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Abstract 

While a number of R-peak detectors have been created, their performance may be significantly impacted 

when handling noisy, low-quality data from mobile ECG sensors, such as Holter monitors. Even though 

deep 1-D convolutional neural networks (CNNs) have recently produced state-of-the-art results, their high 

complexity and need for specialized parallel hardware for real-time processing can limit performance, 

particularly with compact network configurations. Because CNNs only use one linear neuron model, their 

learning capacity is limited, leading to this constraint. To tackle this problem, operational neural networks 

(ONNs) integrate neurons with several types of nonlinear operators in a network architecture that is 

heterogeneous. The goal of this work is to improve R-peak detection performance in 1-D Self-Organized 

ONNs (Self-ONNs) while maintaining computing efficiency through the use of generative neurons. Because 

each generating neuron in a 1-D Self-ONN learns its ideal configuration through adaptation, the Self-

Organizing feature eliminates the need for human operator set selection. Our experimental results, utilizing 

the MIT-BIH Arrhythmia dataset, which contains over a million ECG beats, reveal that 1-D Self-ONNs 

outperform state-of-the-art deep CNNs in terms of both performance and computational economy. 

Keywords: R-Peak Detection, Holter Monitors, CNNs, ONNs, and MIT-BIH Arrhythmia Dataset. 

 

1. Introduction 

The electrical activity of the heart is recorded by an 

electrocardiogram (ECG), which also displays the 

pattern of depolarization and repolarization as well 

as the beating sequence. The ECG signal's 

properties, such as ventricles beats and QRS 

complexes, reveal vital information about the 

condition of the heart. Though many diagnostic 

technologies have advanced, the ECG is still the 

most crucial non-invasive method for clinical 

assessment and heart monitoring. An essential first 

step in ECG analysis is R-peak recognition, which 

forms the foundation for other procedures including 

beat categorization and cardiac arrhythmia diagnosis 

[1] [2]. Since the use of traditional Holter monitors 

is growing and low-cost, low-power mobile ECG 

sensors have recently been developed, robust, real-

time R-peak detection has become highly important. 

However, ensuring accurate detection is difficult. 

Current research [3] has demonstrated that 

performance can drastically decline in the presence 

of low quality or severely noisy ECG data. Over 

time, several R-peak identification methods for 

clinical ECG records have been developed. The 

algorithm presented by Pan and Tompkins [4] is 

still one of the most popular and has been a standard 

for more than thirty years among the innovative 

techniques. Since then, a number of sophisticated  

signal processing methods have been developed, 

such as empirical mode decomposition [8], wavelet 

transform [5, 6], and Hilbert transform [7]. 

Examples of combination approaches that blend 

more contemporary machine learning techniques 

with conventional signal processing techniques are 

Hidden Markov Models (HMMs) [10] and Radial 

Basis Functions (RBFs) [9]. Conventional 

approaches frequently concentrate on raising the R-

peak using signal processing methods like spectral 

analysis and filter banks prior to peak identification. 

These approaches are notable for their speed and 

efficiency but are often tuned for clinical ECG 

recordings characterized by clear, practically noise-

free signals. To evaluate all of these methods, the 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 02 Issue: 12 December 2024 

Page No: 2802- 2810 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2024.0387 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

2803 

 

benchmark arrhythmia dataset from Massachusetts 

Institute of Technology-Beth Israel Hospital (MIT-

BIH) [16] or other high-quality clinical ECG datasets 

were employed. Their effectiveness frequently 

deteriorates dramatically when dealing with poor-

quality ECG data [3], making them less useful for 

transportable ECG sensors with little power. Lack of 

sufficiently diversified public datasets [11], [12] in 

this discipline is dealing with noisy ECG signals and 

ground-truth R-peak positions. Usually, these 

datasets have size and time restrictions. Even with 

modern Deep Learning-based peak detection 

approaches like LSTM networks [13] and CNNs 

[14], [15], this constraint continues to be a major 

bottleneck. While both approaches in [13] and [14] 

aimed to improve resilience, their primary testing 

was conducted against synthetic additive noise that 

was injected into ECG recordings from the MIT-BIH 

dataset. This noise included baseline wander and 

motion distortions. Therefore, it is unclear how 

successful they would be in real-world situations 

where noise is present by nature.  Merely adding 

artificial noise cannot adequately capture the 

degradations observed in real-world Holter 

monitoring. In real-world situations, there may be 

severe and irregular noise levels, intermittent 

malfunctions, and significant fluctuations in the 

baseline level. Furthermore, as figure 1 illustrates, 

the QRS complex's dynamic range is inconsistent. 

The MIT-BIH dataset has limitations as well; not 

enough beat variants exist for deep network testing 

to be done with confidence. This deficiency 

increases the possibility of bias and overfitting in the 

outcomes. In a recent article [15], a novel approach 

utilizing deep 1-D CNNs was used to the Chinna 

Physiological Signal Challenge (2020) dataset 

(CPSC). This dataset provides a more 

comprehensive testing environment with over a 

million ECG beats. The technique outperforms 

earlier benchmarks and demonstrates state-of-the-art 

performance in R-peak detection. However, it has 

two serious disadvantages: There are two significant 

computational complexity issues with the 12-layer 

deep model: 1) Especially when identifying 

arrhythmia beats, False Positives (FPs) and False 

Negatives (FNs) are still rather high. The goal of this 

study is to use a unique network model to address 

these issues. A significant drawback of 

convolutional neural networks (CNNs) and 

traditional multilayer perceptions (MLPs) has been 

brought to light by recent research [17]–[20]. Both 

rely on the McCulloch-Pitts [16] neuron model, 

which is antiquated relative to the complexity of 

genuine mammalian brain networks. Diverse 

nonlinear neuron types with unique 

electrophysiological and metabolic characteristics 

make up biological neural networks [17], [18]. On 

the other hand, homogeneous, linear neurons are 

used by MLPs and CNNs, which makes them 

appropriate for less complicated, linearly separable 

issues but insufficient for extremely complex and 

nonlinear scenarios. To address this restriction, 

generalized operational perceptions (GOPs) and 

operational neural networks (ONNs) were created. 

These models reduce training data and network 

complexity [17] [20] by utilizing a variety of 

nonlinear neuron types to tackle complex, 

multimodal tasks. Operational neurons in GOPs 

[17] [19] and ONNs [20] are made to resemble real 

neurons by means of pool (integration in the soma) 

and nodal (synaptic connections) operators. 

Combinations of nodal, pool, and activation 

operators are kept in a pre-established library and 

make up a "operator set." But ONNs have two 

significant disadvantages. In this paper, we present 

1-D self-organized ONNs (Self-ONNs) for real-

time Holter ECG analysis that leverage a generative 

neuron model to enhance robust R-peak 

identification. By enabling nodal operators to be 

produced frequently during backpropagation 

training, the generative neuron model improves 

learning performance and fosters self-organization 

inside Self-ONNs. The ability to produce nonlinear 

nodal operators boosts flexibility and operational 

diversity. Therefore, a predefined library of 

operator sets or an initial search for the best nodal 

operators are not needed for Self-ONNs. A growing 

performance gap between ONNs and CNNs has 

been observed in previous studies on 2-D Self-

ONNs, which demonstrate that even with a modest 

number of neurons, they can beat known techniques 

in a range of image processing and regression tasks. 

https://irjaeh.com/
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Our primary goal is to improve R-peak detection 

performance across deep 1-D CNNs while 

simultaneously drastically reducing network depth 

and complexity for real-time applications. To 

provide a thorough validation, we will evaluate our 

methodology against prior state-of-the-art 

methodologies in addition to comparisons with deep 

1-D CNNs. We shall summarize and highlight the 

novel and significant contributions made by the 

paper below.  

1.1 Key Contributions of This Study Include 

1. Novelty in Application: This study is the 

first to apply 1-D self-ONNs to ECG peak 

detection, using extensive CPSC (2020) 

dataset, which includes over one million 

ECG beats. 

2. Enhanced Learning Capability: The 1-D 

self-ONNs with heterogenous structures 

demonstrate superior peak detection 

performance, compared to traditional 

models, needing almost four times fewer 

neurons and only half the network depth 

3. Improved Accuracy: Our approach 

significantly reduces false-negative rates for 

arrhythmia beats compared to major existing 

peak detection methods. 

4. Reduced Complexity: The proposed 1-D 

Self-ONNs offer superior R-peak detection 

while markedly decreasing the depth and 

complexity associated with deep 1-D CNNs 

[34] models. 

5. Computational Analysis: This study 

presents the raw and vectorized 

backpropagation formulations for 1-D Self-

ONNs and includes a detailed 

computational complexity analysis. 

Overall, our work highlights the effectiveness and 

efficiency of 1-D self-ONNs for real-time ECG 

peak detection and sets a new benchmark in this 

domain 

2. Existing Method 

Numerous R-peak detectors have been created, 

however their performance typically deteriorates 

when used with noisy or poor-quality data from 

portable ECG sensors, such as Holter monitors. 

Deep 1-D convolutional neural networks (CNNs) 

have raised the bar in this field. However, real-time 

processing necessitates the usage of specialized 

parallel gear due to its complexity. In this section, 

we first look at how ONNs expand on the 1-D 

convolution technique. Next, we present the 

mathematical model of the suggested generative 

neuron-based 1-D self-ONN.  

 

    
Figure 1 Flow of Existing Method 
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Lastly, we introduce a generative neuron variant that 

enables effective vectorized operations, hence 

resulting in significant computational savings. 

Generalized Operator Networks (GOPs) evolved 

from MLPs to CNNs, with two key distinctions: 

GOPs are characterized by limited connectivity, 

while ONNs evolved from MLPs to CNNs. GOPs 

were created to address the shortcomings of the 

fundamental linear neuron model that was 

introduced by McCulloch and Pitts [16] in the 1950s. 

Recently, extreme learning machines (ELMs) and 

regular MLPs were surpassed by GOPs [19]. GOPs 

gave rise to ONNs [20], They have both linear and 

nonlinear operators and are heterogeneous networks. 

A more accurate portrayal of biological systems is 

made possible by this integration. In addition to 

linear convolutions, ONNs also have pooling and 

nodal processes, which sets them apart from 

convolutional neurons. Think about the kth neuron 

in a 1D CNN's lth layer. For simplicity's sake, let's 

assume that the convolution method has a unit step 

and the suitable amount of padding. The following 

represents this neuron's output: 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑥𝑖𝑘
𝑙𝑁𝑙−1

𝑖=0
    

                    

The output of the 𝑘 − 𝑡ℎ neuron in the  𝑙 − 𝑡ℎ layer, 

denoted as 𝑏𝑘
𝑙 , is affected by the bias associated with 

this neuron. The input to this neuron, 𝑥𝑖𝑘
𝑙  is given by: 

𝑥𝑖𝑘 
𝑙  𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘 , 𝑦𝑖

𝑙−1) 

In this equation, conv1D represents the 1-D 

convolution operation, 𝑤𝑖𝑘 convolutional kernel or 

weight associated with the neuron, and 𝑦𝑖
(𝑙−1)

 is the 

output from the previous layer. In this context, 

𝑤𝑖𝑘  ∈  𝑅𝐾 represents the kernel connecting the ith 

neuron in the (𝑙 − 1)th layer to the kth neuron in the 

lth layer. 𝑥𝑖𝑘
𝑙 ∈ 𝑅𝑀 denotes the input map for the kth 

neuron in the lth layer, while 𝑦𝑖
𝑙−1  ∈ 𝑅𝑀 represents 

the output of the ith neuron in the (𝑙 − 1)th layer. The 

convolution operation for this neuron can be 

described as: 

𝑥𝑖𝑘
𝑙 (𝑚) = ∑ 𝑤𝑖𝑘 

𝑙 (𝑟)𝑦𝑖
𝑙−1(𝑚 + 𝑟)

𝑘−1

𝑟=0

 

In contrast, the core concept behind an operational 

neuron generalizes this process as follows: 

𝑥𝑖𝑘
𝑙 (𝑚) = 𝑃𝑘

𝑙 (𝜓𝑘
𝑙 (𝑤𝑖𝑘

𝑙 (𝑟)𝑦𝑖
𝑙−1(𝑚 + 𝑟)))

𝑟=0

𝑘−1
 

 

Where 𝜓𝑘
𝑙 (⋅): 𝑅𝑀×𝑘 → 𝑅𝑘 and 𝑃𝑘

𝑙 (⋅): 𝑅𝑘 → 𝑅1are 

referred to as The k-th neuron in the l-th layer is 

responsible for the nodal and pooling functions, 

respectively. Each neuron in a heterogeneous ONN 

setup is equipped with unique 𝜓 𝑎𝑛𝑑 𝑃 operators, 

providing the network with the flexibility to apply 

various nonlinear transformations tailored to 

specific learning tasks. Manually creating a suitable 

library of operators and choosing the best one for 

each neuron can lead to significant overhead. This 

challenge becomes increasingly complex as the 

networks size and complexity grow. Convolutional 

functions may not always be able to represent the 

optimum operator for a given learning issue. To 

overcome this constraint, a composite nodal 

function that can be repeatedly built and improved 

during backpropagation is necessary. One method 

for addressing this issue is to employ weighted 

combination operators from a preset set library, 

with the weights changed during training. 

However, this solution may experience stability 

issues due to the functions' various dynamic ranges, 

and it still requires human function selection for the 

operator set library. To solve these issues, we 

suggest using a Taylor-series-based function 

approximation to nodal transformation. This 

solution eliminates the requirement for operator 

preselection and manual assignment. Equation (11) 

illustrates the possibility of writing the Self-ONN 

formulation from (10) as the sum of Q distinct 

convolutional processes. Additionally, equation 

(12) demonstrates that a matrix-vector product can 

be used to define a convolutional process. Instead 

of describing the transformation in (11) as Q 

different processes. These two formulations allow 

us to express it as a single matrix-vector product 

and, ultimately, as a single convolution operation. 

 We clarify 𝑦𝑖
𝑙−1 (𝑄)

∈ 𝑅𝑀×𝑘𝑄   as: 

 

𝑌𝑖
𝑙−1(𝑄)

= [ 𝑌𝑖
𝑙−1 (𝑌𝑖

𝑙−1)
02

… . . (𝑌𝑖
𝑙−1)

0𝑄

] 

 

Where 𝑜𝑛 denoting the Hadamard exponentiation 

operator, the  𝑚𝑡ℎ row of 𝑌𝑖
𝑙−1(𝑄)

 can be expressed 

https://irjaeh.com/
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as follows: 

 
With this approach, we can reduce the complexity of 

the nodal transformation to a single matrix-vector 

product by expressing it as a single convolution 

operation. 

2.1 Disadvantages 

• The network`s performance declines when 

using a more compact configuration. 

• The effectiveness of CNNs is restricted by their 

strictly homogeneous architecture. 

3. Proposed Method 

Many R-peak detectors have been developed, 

however when applied to noisy and low-quality 

data from portable ECG devices, like Holter 

monitors, their performance usually decreases. 

Operational Neural Networks (ONNs): These 

networks combine various nonlinear operators into 

a heterogeneous design to solve this issue. Using 

generative neurons in 1-D Self-Organized ONNs 

(Self-ONNs) to improve peak detection 

performance while preserving processing 

efficiency is the aim of this work. One of the main 

benefits of 1-D Self-Organized ONNs over 

conventional ONNs is their capacity for self-

organization. Therefore, it is no longer necessary to 

predefine the ideal operator set for every neuron. 

Every generating neuron, instead, actively chooses 

the most effective operator throughout the training 

phase. We will first go over how ONNs enhance the 

1-D convolution method in this section. We will 

next go over the mathematical framework for the 

suggested 1-D Self-ONN based on generative 

neurons (Figure 2).  

 
 

 
Figure 2 Flow of Proposed Method 

 

In conclusion, we will showcase a generative neuron 

simplification that significantly lowers computing 

expenses by enabling effective vectorized 

operations. On the other hand, ONNs are generated 

from GOPs with two major limitations: weight 

sharing and restricted connection, much like CNNs 

https://irjaeh.com/
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emerge from MLPs. In order to address the well-

known drawbacks of Multilayer Perceptions, 

Generalized Operator Networks [17] were put out as 

a sophisticated substitute for the fundamental linear 

neuron model that McCulloch and Pitts [16] first 

presented in the 1950s. Power Spectral Density 

(PSD) calculates a signal's power distribution across 

a range of frequencies. Analyzing the PSD of an 

ECG signal can be very helpful in locating prominent 

frequency components, which can help with 

arrhythmia identification. Extreme Learning 

Machines (ELMs) have recently been surpassed by 

Multi-Layer Perceptions (MLPs) and Generalized 

Operator Networks (GOPs) [19]. Because they are 

directly descended from GOPs and are 

heterogeneous networks that integrate both linear 

and nonlinear operators, Operational Neural 

Networks (ONNs) [20] are more like biological 

systems. In conclusion, by combining both nodal and 

pooling operators, ONNs surpass the linear 

convolutions utilized in conventional convolutional 

neurons. Take the k-th neuron in the l-th layer of a 1-

D CNN, for instance. The output of this neuron, 

assuming a typical convolution process with unit 

stride and sufficient zero padding, can be written as 

follows: 

 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑥𝑖𝑘
𝑙

𝑁𝑙−1

1=0

 

 

Where 𝑏𝑘 
𝑙 is the bias term associated with this neuron 

and 𝑥𝑖𝑘
𝑙  is expressed as 

 
𝑥𝑖𝑘 

𝑙  conv1D(𝑤𝑖𝑘 , 𝑦𝑖
𝑙−1) 

 

Here, 𝑦𝑖
(𝑙−1)

∈ 𝑅𝑀 represents the output of the i-th 

neuron in the (𝑙 − 1)th layer, and 𝑤𝑖𝑘 ∈  𝑅𝐾 denotes 

the Kernel connecting the i-th neuron of the (𝑙 − 1)-

th layer to the 𝑘 − 𝑡ℎ neuron of the 𝑙 − 𝑡ℎ layer. The 

input map is given by 𝑥𝑖𝑘
𝑙  ∈ 𝑅𝑀. The convolution 

operation can be defined in the following manner: 

 

𝑥𝑖𝑘
𝑙 (𝑚) = ∑ 𝑤𝑖𝑘 

𝑙 (𝑟)𝑦𝑖
𝑙−1(𝑚 + 𝑟)

𝑘−1

𝑟=0

 

 

The core concept of an operational neuron extends 

the previous approach as follows: 

𝑥𝑖𝑘
𝑙̅̅ ̅̅ (𝑚) = 𝑃𝑘

𝑙 (𝜓𝑘
𝑙 (𝑤𝑖𝑘

𝑙 (𝑟)𝑦𝑖
𝑙−1(𝑚 + 𝑟)))

𝑟=0

𝑘−1
 

 

Where the 𝑘 − 𝑡ℎ neuron in the 𝑙 − 𝑡ℎ layer is 

assigned a nodal function 𝜓𝑘
𝑙 (⋅): 𝑅𝑀×𝑘 → 𝑅𝑘 and a 

pooling function𝑃𝑘
𝑙 (⋅): 𝑅𝑘 → 𝑅. Each neuron in a 

heterogeneous ONN configuration has its own 

unique set of 𝜓 𝑎𝑛𝑑 𝑃 operators. This allows the 

ONN network to incorporate any nonlinear 

transformation that is suited to the specific learning 

problem. The Results are shown in Figure 3 to 6. 

The burden associated with manually creating an 

appropriate library of potential operators and 

finding the best one for every neuron in a network, 

however, is substantial and increases exponentially 

with network complexity. Moreover, for the 

specific learning scenario, it's possible that no ideal 

operator exists that can be characterized in terms of 

well-known functions. This important limitation 

can be overcome by continuously creating and 

modifying a composite nodal function throughout 

BP. The operator learns the weights and constructs 

the library using a weighted combination of each 

operator in training. Would be a simple way to 

accomplish this. But since every function has a 

unique dynamic range, this method might cause 

instability problems. Furthermore, it would still be 

dependent on the operator set library being 

populated manually with appropriate functions. 

Consequently, we utilize a function approximation 

based on Taylor series to design a nodal 

transformation that does away with the requirement 

for preselection and operator assignment by hand. 

Equation (11) illustrates how Q separate 

convolutional procedures can be summarised to 

produce the Self-ONN formulation (10). 

Furthermore, a matrix-vector product can be used 

to represent a convolutional process according to 

equation (12). Instead of representing the 

transformation of (11) as Q-separate operations, we 

currently use these two formulations to indicate it 

as a single convolution operation, which can be 

simplified to a single matrix vector product. To 

https://irjaeh.com/
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commence, we present 𝑦𝑖
𝑙−1 (𝑄)

∈ 𝑅𝑀×𝑘𝑄 such that  

𝑦𝑖
𝑙−1(𝑄) =    𝑦𝑖

𝑙−1
(𝑦𝑖

𝑙−1)
𝑜2

⋅ ⋯ (𝑦𝑖
𝑙−1)

0𝑄 

Where 𝑜𝑛 denoting the Hadamard exponentiation 

operator, the  𝑚𝑡ℎ row of 𝑌𝑖
𝑙−1(𝑄)

 can be expressed as 

follows: 

 

 

3.1 Advantage 

• Performance remains consistent even when 

using a compact network configuration. 

• Performance of ONNs is not limited even when 

strictly homogenous configuration is used  

3.2 Applications 

•  Bio-Medical Signal Processing 

•  Wearables 

•  Bio-Medical Applications and  

•  Bio-Medical Diagnosis. 

4. Results and Tables 

  

 
Figure 3 Existing Method       

 
Figure 4 Existing Method 

 

 
Figure 5 Proposed Method 

 
Figure 6 Proposed Method 

4.1 Table 

Fig 5: As can be seen from the above table, the 

suggested technique has identified fewer peaks than 

the current method, indicating a lower false 

detection rate. The current method has identified 

more peaks that were not true peaks. 

https://irjaeh.com/
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Table 1 Detected Peaks 

 
 

Conclusion 

After the implementation of PSD for the previous 

implementation, the detection of R peaks has been 

improved. Not only it provided better detection rate 

but it is even easier than the existing methods. The 

implementation that consists of PSD was more 

robust than the existing methods.  
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