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Abstract 

Predicting structural performance is a critical aspect of civil engineering, ensuring the safety, efficiency, and 

durability of buildings and infrastructure. Traditional methods, such as finite element analysis and empirical 

modeling, often fall short in addressing the complexities of modern structural systems. The advent of machine 

learning (ML) has revolutionized this domain by offering data-driven approaches capable of handling non-

linear relationships and large datasets, enhancing the accuracy and efficiency of structural performance 

predictions. This review paper examines the applications of ML techniques, including Artificial Neural 

Networks (ANN), Support Vector Regression (SVR), Random Forest (RF), Decision Tree Regression (DTR), 

and hybrid models, in predicting structural metrics such as load-bearing capacity, deflection, durability, and 

seismic performance. The paper synthesizes findings from recent studies, highlighting key achievements and 

challenges, such as limited real-world validation, the need for hybrid approaches, and barriers to integrating 

ML into engineering workflows. By identifying critical research gaps and proposing future directions, this 

review aims to provide a comprehensive framework for advancing ML applications in structural engineering. 

The findings emphasize the transformative potential of ML to optimize design processes, enhance safety, and 

promote sustainable practices in civil engineering projects. 

Keywords: Machine Learning in Structural Engineering; Predictive Modeling; Structural Performance 

Metrics; Hybrid Machine Learning Models; Structural Health Monitoring (SHM). 

 

1. Introduction 

Structural performance prediction is a cornerstone of 

civil engineering, crucial for ensuring the safety, 

reliability, and efficiency of infrastructure (Abubakar 

et al., 2024; Negi et al., 2024). Accurate predictions 

enable engineers to design structures that withstand 

environmental and operational stresses while 

optimizing resource use (Anjum et al., 2024; Hooda 

et al., 2021). Traditional methods such as empirical 

models, finite element analysis (FEA), and manual 

calculations, though effective for simpler systems, 

often struggle to capture the complexities of modern 

structural designs and loading conditions. These 

methods are typically time-consuming, 

computationally intensive, and prone to human error, 

necessitating the development of innovative 

approaches to address the challenges posed by 

increasingly intricate structural systems (Malekloo et 

al., 2022; Sun et al., 2021). Machine Learning (ML) 

has emerged as a transformative tool in structural 

engineering, offering data-driven methods to model 

complex, nonlinear relationships among parameters 

such as material properties, geometric configurations, 

and loading scenarios (Gamil, 2023; Málaga-

Chuquitaype, 2022). Techniques like Artificial 

Neural Networks (ANN), Support Vector Regression 

(SVR), and Random Forest (RF) have demonstrated 

remarkable success in predicting structural 

behaviors, including load-bearing capacity, 

deflection, and durability (Kalabarige et al., 2024; 

Mostafa et al., 2022). ML’s ability to process vast 

datasets from simulations, experiments, and real-

world monitoring systems makes it a powerful 

alternative to traditional methods (Kazemi et al., 

2024). This review paper explores the advancements 

and applications of ML in structural performance 

prediction, critically analyzes existing research, and 
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identifies gaps that need to be addressed for 

integrating ML into practical engineering workflows. 

2. Methodology of The Review 

The methodology for this review was designed to 

systematically identify, analyze, and synthesize 

relevant literature on the application of machine 

learning (ML) techniques in predicting structural 

performance. The following steps outline the 

approach used to ensure a comprehensive and 

rigorous review. [1-5] 

2.1 Scope of The Review 

The review focuses on the application of ML 

techniques such as Artificial Neural Networks 

(ANN), Support Vector Regression (SVR), Random 

Forest (RF), and Decision Tree Regression (DTR) in 

civil engineering. It emphasizes key structural 

metrics, including load-bearing capacity, deflection, 

durability, and seismic performance. The selected 

literature spans the period from 2015 to 2024, 

reflecting recent advancements in the field. 

2.2 Search Strategy 

A systematic literature search was conducted across 

multiple academic databases to ensure 

comprehensive coverage. The details of the search 

strategy are summarized in Table 1. 

 

Table 1 Search Strategy and Inclusion Criteria 

Criteria Details 

Databases 

Searched 

Scopus, Web of Science, IEEE 

Xplore, Google Scholar 

Keywords 

"Machine Learning in 

Structural Engineering," 

"Predictive Modeling," etc. 

Time Frame 2015–2024 

Inclusion 

Criteria 

Peer-reviewed articles, 

structural performance 

applications, ML techniques 

Exclusion 

Criteria 

Non-peer-reviewed studies, 

articles without experimental 

data 

2.3 Data Extraction and Organization 

The data extraction process involved collecting key 

information from each study, including: 

 The objectives of the study. 

 ML techniques and algorithms used. 

 Types of datasets (experimental, real- 

World, simulated). 

 Structural metrics evaluated. 

 Validation methods and key findings. 

The extracted information was systematically 

categorized to facilitate comparative analysis across 

ML techniques and structural metrics. [6-10] 

2.4 Data Synthesis and Analysis 

 Comparative Tables: The performance of 

ML techniques in predicting structural 

metrics was summarized in tables for 

clarity. 

 Critical Evaluation: Strengths, 

limitations, and gaps in the literature were 

identified. 

 Thematic Clustering: Studies were 

grouped based on applications such as 

seismic performance prediction, 

deflection estimation, and durability 

analysis, allowing for trend identification. 

2.5 Review Validation 

To Ensure Reliability: 

 Independent cross-verification of selected 

studies was conducted by reviewers. 

 Findings were benchmarked against 

existing review papers to validate the 

depth and breadth of the analysis. 

This structured methodology provided a robust 

foundation for synthesizing insights and identifying 

future directions for the application of ML in 

structural engineering. 

3. Key Themes In The Literature 

3.1 Machine Learning Techniques 

Machine Learning (ML) techniques have emerged as 

transformative tools in structural engineering, 

offering data-driven solutions for predicting 

performance metrics such as load-bearing capacity, 

deflection, durability, and seismic response (Kumar 

et al., 2020). These techniques can model complex, 

nonlinear relationships and process large datasets, 

making them well-suited to addressing the limitations 

of traditional methods. The most commonly applied 

ML techniques in structural engineering are Artificial 

Neural Networks (ANN), Support Vector Regression 

(SVR), Random Forest (RF), Decision Tree 

Regression (DTR), and hybrid models. 
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Artificial Neural Networks (ANN) excel at capturing 

complex nonlinear relationships among structural 

parameters, making them effective for predicting 

load-bearing capacity and deflection. However, they 

often require large datasets and are computationally 

expensive, with a propensity for overfitting (Al-

Khateeb et al., 2024). Support Vector Regression 

(SVR) is another popular choice, particularly for 

durability and seismic response predictions. It 

performs well with small datasets but struggles with 

high-dimensional data (Momade et al., 2021). 

Random Forest (RF), known for its robustness and 

ability to handle missing data, is widely used in 

damage detection and settlement prediction but 

becomes computationally intensive for large datasets 

(Xie et al., 2020). Decision Tree Regression (DTR), 

while simple and interpretable, is prone to overfitting 

and thus may not be suitable for complex datasets 

(Elhishi et al., 2023). Hybrid models, which combine 

multiple ML techniques, are gaining traction for their 

ability to leverage the strengths of individual 

methods, though they introduce additional 

complexity in implementation (Branchet et al., 2018). 

Table 2 shows Comparison of Ml Techniques in 

Structural Performance Prediction.  [11-15]

  

Table 2 Comparison of Ml Techniques in Structural Performance Prediction 

Technique Applications Strengths Limitations 

Artificial Neural 

Networks (ANN) 

Load-bearing capacity, 

deflection 

Handles complex non-linear 

relationships 

High computational cost, prone to 

overfitting 

Support Vector 

Regression (SVR) 

Durability, seismic 

response 
Accurate with small datasets 

Less effective with high-

dimensional data 

Random Forest (RF) 
Damage detection, 

settlement 

Robust, handles missing data 

well 

Computationally intensive for 

large datasets 

Decision Tree Regression 

(DTR) 

Deflection, material 

properties 
Simple and interpretable Prone to overfitting 

Hybrid Models Multimetric predictions 
Combines strengths of 

multiple methods 
Implementation complexity 

 

3.2 Applications In Structural Metrics 

Machine learning (ML) techniques have been applied 

to predict various structural performance metrics 

such as load-bearing capacity, durability, deflection, 

seismic performance, and settlement (Negi et al., 

2024). Table 3 demonstrates how specific ML 

techniques excel in different structural applications. 

For example, Random Forest (RF) provides robust 

predictions in deflection and seismic response due to 

its ability to handle noisy or missing data. Support 

Vector Regression (SVR) is highlighted for its 

precision in predicting load-bearing capacity, making 

it ideal for applications requiring fine-grained 

predictions. These studies showcase the adaptability 

of ML techniques and their ability to address unique 

challenges posed by each structural metric.    

3.3 Data Sources and Preprocessing 

The data used in ML models for structural 

engineering can be broadly categorized into three 

types: By referring to Table 3 and Table 4, the 

application of ML techniques can be understood in 

terms of both their successes and the data-related 

challenges they address, offering a holistic view of 

their effectiveness in structural engineering. 

4. Critical Analysis of The Literature 

The literature on machine learning (ML) applications 

in structural engineering demonstrates significant 

advancements in predictive modeling and 

performance analysis. However, a critical 

examination reveals notable research gaps that must 

be addressed to further advance the field. Table 5 

summarizes the primary gaps identified in the 
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reviewed studies. experimental, real-world, and 

simulated. Table 4 identifies key characteristics and 

challenges for each data type. Experimental data, 

while precise, is limited to controlled environments 

and may not generalize well to real-world scenarios. 

Real-world data, gathered from structural health 

monitoring systems, often suffers from inconsistency 

and missing values, necessitating extensive 

preprocessing. Simulated data from Finite Element 

Analysis (FEA) is useful for modeling complex 

scenarios but comes with high computational costs 

and dependency on accurate simulation inputs. 

Addressing these challenges involves data 

preprocessing techniques such as cleaning, 

normalization, and feature selection to ensure that the 

ML models receive high-quality inputs for accurate 

predictions. Table 3 shows Key Studies by Structural 

Metric. [16-17]

  

Table 3 Key Studies by Structural Metric 

Metric Study Technique Key Findings 

Load-bearing 

capacity 

(Anjum et al., 2024) SVR High accuracy in steel beam 

predictions. 

Durability (Gamil, 2023) ANN, SVR Effective prediction of durability using 

lab data. 

Deflection (Mostafa et al., 2022) RF, DTR RF outperformed DTR in deflection 

prediction. 

Seismic performance (Momade et al., 2021) RF RF achieved higher accuracy in seismic 

response prediction. 

Settlement (Xie et al., 2020) Gradient Boost Superior prediction of settlement in 

varied soil conditions. 

 

Table 4 Data Sources and Challenges 

Source Description Challenges 

Experimental 

Data 

Lab tests on 

beams, 

columns, slabs 

Limited scalability, 

controlled settings 

Real-World 

Data 

Structural 

health 

monitoring 

(bridges, 

buildings) 

Missing/inconsiste

nt data 

Simulated 

Data 

Finite Element 

Analysis 

High 

computational cost 

 

5. Future Directions 

The future of machine learning (ML) in structural 

engineering lies in addressing current limitations and 

expanding its application across diverse real-world 

scenarios. The following areas are key to advancing 

the field: 

Development of Hybrid Models: Combining 

multiple ML techniques can leverage the strengths of 

individual algorithms, improving predictive accuracy 

and robustness. For example, integrating Artificial 

Neural Networks (ANN) for modeling non-linear 

relationships with Random Forest (RF) for handling 

noisy data can create more comprehensive solutions 

for complex structural challenges. 

Integration of ML in Real-World Workflows: 

Practical implementation of ML in structural 

engineering requires seamless integration with 

existing workflows, such as structural health 

monitoring systems, design software, and decision-

making processes. Developing user-friendly 

interfaces and decision-support tools will enhance 

accessibility and adoption among engineers and 

stakeholders. 

Enhanced Validation through Structural Health 

Monitoring (SHM): Using real-world data from 

SHM systems can improve the reliability of ML 

models. This approach ensures that predictions are 

grounded in actual performance data, reducing 

Discrepancies between theoretical models and 

practical outcomes. Table 4 Shows Data Sources and 

Challenges. Table 5 shows Research Gaps Identified.
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Table 5 Research Gaps Identified 

Research Gap Details 

Limited use of hybrid models 
Few studies explore combining multiple algorithms to leverage 

their complementary strengths for better results. 

Insufficient real-world validation 
Over-reliance on simulated and lab data limits the applicability 

of ML models in real-world scenarios. 

Lack of comprehensive structural 

parameter analysis 

Critical parameters, such as geometric configurations and 

material heterogeneity, are often inadequately analyzed, 

affecting model accuracy. 

Conclusion 

Machine learning (ML) is poised to revolutionize 

structural engineering by offering powerful tools for 

predictive modeling of performance metrics such as 

load-bearing capacity, durability, deflection, and 

seismic response. By addressing the limitations of 

traditional methods, ML enables the analysis of 

complex, non-linear relationships and large datasets, 

significantly enhancing the accuracy and efficiency 

of structural performance predictions. This review 

highlights the remarkable progress made in applying 

ML techniques, such as ANN, SVR, and RF, while 

also identifying critical gaps, including limited use of 

hybrid models, insufficient real-world validation, and 

inadequate parameter analysis. Addressing these 

gaps through the development of hybrid approaches, 

integration into practical workflows, and validation 

with real-world data will be essential for advancing 

the field. The findings emphasize that the continued 

evolution of ML in structural engineering can lead to 

safer, more efficient, and sustainable infrastructure 

solutions. By bridging the gap between theoretical 

advancements and practical applications, future 

research can unlock the full potential of ML to 

transform structural engineering practices. 
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