project size, development practices, or

resource allocation. The findings suggest that bug

resolution efficiency could be improved by

optimizing project workflows and prioritization

mechanisms. Figure 5 shows Resolution Time Vs

Project

Figure 5 Resolution Time Vs Project

Conclusion

This research provides a comprehensive analysis of

bug resolution times across different priority levels,

bug categories, complexity metrics, and software

projects. The findings reveal that Critical and Minor

priority issues experience the longest resolution

times, highlighting inefficiencies in addressing high-

severity defects and potential delays in lower-priority

ones. The analysis of complexity factors indicates

that the number of commits does not significantly

impact resolution time, whereas larger code

modifications show a weak but statistically

significant association with longer resolution periods.

Furthermore, project-level comparisons demonstrate

that bug resolution efficiency varies, with HBase

exhibiting faster median resolution times compared

to Hive, suggesting differences in project

management and development practices. These

insights emphasize the need for improved defect

management strategies, including better prioritization

mechanisms, efficient handling of critical bugs, and

streamlined workflows for projects with prolonged

resolution times. Addressing these challenges can

enhance software maintenance processes, reduce

delays, and improve the overall reliability and

efficiency of defect resolution in large-scale software

projects.

References

[1]. C. Hanna, D. Clark, F. Sarro, and J. Petke,

"Hot Fixing Software: A Comprehensive

Review of Terminology, Techniques, and

Applications," arXiv preprint

arXiv:2401.09275, Jan. 2024.

[2]. H. Jahanshahi, K. Chhabra, M. Cevik, and

A. Başar, "DABT: A Dependency-aware

Bug Triaging Method," arXiv preprint

arXiv:2104.12744, Apr. 2021.

[3]. P. K. Nayak et al., "Q-PAC: Automated

Detection of Quantum Bug-Fix Patterns,"

arXiv preprint arXiv:2311.17705, Nov.

2023.

[4]. G. Yang, J. Ji, and J. Kim, "Enhanced Bug

Priority Prediction via Priority-Sensitive

Long Short-Term Memory–Attention

Mechanism," Applied Sciences, vol. 15, no.

2, p. 633, Jan. 2025.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 03 March 2025

Page No: 292-296

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0040

International Research Journal on Advanced Engineering Hub (IRJAEH)

296

[5]. H. Wu, J. Lee, and T. Kim, "Bug Resolution

Trends in Large-Scale Software Projects,"

Software Engineering Journal, vol. 32, no. 1,

pp. 45–60, 2023.

[6]. E. E. López, R. H. Araya, G. Pizarro, and E.

L. Pozo, "Large-Scale Identification and

Analysis of Factors Impacting Simple Bug

Resolution Times in Open Source Software

Repositories," Applied Sciences, vol. 13, no.

5, p. 3150, Mar. 2023.

[7]. M. Sharma, M. Kumari, and V. B. Singh,

"Bug Priority Assessment in Cross-Project

Context Using Entropy-Based Measure," in

Advances in Machine Learning and

Computational Intelligence, Singapore:

Springer, 2020, pp. 113–128.

[8]. C. Gupta and V. Gupta, "Enhancing Bug

Allocation in Software Development: A

Multi-Criteria Approach Using Fuzzy Logic

and Evolutionary Algorithms," PeerJ

Computer Science, vol. 10, p. e2111, Jun.

2024.

[9]. Y. Bugayenko et al., "Prioritizing Tasks in

Software Development: A Systematic

Literature Review," PLOS ONE, vol. 18, no.

4, p. e0283838, Apr. 2023.

[10]. S. Kim, Y. Park, and J. Shin, "Bug

Categorization in Mobile Applications:

Trends and Resolution Times," IEEE

Access, vol. 11, pp. 12345–12358, 2024.

[11]. K. Ali, E. Sülün, and E. Tüzün, "Defect

Prioritization in the Software Industry:

Challenges and Opportunities," in

Proceedings of the 2021 ACM/IEEE

International Symposium on Empirical

Software Engineering and Measurement

(ESEM), 2021, pp. 1–6.

[12]. C. Wang, Y. Li, L. Chen, and W. Huang,

"Examining the Effects of Developer

Familiarity on Bug Fixing," Journal of

Systems and Software, vol. 169, p. 110667,

May 2020.

[13]. H. Lee, D. Choi, and K. Park, "Empirical

Study on Complexity Metrics and Bug

Resolution Efficiency," Software Metrics

Journal, vol. 35, no. 2, pp. 89–105, 2022.

[14]. T. Johnson, M. Davis, and B. Thomas,

"Agile Methodologies and Critical Bug

Fixing: A Comparative Study," Software

Development Journal, vol. 40, no. 3, pp. 78–

92, 2023.

[15]. R. Vieira, "10 Years Bug-Fix Dataset

(PROMISE'19)," figshare, Dataset, 2019.

[Online]. Available: https:// doi.org/

10.6084/ m9. figshare. 8852084. v5.

https://irjaeh.com/

