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Abstract 

Differential privacy (DP) is a cornerstone of privacy-preserving data analysis.  Among its mechanisms, the 

Gaussian mechanism stands out for its ability to provide robust privacy guarantees by adding Gaussian noise 

to computations. However, the mechanism’s hyper parameters, including the noise scale (σ) and privacy 

budget (ϵ), require careful optimization to balance privacy and utility. This paper explores the application of 

Coyote Optimization Algorithm (COA) and Badger Optimization Algorithm (BOA) for hyper- parameter 

optimization, coupled with the Kriging surrogate model to enhance computational efficiency. Comparative 

evaluations demonstrate that these methods outperform traditional approaches, achieving better convergence 

rates and improved privacy-utility trade-offs. 

Keywords: Differential Privacy (DP), Gaussian Mechanism, Hyper parameter Optimization, Coyote 

Optimization Algorithm (COA), Badger Optimization Algorithm (BOA). 

 

1. Introduction  

1.1  Background and Related Work 
Dwork, Cynthia and Roth et. al. [3], [4] introduced 

differential privacy, provides a mathematically 

rigorous approach to privacy protection, enabling the 

release of aggregate information while limiting the 

risk of individual data disclosure. The Privacy Budget 

(ϵ) and a relaxation parameter (δ), which together 

define the degree of privacy assurance, are used to 

quantify DP. The ability of DP to withstand auxiliary 

information is a crucial component that guarantees 

defense even against enemies who possess outside 

knowledge. In contrast to conventional 

anonymization methods that frequently fall victim to 

linking assaults, he underlined the significance of a 

formal, mathematical basis for privacy. DP is used in 

real-time analysis, learning algorithms, and data 

publication. The Gaussian distribution (closed under 

addition) is as the error that could already be in the 

dataset; the noise’s standard deviation is proportional 

to the sensitivity of the query ℓ1, which is no greater 

and frequently much smaller than ℓ2; and the tails of 

the Gaussian (normal) distribution decay 

significantly more quickly than those of the Laplace 

(exponential) distribution for the same standard 

deviation. The Gaussian mechanism, a key tool 

within DP, adds Gaussian-distributed noise to outputs 

to ensure privacy, as detailed by [12]. Two examples 

of the widely used (ϵ, δ)-differential privacy 

paradigm are (ϵ, 0)-differential privacy and (0, δ)-

differential privacy.  Few things are known about (0, 

δ)-differential privacy, despite the fact that (ϵ, 0)-

differential privacy has been explored and exact 

optimality results have been produced. To 

comprehend the basic privacy and utility tradeoff in 

(ϵ, δ)-differential privacy, it is crucial to characterize 

the privacy utility tradeoff in (0, δ)-differential 

privacy as stated in [3]. Optimizing the hyper 

parameters of the Gaussian mechanism, particularly 

the noise scale (σ) and privacy budget (ϵ), is crucial. 

An insufficient noise scale undermines privacy, while 
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excessive noise compromises data utility 

effectiveness hinges on the appropriate calibration of 

noise based on dataset sensitivity and privacy 

requirements as mentioned in Lee, Jaewoo and Kifer 

et.al. [11]. As per [17] The quality of the model hyper 

parameters determines how well GP regression 

predicts. The maximum likelihood estimation 

scheme is used by the conventional GP to optimize 

the hyper parameters. Nonetheless, it is generally 

accepted that the most significant flaw in the 

conventional GP models is their computational 

complexity, which rises as O(n3). There are multiple 

methods for obtaining low-complexity GP models. 

Neural network-powered GPs and low rank 

approximation of the kernel matrices [13]– [16] are 

examples of representative studies. Metaheuristic 

algorithms, inspired by natural and social 

phenomena, have gained traction in solving complex 

optimization problems. A novel algorithm that 

effectively handles competitive outcomes is 

presented: Coyote and Badger Optimization (CBO). 

Coyote and honey badger cooperative behaviors are 

combined in the CBO algorithm. By offering a more 

organic and intuitive method of problem solution, the 

suggested CBO aims to increase the effectiveness and 

precision of engineering optimization issues. 

Compared to previous algorithms, the CBO method 

requires less iterations when the behaviors of two 

distinct animal species are combined [9]. Recently, 

the Kriging model [14, 1], developed in the field of 

spatial statistics and geostatistics, has gained 

popularity in this field. This model predicts the value 

of the un- known point using stochastic processes. 

Sample points are interpolated with the Gaussian 

random function to estimate the trend of the 

stochastic processes. The genetic algorithm based on 

kriging is used to solve challenges related to 

aerodynamic design. The Kriging model is a response 

surface model that uses a stochastic process to depict 

the relationship between the objective function 

(output) and design factors (input). The kriging 

model significantly cuts down on the amount of time 

needed to evaluate the objective function during the 

optimization (optimal searching) phase [8]. 

1.2  Challenges in Hyper Parameter Optimization 

Traditional optimization methods, such as grid search 
and random search, are computationally expensive 

and often fail in high-dimensional spaces [2]. 
Gradient-based methods, while efficient, are prone to 

local minima, particularly in non-convex 

optimization problems [7]. These limitations 
necessitate the exploration of metaheuristic 

approaches, which are well-suited for complex, 
multi-objective optimization problems [5]. 

1.3  Contribution of This Work 

This paper contributes to the literature by: 

 Introducing COA and BOA for hyper 

parameter optimization in the Gaussian 

mechanism, leveraging their ability to 

navigate complex search spaces. 

 Enhancing these methods with the Kriging 

model, which acts as a surrogate to reduce 

computational costs. 

 Providing a comparative evaluation of these 

approaches against traditional optimization 

methods 

2. Methodology 

2.1 Problem Definition 

The optimization problem for the Gaussian 

mechanism can be expressed as: 

Minimize F (σ, ϵ) = α · Utility Loss + β · ϵ, 

 

where α and β are weights that balance the trade-off 

between utility and privacy [10]. Let’s see here how 

this problem is formulated. The goal is to minimize a 

composite objective function F (σ, ϵ) defined as: 

F (σ, ϵ) = α · Utility Loss(σ) + β · ϵ, 

 

where: 

 σ: Noise scale parameter of the Gaussian 

mechanism. 

 ϵ: Privacy budget, controlling the trade-off 

between privacy and utility. 

 α, β: Weighting coefficients balancing utility 

loss and privacy. 
The optimization is subject to several constraints which 

are defined as follows: 

1. Privacy Guarantee (ϵ, δ-DP) 

 
where Δ is the sensitivity of the query, and δ is a small 

failure probability. 
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2. Utility Constraint 

Utility Loss(σ) = g(σ), where g(σ) models the 

impact of noise on utility. 

3. Feasibility Bounds 

                        σmin ≤ σ ≤ σmax, 

                         ϵmin ≤ ϵ ≤ ϵmax 

The overall problem statement is defined as: 

 
2.2 Mathematical Model of COA+BOA+KSM 

Let’s see how this problem is solved with COA, BOA 

and KSM here. The objective function F (σ, ϵ) is 

approximated using a Kriging surrogate model: 

 
where x = (σ, ϵ), μ(x) is the mean function, and Z(x) 

is a Gaussian process with covariance kernel k (xi, xj). 

The detailed optimization procedure involves 3 

different steps. 

1. Initialization: Define the initial population 

{xi = (σi, ϵi)} and construct the Kriging 

surrogate model. 
2. Iterative Optimization: 

 Evaluate for each solution using the 

Kriging model. 

 Use the Coyote Optimization Algorithm 

(COA) or Badger Optimization Algorithm 

(BOA) to update the population. 

 Apply penalty functions for constraint 

violations: 

 
 Periodically refine the Kriging surrogate 

model. 

3. Convergence: Stop when converges 

or a predefined number of iterations is 

reached. Let’s us see the mathematical proof 

of convergence here. 

 Feasibility: Solutions satisfy: 

σmin ≤ σ ≤ σmax, ϵmin ≤ ϵ ≤ ϵmax 

 Kriging Convergence: The surrogate model 

improves over iterations: 

as more data points are sampled. 

 Global Optimum: Metaheuristic algorithms 

converge to the global optimum under infinite 

iterations. 

2.3 Experimental Setup 

The algorithms were tested on synthetic IoMT 

datasets with varying dimensions and sensitivity 
levels. We have used 10000 records for testing the 

algorithm performance. Evaluation metrics included 
convergence rate, privacy-utility trade-off, and 

computational efficiency. 

2.1. Results and Discussion 

2.2. Algorithm Performance 

 

Table 1 Comparative Analysis of COA, BOA, and KSM Algorithms 

Alg DD SL CR PR(ϵ) UL CT(s) 

COA 10 Low High 0.45 Low 15.2 

COA 50 Medium Moderate 0.50 Moderate 20.3 

BOA 10 Low Moderate 0.42 Low 17.8 

BOA 50 Medium Moderate 0.48 Moderate 23.1 

KSM 10 Low Very High 0.40 Very Low 12.1 

KSM 50 Medium High 0.46 Low 18.5 
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Table 1 shows us the performance evaluation of 

COA, BOA and Kriging model. By referring the 

Table 1 and analysis graph from Figure 1 to Figure 

4 shows that COA and BOA consistently 

outperformed traditional methods, achieving better 

privacy guarantees (ϵ) and lower utility loss. The 

Kriging model reduced computational time by 

approximately 30%, confirming its effectiveness 

as a surrogate model. 
 

 

Figure 1 Analysis of Convergence Rate 

 

 

 
Figure 2 Analysis of Utility Loss 

 

 
Figure 3 Analysis of Privacy 

 
Figure 4 Analysis of Computational Time 

 

2.3. Limitations 
While effective, the proposed methods require 
careful parameter tuning and may face scalability 

challenges for real-world datasets. 

While effective, the proposed methods require 

careful parameter tuning and may face scalability 

challenges for real-world datasets 
3. Conclusion and Future Work 

This study demonstrated the potential of COA and 
BOA, enhanced by the Kriging surrogate model, for 

optimizing the Gaussian mechanism’s hyper 
parameters. Future work will focus applying these 

techniques to other DP mechanisms (e.g., Laplace 
mechanism) and exploring hybrid models 

combining metaheuristic algorithms with deep 
learning. Also need to check scaling the approach 

to large, real-world datasets. 
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