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Abstract 

Skin cancer is a critical global health issue, where early detection significantly improves treatment outcomes. 

In this review paper, titled Exploratory Analysis of Skin Cancer Dermatoscopic Image Datasets and 

Classification Methods, we systematically explore the intersection of artificial intelligence (AI) and skin 

cancer diagnosis. Our approach began with a detailed literature survey of 40 research studies, providing 

insights into advancements and challenges in AI-based classification methods. This survey emphasizes the 

role of machine learning algorithms, particularly convolutional neural networks (CNNs), and datasets such 

as HAM10000, ISIC 2019, and ISIC 2024 in improving diagnostic performance. Next, we conducted 

exploratory data analysis (EDA) on the HAM10000, ISIC 2019, and ISIC 2024 datasets, uncovering critical 

patterns related to lesion distribution, anatomical sites, and demographic factors. These analyses highlight 

biases and imbalances in the datasets, which are crucial to address for robust model training. Finally, we 

discuss the creation and evaluation of a machine learning model trained on a separate dataset. Initial 

experiments revealed challenges such as overfitting and class imbalance. Through advanced data 

augmentation techniques and the integration of an Augmentor pipeline, we mitigated these issues, achieving 

improved accuracy and generalizability. This paper provides a comprehensive framework for integrating 

literature insights, dataset analysis, and iterative model improvement to develop effective AI-based solutions 

for skin cancer detection. It underscores the importance of addressing dataset biases, adopting diverse 

datasets, and refining methodologies to advance AI applications in dermatology. 

Keywords:  AI for dermatology; Convolutional neural networks; Data augmentation; Dermatoscopic image 

analysis; Exploratory data analysis.

 

1. Introduction  

Artificial intelligence (AI) has garnered significant 

attention in recent years for its potential to enhance 

skin cancer detection from dermoscopic images. 

Early detection is crucial for effective skin cancer 

treatment, and AI-driven models, especially those 

utilizing deep learning techniques such as 

convolutional neural networks (CNNs), have 

demonstrated accuracy rates exceeding 90%. These 

models provide dermatologists with a valuable tool to 

distinguish between benign and malignant tumors 

with high precision. While various methods, such as 

Support Vector Machines (SVMs) and K-Nearest 

Neighbors (KNNs), have been explored for skin 

cancer classification, CNNs remain the most 

commonly employed due to their ability to identify 

complex patterns in image data. These models have 

been trained and evaluated on several publicly 

available datasets, including the ISIC Archive, 

HAM10000, and specialized datasets, which allow 

for the comparison of model performance across 

different image types. Recent research has expanded 

AI models to include more diverse datasets, such as 
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clinical images from smartphones and hyperspectral 

imaging, aiming to increase their applicability to real-

world scenarios. Papers have utilized datasets like the 

ISIC, HAM10000, PH2, and hyperspectral skin 

cancer images, enabling the training of advanced 

models such as the AICO self-feature selected ECNN 

and 34-layer ResNet. These datasets are critical in 

ensuring the robustness of the models across different 

skin cancer categories Despite these advancements, 

challenges such as the need for more varied datasets, 

improving AI decision-making interpretability, and 

addressing biases remain. There are also concerns 

about the generalizability of AI models in real-world 

clinical settings, as highlighted in studies using 

datasets like MIDAS. Overcoming these challenges 

is essential for integrating AI techniques into clinical 

practice. Overall, AI holds significant promise for 

improving the accuracy and efficiency of skin cancer 

diagnostics, though further research is needed to 

address the remaining issues and ensure its successful 

application in medical practice. [1] 

2. Literature Survey 

Datasets play a crucial role in the development and 

validation of machine learning models for skin cancer 

detection. The availability of diverse and well-

curated datasets enables researchers to train models 

that can accurately distinguish between benign and 

malignant lesions. In recent years, several high-

quality datasets, such as the ISIC, HAM10000, and 

other specialized collections, have been utilized to 

train advanced models, including convolutional 

neural networks (CNNs) and decision trees. These 

datasets, often accompanied by metadata like biopsy-

proven diagnoses and dermoscopic images, provide 

the foundation for robust image classification 

systems. This section provides a literature survey 

summarizing recent studies that have leveraged 

different datasets for skin cancer detection and 

highlights the methodologies and outcomes of each. 

The paper [1] focuses on leveraging two prominent 

datasets, the ISIC dataset and the MNIST dataset, for 

skin cancer detection. The ISIC dataset contains 

10,015 dermoscopic images encompassing a wide 

array of diagnostic categories crucial for identifying 

skin cancer. On the other hand, the MNIST dataset 

consists of 2,357 images, including both malignant 

and benign oncological cases. The datasets were 

instrumental in training the AICO self-feature 

selected ECNN model, which was mathematically 

formulated in the research. The images from the ISIC 

dataset were classified based on the standard ISIC 

classification, ensuring equal representation across 

subsets, except for a slightly higher proportion of 

images related to melanomas and moles. Prior to 

being processed by the model, the images underwent 

pre-processing techniques such as morphological and 

blur filters, which effectively minimized noise and 

removed artifacts from the input data. To evaluate the 

model’s performance, several key metrics were used, 

including accuracy, critical success index (CSI), false 

positive rate (FPR), and false negative rate (FNR). 

The comprehensive use of these datasets, along with 

robust pre-processing and evaluation metrics, 

highlights the significance of dataset selection and 

processing in achieving reliable skin cancer detection 

results. The paper [2] makes use of an extensive 

dataset comprising 129,450 clinical images, 

representing 2,032 different diseases. The dataset, 

significantly larger than those used in previous 

research, includes images from a variety of open-

access sources, such as the ISIC Dermoscopic 

Archive, the Edinburgh Dermofit Library, and data 

from Stanford Hospital. Importantly, these images 

are biopsy-proven, ensuring a high level of reliability 

for the classification tasks undertaken by the CNN. 

During the training process, blurry or distant images 

were excluded from the test and validation sets but 

were still utilized for training. Additionally, careful 

attention was given to avoid splitting images of the 

same lesion (captured from multiple angles) between 

the training and validation sets, ensuring the integrity 

of the test data. The test sets were derived from 

independent, high-quality repositories of biopsy-

proven images, with no overlap between the test and 

training/validation data. The model was trained using 

transfer learning, building on features learned from 

the ImageNet dataset, which contains 1.28 million 

images. This approach enabled the CNN to leverage 

pre-trained natural image features, improving its 

capability to classify dermatological conditions. The 

paper [3] leverages a hyperspectral skin cancer 

dataset consisting of 76 images of skin lesions from 
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61 subjects, with 40 benign and 36 malignant lesions. 

The images were captured using a snapshot camera 

(Cubert UHD, Cubert GmbH), covering the 450-950 

nm range across 125 spectral channels. The dataset 

was collected in collaboration with two hospitals in 

the Canary Islands, Spain: Hospital Universitario de 

Gran Canaria Doctor Negrin and Complejo 

Hospitalario Universitario Insular-Materno Infantil. 

Expert dermatologists and pathologists labeled the 

images according to a defined taxonomy, ensuring 

accurate classification. The study utilized this dataset 

to test Support Vector Machine (SVM), Random 

Forest (RF), and eXtreme Gradient Boosting (XGB) 

algorithms, both in serial and parallel modes, to 

classify the hyperspectral images. In addition to 

classification performance, the study measured the 

average classification time for each algorithm, 

demonstrating significant improvements in 

diagnostic speed through the application of 

hyperspectral imaging and machine learning 

techniques. This highlights the potential for 

accelerated medical diagnoses using advanced image 

processing methods. The paper [4] utilizes the 

HAM10000 dataset, which comprises images of skin 

lesions classified into seven categories: actinic 

keratosis, basal cell carcinoma, benign keratosis, 

dermatofibroma, melanocytic nevi, melanoma, and 

vascular lesions. The dataset was primarily used to 

evaluate the performance of the DUNEScan 

application, focusing on the most common malignant 

and benign lesion types: melanoma and melanocytic 

nevi. The training dataset was derived from the 

International Skin Imaging Collaboration (ISIC) 

archive, containing a total of 23,900 skin lesion 

images, including 2,287 malignant and 21,613 benign 

lesions. To address class imbalance, the paper 

randomly sampled 10,000 benign lesion images and 

combined them with all available malignant lesion 

images, forming a meta dataset for the analysis. The 

meta dataset was then split into an 80-20 train-test 

ratio, ensuring balanced representation of benign and 

malignant cases in the test set. A fivefold cross-

validation approach was adopted during training, 

dividing the training set into five groups to 

comprehensively assess the loss and accuracy of the 

CNN model. This approach ensured robust 

evaluation, providing insights into the model’s 

performance across multiple subsets of the dataset. 

The paper [5] utilizes a combination of 22 microarray 

datasets and 5 RNA-seq datasets, containing samples 

related to multiple skin pathological states (SPSs) 

associated with skin cancer. The datasets are 

integrated to enhance the analysis of gene expression 

and to identify differentially expressed genes (DEGs) 

across various SPSs. Each dataset undergoes a 

preprocessing phase that includes quality analysis to 

remove potentially erroneous samples, ensuring the 

integrity of the data used for analysis. The integration 

process involves summarizing expression values of 

genes with the same identifier and correcting for 

batch effects to achieve effective data integration. 

The analysis employs a cross-validation approach, 

splitting the integrated dataset into training and 

testing sets to ensure representativeness of each SPS. 

The paper emphasizes the importance of selecting 

informative DEGs through feature selection 

algorithms, which reduces the search space and 

improves the reliability of the results. The paper [6] 

uses the International Skin Imaging Collaboration 

(ISIC) database, which contains over 20,000 labeled 

dermoscopic images. The ResNet model was trained 

on more than 12,000 images from this database to 

classify dermoscopic images of melanocytic lesions 

as benign or malignant. The performance of 

dermatologists was assessed using 200 test images, 

where they were asked to make biopsy/treat or 

reassure decisions similar to previous studies. The 

dataset’s strict quality standards ensure the reliability 

of the training and testing processes. This paper 

emphasizes the importance of a well-curated dataset 

in training machine learning algorithms, ultimately 

improving diagnostic accuracy in dermatology. The 

paper [7] utilizes the HAM10000 dataset, which 

contains images of pigmented lesions categorized 

into seven diagnostic categories: malignant 

(melanomas, basal cell carcinomas, actinic keratoses, 

and intraepithelial carcinomas) and benign 

(melanocytic nevi, benign keratinocytic lesions, 

dermatofibromas, and vascular lesions). The dataset 

was used to train a convolutional neural network 

(CNN), specifically a 34-layer residual network 

(ResNet34), for lesion classification. The training of 
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the CNN was performed on NVIDIA graphics 

processing units (GPUs) using the Pytorch 

framework. The mean recall of the CNN across all 

disease categories was reported to be 77.7, with an 

accuracy of 80.3 when tested on a publicly available 

benchmark test set. Additionally, the study analyzed 

images collected from a randomized controlled trial 

on self-examinations in high-risk patients, where 

participants submitted self-made photographs of 

suspicious lesions for telediagnosis. In total, 1,521 

self-made photographs of 596 suspicious lesions 

were analyzed, although the CNN was primarily 

trained on curated images of pigmented lesions. The 

paper [8] discusses various datasets used in previous 

studies for skin cancer diagnosis, specifically 

highlighting the International Skin Imaging 

Collaboration (ISIC) dataset from 2020. This dataset 

includes images of different skin cancer categories 

such as actinic keratosis, basal cell carcinoma, 

dermatofibroma, melanoma, nevus, seborrheic 

keratosis, squamous cell carcinoma, and vascular 

lesions. The dataset comprises a total of 2,357 

dermoscopic images, which contain both malignant 

and benign oncological disease images, with a slight 

dominance of melanoma and mole images. The paper 

emphasizes the importance of dataset availability for 

training machine learning and deep learning 

algorithms, noting that a lack of diverse datasets can 

lead to subpar model performance. It also mentions 

that some datasets do not include benign lesions, 

which are common in dermatological practice, 

potentially leading to missed skin cancer diagnoses. 

To address dataset imbalances, researchers are 

employing data augmentation techniques such as 

cropping, rotation, and filtering to increase the 

number of training images. In this paper [9] it utilizes 

the 2012 TTQS (Taiwan TrainQuali System) central 

Taiwan review database to explore human training 

quality and identify critical assessment indicators for 

the TTQS. The dataset is analyzed using back-

propagation neural networks to evaluate 

classification accuracy and performance, achieving 

prediction accuracies greater than 95% for both 

training and testing samples. Additionally, the study 

employs K-Means clustering analysis to identify 

critical indicators selected by the decision tree 

algorithms. The decision tree algorithms analyzed 

include C5.0, CART, and CHAID, with C5.0 

demonstrating the highest accuracy rate of 89.41%. 

The dataset is processed to facilitate analysis, 

including scaling of variable value fields to ensure 

efficient data processing. The paper [10] utilizes the 

Melanoma Research Alliance Multimodal Image 

Dataset for AI-based Skin Cancer (MIDAS), the 

largest publicly available dataset containing paired 

dermoscopic and clinical images of biopsy-proven, 

dermatopathology-labeled skin lesions. The dataset 

includes 3830 images representing 1290 unique 

lesions from 796 patients, collected under an IRB-

approved protocol with informed consent. The 

images cover a wide diagnostic range, including 

malignant, benign, and inflammatory lesions, such as 

melanocytic nevi, invasive cutaneous melanomas, 

and melanoma in situ. One of the unique aspects of 

MIDAS is its ability to assess the performance of AI 

algorithms on real-world clinical images, which is 

crucial for determining their effectiveness in practical 

settings.  In this paper, four state-of-the-art AI 

models, previously published and widely recognized 

for their high performance in skin cancer detection, 

were evaluated using the MIDAS dataset. The results 

demonstrated a notable decrease in model 

performance when applied to this dataset, 

highlighting the ongoing challenge of 

generalizability in AI-based diagnostic systems. The 

difficulty AI models faced in maintaining their 

accuracy with the MIDAS dataset suggests that real-

world variations in clinical and dermoscopic images 

can significantly impact model efficacy. In the paper 

[11], the PH2 dataset is utilized to evaluate the 

performance of the proposed melanoma detection 

system. The dataset contains 100 dermoscopic 

images, with 80 images used for training and 20 

images for testing. The dataset is employed to train 

and test a Support Vector Machine (SVM) classifier, 

where features such as color, shape, and texture are 

analyzed to classify the skin lesions as either normal 

or melanoma. The performance of the system is 

evaluated using metrics such as sensitivity, 

specificity, and accuracy, calculated based on the 

PH2 dataset. [2-5]
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3. Overview of Datasets and Methodologies 
 

Table 1 Overview of Datasets 
Paper Dataset Number of 

Images 

Methods/Algorithms Additional Insights/Implications 

1 ISIC dataset, MNIST 

dataset 

12,372 AICO self-feature selected 

ECNN 

Highlights the importance of 

dataset diversity in training. 

2 ISIC Dermoscopic 

Archive, Edinburgh 

Dermofit Library, 

Stanford Hospital Data 

129,450 CNN with transfer learning 

from ImageNet 

Emphasizes robustness through 

large, biopsy-proven datasets. 

3 Hyperspectral skin 

cancer dataset 

76 SVM, RF, XGB Demonstrates improved 

diagnostic speed through 

advanced imaging. 

4 HAM10000 dataset 23,900 CNN (DUNEScan 

application) 

Focuses on uncertainty 

estimation in skin cancer 

detection. 

5 22 microarray datasets, 

5 RNA-seq datasets 

N/A Feature selection algorithms Integrates diverse data types to 

enhance gene expression 

analysis. 

6 International Skin 

Imaging Collaboration 

(ISIC) database 

20,000+ ResNet Stresses the importance of high-

quality, labeled datasets. 

9 TTQS central Taiwan 

review database 

N/A Back-propagation neural 

networks, K-Means, C5.0, 

CART, CHAID 

Identifies critical assessment 

indicators for training quality. 

10 MIDAS dataset 3,830 Four state-of-the-art AI 

models 

Assesses generalizability of AI 

algorithms in real-world 

scenarios 

11 PH2 dataset 100 SVM Evaluates feature importance in 

melanoma detection. 

4. Dataset Insights with Visualization 

4.1. HAM10000 Dataset 

 

 
Figure 1 Sample Images (HAM10000) 

• Full Name: Human Against Machine with 

10,000 training images (HAM10000) 

• Description: The HAM10000 dataset contains 

10,015 dermatoscopic images, including images 

of various common pigmented skin lesions. 

• Lesion Types: Seven types of skin lesions 

including melanoma (mel), benign keratosis-like 

lesions (bkl), and dermatofibroma (df). 

• Sample Size: 10,015 images Figure 1 shows 

Sample Images (HAM10000) 

4.2. Visual Insights from HAM10000 Dataset 

4.2.1. Lesion Type Distribution 

• Nevus (NV) is the most common lesion type, 

accounting for 66.9% of cases, followed by 

Melanoma (Mel) and Benign Keratosis-like 

Lesions (BKL), each representing around 
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11% of cases. The presence of malignant 

lesions such as melanoma highlights the 

critical need for accurate classification 

models. 

• Less frequent lesion types, such as Basal 

Cell Carcinoma (BCC) (5.1%), Actinic 

Keratosis (AKIEC) (3.3%), Vascular 

Lesions (VASC) (1.4%), and 

Dermatofibroma (DF) (1.1%), emphasize 

the dataset's variety and the importance of 

training models to detect rare lesions. 

Figure 2 shows Lesion Type Distribution 

(HAM10000) [6-10] 

 

 
Figure 2 Lesion Type Distribution   

 (HAM10000) 
 

4.2.2. Lesion Localization Distribution 

 

 
Figure 3 Lesion Location Distribution    

(HAM10000) 

• Lesions are most frequently located on the lower 

extremity (21.9%) and the back 

• 20.7%). These locations are common sites for 

both benign and malignant lesions, especially 

melanoma. Figure 3 shows Lesion Location 

Distribution    (HAM10000) 

• The trunk (14%), upper extremity (11.2%), 

and abdomen (10.2%) are also significant sites, 

providing a diverse set of lesion localizations, 

crucial for improving model accuracy in various 

body areas. Figure 4 shows Lesion Type by 

Gender (Ham10000) 

• Less common sites like the foot, face, and chest 

demonstrate that the dataset covers a wide range 

of lesion locations, although with lower 

prevalence. [11] 

4.2.3. Gender Distribution of Lesion Types 

 

 
Figure 4 Lesion Type by Gender (Ham10000) 

 

While Nevus (NV) is the most common lesion type 

across both genders, it is slightly more, prevalent in 

females (34.2%) compared to males. 

1. AgeDistribution:  

 

 
Figure 5 Age Distribution (Ham10000) 
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• The mean age of patients is 51.9 years, with a 

majority of lesions occurring in patients between 

30 and 70 years old. The dataset is skewed 

toward older individuals, who are at higher risk 

for developing skin cancers like melanoma. 

• The right-skewed distribution reflects the 

increased likelihood of skin lesions, especially 

malignant ones, in older adults, reinforcing the 

importance of early detection strategies for this 

age group. [13] 

4.3. ISIC 2019 Dataset                                

Full Name: International Skin Imaging Collaboration 

(ISIC) 2019 Challenge Dataset 
• Description: The ISIC 2019 dataset includes over 

25,000 dermatoscopic images for the detection of 

melanoma and other skin lesions. It was used as 

part of a global challenge for melanoma 

detection. Figure 6 Sample Images shows (ISIC 

2019) 

• Lesion Types: Eight categories of skin lesions, 

including melanoma and various benign and 

malignant lesions. 

• Sample Size: 25,331 images 

 

 
Figure 6 Sample Images (ISIC 2019) 

4.4. Visual Insights from ISIC 2019 Dataset 

4.4.1. Age Approximation Distribution of 

Patients 

The ISIC 2019 dataset provides a comprehensive age 

distribution ranging from 0 to 90 years, making it a 

robust resource for studying the correlation between 

age and skin cancer occurrence. 

• Peak Age Range: The majority of cases fall 

within the 45 to 50-year range, highlighting that 

middle-aged adults are the most affected 

demographic. The Kernel Density Estimation 

(KDE) curve peaks in this age group, 

emphasizing a high concentration of lesions 

during this phase of life. Figure 7 shows Age 

Distribution (ISIC 2019) [12] 

• Fewer Younger and Elderly Patients: The dataset 

shows a relative scarcity of cases in younger and 

older patients, underlining the need for better 

screening efforts in these age groups. This skew 

suggests that while skin cancer primarily impacts 

middle-aged adults, it’s important to extend 

research and prevention efforts to younger and 

elderly populations, who may face unique risk 

factors. Figure 8 shows Anatomical Sites 

Distribution  (ISIC 2019) 

 

 
Figure 7 Age Distribution (ISIC 2019) 

 

This age distribution insight underscores the critical 

need for targeted screening programs aimed at 

middle-aged adults, with additional emphasis on 

encouraging early detection practices across all age 

groups. 

4.4.2.Distribution of Anatomical Sites 

 

 
Figure 8 Anatomical Sites Distribution   

(ISIC 2019) 
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An analysis of lesion localization reveals key 

anatomical sites where skin lesions most commonly 

appear, which is vital for targeted diagnostic 

approaches 

• Anterior Torso: The most frequently affected 

area, with 6,915 instances, indicates that the 

torso, a typically sun-exposed region, is prone 

to developing skin lesions, especially 

melanoma. Clinicians should prioritize this 

area during examinations. 

• Lower and Upper Extremities: Together, the 

lower extremity (4,990 instances) and upper 

extremity (4,587 instances) account for a 

significant portion of lesions. These areas, 

often exposed to sunlight, highlight the 

importance of limb monitoring in routine skin 

examinations. Figure 9 shows Correlation of 

Anatomical Sites and Gender (ISIC 2019) 

• Less Common Sites: Areas such as the 

oral/genital regions (398 cases) and lateral 

torso (59 cases) have fewer occurrences, but 

their presence in the dataset reflects the need 

to consider atypical anatomical sites in 

clinical diagnostics. [14] 

This distribution insight demonstrates that focusing 

on high-frequency areas like the torso and limbs, 

while remaining vigilant about less common 

locations, is key for effective lesion detection. 

 

4.5. Correlation Between Anatomical Site and 

Gender 

 

 
Figure 9 Correlation of Anatomical Sites and 

Gender (ISIC 2019) 

The ISIC 2019 dataset reveals important gender-

based differences in lesion localization, which can 

guide the development of more personalized 

diagnostic models 

• Anterior Torso: Exhibits a gender disparity, with 

3,932 cases in females and 2,918 cases in males. 

This suggests that females may be more prone to 

developing lesions in this region, possibly due to 

lifestyle or biological factors, necessitating 

targeted screening. 

• Upper Extremities: With a relatively even 

distribution between females (2,027 cases) and 

males (1,923 cases), the upper extremities emerge 

as a critical site for monitoring lesions in both 

genders. 

• Head/Neck Region: Notably, head/neck lesions 

are more common in females (241 cases) than in 

males (152 cases). This could be linked to gender-

specific factors such as cosmetic use or sun 

protection practices, highlighting the need for 

gender-sensitive awareness campaigns. 

• Palms/Soles and Oral/Genital Areas: These 

regions, while less frequent across both genders, 

underscore the necessity for thorough and 

inclusive skin examinations that cover even rare 

anatomical sites. 

The gender-based insights emphasize the need for 

personalized diagnostic and prevention strategies that 

cater to the specific lesion distribution patterns 

observed in males and females. [15] 

4.6. ISIC 2024 Dataset 

• Full Name: ISIC 2024: Skin Lesion 

Segmentation Challenge (SLICE-3D) 

• Description: The ISIC 2024 dataset, also known 

as SLICE-3D, is a novel dataset that focuses on 

3D dermatoscopic imaging for skin lesion 

analysis. It provides dermoscopic images that are 

used for advanced lesion segmentation and 

classification tasks. This dataset represents the 

cutting edge of skin lesion analysis, emphasizing 

volumetric imaging techniques. 

• Lesion Types: The dataset includes both benign 

and malignant lesions, primarily focusing on 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 02 Issue: 12 December 2024 

Page No: 2781- 2795 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2024.0385 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

2789 

 

 

melanoma and keratosis, but with greater 

emphasis on lesion structure through 3D imaging. 

• Sample Size: As the ISIC 2024 dataset is 

relatively new and focused on 3D segmentation, 

the number of samples is still growing, but early 

reports suggest over 10,000 3D dermoscopic 

images. Figure 10 shows Sample Images (ISIC 

2024) 

 

 
Figure 10 Sample Images (ISIC 2024) 

4.7. Visual Insights from ISIC 2024 Dataset 

4.7.1. Age Distribution 

• The age distribution in ISIC 2024 follows a 

bimodal pattern, with notable peaks at age 20 and 

age 50, suggesting that both younger adults and 

middle-aged individuals are particularly affected.   

• The mean age is 47.8 years, while the median age 

is 50.0 years, indicating a slight skew toward 

middle age. 

• This pattern highlights the necessity of age-

targeted screening and awareness programs, 

particularly focusing on both younger adults and 

individuals approaching middle age, who may 

otherwise overlook skin health concerns. 

4.7.2. Lesion Location Distribution 

• The lower extremities (19.8%) and torso (anterior 

torso at 17.1% and posterior torso at 16.7%) 

dominate as the most common lesion sites. This 

concentration in the trunk and extremities 

underscores the importance of comprehensive 

skin examinations, especially in these regions 

• Upper extremities account for 12.3% of lesions, 

while head/neck regions contribute to 10.8%, 

indicating their relatively high exposure to 

lesions. Figure 11 shows Age Distribution (ISIC 

2024) 

• Less common areas include palms/soles, 

oral/genital regions, and lateral torso, all 

contributing under 1% to the total, suggesting a 

lesser need for routine examinations in these 

areas, though they should not be entirely 

neglected. Figure 12 shows Lesion Location 

Distribution  (ISIC 2024) 

• These findings stress the importance of 

prioritizing frequent examination of the lower 

extremities and torso in clinical practice, 

particularly in high-risk patients. 

 

 
Figure 11 Age Distribution (ISIC 2024) 

 

 
Figure 12 Lesion Location Distribution  

(ISIC 2024) 
 

• Upper extremities account for 12.3% of lesions, 

while head/neck regions contribute to 10.8%, 
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indicating their relatively high exposure to 

lesions. 

• Less common areas include palms/soles, 

oral/genital regions, and lateral torso, all 

contributing under 1% to the total, suggesting a 

lesser need for routine examinations in these 

areas, though they should not be entirely 

neglected. Figure 13  shows Anatomical Sites by 

Gender 

•  (ISIC 2024) 

• These findings stress the importance of 

prioritizing frequent examination of the lower 

extremities and torso in clinical practice, 

particularly in high-risk patients. 

 
Figure 13 Anatomical Sites by Gender 

 (ISIC 2024) 
 

• Lower extremities emerge as the most common 

lesion site across genders, with females (11.1%) 

showing a slightly higher prevalence compared to 

males (8.6%), indicating the potential need for 

gender-specific awareness campaigns focusing 

on areas where women are more affected. 

• For males, anterior torso (9.6%) and head/neck 

(9.4%) areas stand out, suggesting a more 

frequent occurrence of lesions in these regions. 

• The distribution emphasizes the necessity for 

gender-specific diagnostic protocols, where 

screenings for men should focus more on the 

torso and head/neck, and for women, on the lower 

extremities. 

• These anatomical differences reflect potential 

lifestyle or biological factors that may contribute 

to the gender disparity in lesion occurrences, 

pointing toward a more customized approach in 

skin cancer diagnostics. 

4.7.3. Lesion Type by Gender 

• Nevus is the most prevalent lesion type across 

genders, affecting 21.1% of males and 17.8% of 

females, marking it as the most common type of 

skin lesion. The higher rate in males suggests the 

need for more vigilant screening practices for 

men. Figure 14 shows Lesion Type by Gender 

(ISIC 2024) 

• Melanoma, the most dangerous form of skin 

cancer, shows a higher prevalence in males 

(5.0%) than in females (3.6%), underlining the 

need for more aggressive early detection efforts 

and preventative strategies for men. 

 
Figure 14 Lesion Type by Gender  

(ISIC 2024) 

 

• Other types like basal cell carcinoma and 

seborrheic keratosis also exhibit higher rates in 

males, further emphasizing the gender-based 

disparity in lesion types. Figure 14 shows Lesion 

Type by Gender (ISIC 2024) 

• These findings are crucial for designing gender-

focused preventive measures and public health 

campaigns, especially given the higher incidence 

of aggressive skin cancer types in men. 

5. Implementation 

The implementation of the skin cancer classification 

project is divided into multiple phases, each 

addressing specific challenges associated with 

dataset processing, model training, and evaluation. 
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Below, we provide a detailed account of each phase, 

highlighting the methodologies employed and their 

underlying motivations. 

5.1. Dataset Preparation 

The dataset used for this study is the ISIC Dataset, 

comprising dermoscopic images of various skin 

lesions. Given the inherent challenges of medical 

imaging, such as class imbalance and variability in 

image characteristics, several steps were undertaken 

to prepare the dataset for training: 

• Raw Dataset Analysis: The dataset was analyzed 

to understand the distribution of classes, 

revealing significant imbalance among 

categories. 

• Data Augmentation: To enhance model 

generalization, augmentation techniques like 

random flipping, rotation, and zooming were 

applied. These transformations were 

implemented using TensorFlow's RandomFlip, 

RandomRotation, and RandomZoom layers 

within a sequential augmentation pipeline. 

• Class Balancing: To mitigate the effects of class 

imbalance, oversampling techniques were 

applied using Augmentor. Synthetic images were 

generated for minority classes, ensuring a more 

balanced representation in the training dataset. 

5.2. Model Development 

Three different Convolutional Neural Network 

(CNN) models were developed to evaluate the impact 

of augmentation and class balancing on classification 

performance. The models were trained using 

TensorFlow/Keras, and each variation was designed 

to build upon the insights from its predecessor: 

• Baseline CNN:The baseline model serves as 

a foundational approach, with a 

straightforward CNN architecture. It includes 

a series of convolutional layers followed by 

max-pooling layers to extract features, and 

dense layers for classification. The network 

concludes with a softmax activation function 

for multi-class classification. The Adam 

optimizer (learning rate = 0.001) and Sparse 

Categorical Crossentropy loss function were 

used, with accuracy as the primary evaluation 

metric. 

• CNN with Data Augmentation: The second 

model builds upon the baseline by 

incorporating data augmentation techniques. 

These augmentations enhance generalization 

by introducing variability in the training data, 

likely through transformations such as 

horizontal flipping, random rotations, or 

zooming. 

• CNN with Augmentation And Class 

Balancing: The third model addresses class 

imbalance by employing advanced 

augmentation strategies. Techniques such as 

oversampling minority classes or applying 

class-weighted loss functions were utilized to 

balance the dataset, improving the network's 

sensitivity to underrepresented classes. 

5.3. Training and Evaluation 

Each model was trained using the following settings: 

• Optimizer: Adam optimizer with a learning 

rate of 0.001. 

• Loss Function: Sparse Categorical Cross-

entropy, as the target labels were integer-

encoded. 

• Batch Size: 32. 

• Epochs: 25.   

The evaluation metrics included accuracy and 

confusion matrices, with a focus on identifying 

improvements in classification for minority classes. 

Training and validation accuracies were monitored 

across epochs to identify overfitting or underfitting. 

5.4. Results and Findings  

The results demonstrated a clear progression in 

model performance: 

• Baseline CNN: The baseline CNN achieved 

moderate training and validation accuracy, 

serving as a reference point for evaluating the 

impact of data augmentation and class imbalance 

techniques. While the training accuracy steadily 

improved, the validation accuracy plateaued 

early, indicating potential overfitting. This 

suggests the need for techniques to enhance the 

model's generalization capabilities. Figure 15 

Accuracy Graph for Baseline Model 
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Incorporating data augmentation led to noticeable 

improvements in model performance. The 

transformations introduced variations in the training 

data, preventing overfitting and enhancing 

generalization to unseen data. The validation 

accuracy increased compared to the baseline model, 

demonstrating the effectiveness of this approach. 

 

 
Figure 15 Accuracy Graph for Baseline Model 

Table 1 Findings of Model 

 

 
Figure 16 Accuracy Graph for Augmented Model 

• CNN with Advanced Augmentation: The third 

model further addressed the class imbalance 

issue, resulting in enhanced performance on 

underrepresented classes. This improvement is 

reflected in the validation accuracy, which not 

only increased but also stabilized across epochs. 

Advanced augmentation techniques and class-

weighted loss functions contributed significantly 

to this progress. Figure 16 Accuracy Graph for 

Augmented Model 

5.5. Key Implementation Challenges 

• Class Imbalance: The ISIC dataset exhibited 

significant class imbalance, which could lead to 

biased model predictions. This was addressed 

through targeted oversampling and evaluation 

strategies. 

• Computational Overhead: The generation of 

augmented and balanced datasets increased 

processing requirements. Strategies like caching 

and prefetching were implemented to optimize 

pipeline efficiency. 

• Evaluation Metrics: Beyond accuracy, metrics 

like precision, recall, and F1-score were crucial to 

assess the model's utility in real-world 

applications. 

5.6.  Software and Tools 

The following tools were employed during 

implementation 

• Programming Language: Python. 

• Libraries: TensorFlow, Keras, Matplotlib, 

Seaborn, and Augmentor. 

• Platform: Google Colab, leveraging GPU 

acceleration for faster training. Figure 17 

Accuracy Graph for Advanced Augmentation 

 
Figure 17 Accuracy Graph for Advanced 

Augmentation 

Model Training 

Accuracy 

Validation 

Accuracy 

Observation 

Baseline CNN 70% 
45% Model is 

overfitting 

CNN with 

Data 

Augmentation 

60% 

50% Overfitting 

addressed but 

at the cost of 

accuracy 

Advanced 

Augmentation 

CNN 

90% 

80% Class 

Balanced, 

Mitigated 

Overfitting 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 02 Issue: 12 December 2024 

Page No: 2781- 2795 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2024.0385 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

2793 

 

 

6. Recent Advances and Future Directions 

The field of skin cancer detection has experienced 

remarkable advancements in recent years, largely 

driven by the rapid evolution of artificial intelligence 

(AI) and machine learning (ML) techniques, 

particularly deep learning models. Early approaches 

in skin cancer classification relied heavily on 

handcrafted features and traditional machine learning 

algorithms, but with the advent of convolutional 

neural networks (CNNs), the accuracy and reliability 

of skin cancer diagnosis have seen dramatic 

improvements. These deep learning models have 

excelled in handling large and complex datasets such 

as those provided by the International Skin Imaging 

Collaboration (ISIC), which contains millions of 

dermoscopic images annotated with detailed lesion 

classifications. A significant recent development is 

the adoption of transfer learning. By using pre-trained 

models like ResNet, Inception, and VGG, researchers 

have been able to overcome the challenge of 

insufficient labeled data in medical image 

classification. Transfer learning allows models to 

leverage knowledge gained from large-scale image 

datasets and fine-tune them for skin cancer detection, 

thereby improving both accuracy and generalization 

with fewer resources. This has enabled skin cancer 

detection systems to achieve near-expert 

performance, with some models even outperforming 

dermatologists in specific tasks.   Data augmentation 

has also played a crucial role in recent advancements, 

particularly when tackling class imbalance in 

datasets. By artificially increasing the diversity of the 

training data through transformations such as 

rotation, scaling, and flipping, models become more 

robust and less prone to overfitting. Furthermore, 

techniques like generative adversarial networks 

(GANs) are being explored to generate synthetic 

images, addressing both class imbalance and the need 

for diverse datasets. This approach holds great 

promise in augmenting existing datasets, particularly 

in regions where annotated medical images are 

scarce. Despite these advancements, challenges still 

persist, particularly in terms of model interpretability. 

While deep learning models have shown great 

accuracy, understanding how these models arrive at 

their predictions remains a hurdle. As AI systems are 

being integrated into clinical workflows, it is 

imperative that these models are not only accurate but 

also transparent and explainable. Recent efforts in 

model interpretability, such as the use of Grad-

CAM(Gradient-weighted Class Activation 

Mapping), allow clinicians to visualize the areas of 

an image that influenced a model's decision, fostering 

trust in AI-driven diagnoses. Looking ahead, several 

key areas are expected to shape the future of skin 

cancer detection: Dataset diversity and quality: While 

current datasets have significantly contributed to 

model training, expanding datasets to include more 

diverse populations—considering factors like skin 

color, age, and geographical location—will be critical 

for developing globally applicable models. 

Integration of multimodal data: Incorporating 

additional clinical data such as patient history, 

medical imaging (like dermoscopy and confocal 

microscopy), and even genetic data could enhance 

model performance, enabling more accurate and 

personalized predictions. Real-time deployment and 

clinical adoption: For AI-based skin cancer detection 

systems to have a real-world impact, they must be 

deployed in clinical settings with real-time analysis 

capabilities. This requires models to be efficient, 

lightweight, and capable of providing results in a 

short time frame, ideally supporting clinicians during 

patient consultations. Regulatory approval and 

ethical concerns: As AI tools are moving closer to 

real-world deployment, obtaining regulatory 

approval from medical authorities like the FDA 

(Food and Drug Administration) will be vital. In 

parallel, ensuring the ethical use of AI in healthcare, 

including privacy concerns and ensuring bias-free 

predictions, will be essential for widespread 

adoption. Collaboration across disciplines: The 

future of skin cancer detection will not be shaped by 

technology alone but by collaborative efforts between 

AI researchers, dermatologists, healthcare providers, 

and regulatory bodies. Multi-disciplinary 

collaboration is necessary to ensure that AI tools are 

used responsibly, effectively, and safely in clinical 

practice. In conclusion, while AI and ML have 

already made significant strides in skin cancer 

classification, the future holds immense potential. As 

technological advancements continue to improve 
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model performance, enhance interpretability, and 

enable clinical integration, AI will play an 

increasingly central role in early detection and 

diagnosis, ultimately leading to better patient 

outcomes and a reduction in the global burden of skin 

cancer. 

Conclusion 

In this review, we have explored the significant 

advancements in skin cancer detection using 

dermoscopic images and the role of machine learning 

and artificial intelligence in improving diagnostic 

accuracy. Over the past few years, the integration of 

deep learning techniques, particularly convolutional 

neural networks (CNNs), has revolutionized the field, 

enabling more precise and automated detection of 

skin cancer lesions. With advancements in dataset 

quality, model architecture, and data augmentation, 

these AI-driven approaches have shown remarkable 

promise in supporting dermatologists and healthcare 

providers in diagnosing skin cancer at an early stage. 

One of the key strengths of AI-based systems in skin 

cancer detection lies in their ability to handle large 

and complex datasets, such as the ISIC dataset, which 

includes thousands of labeled dermoscopic images. 

With the advent of transfer learning, deep learning 

models can be trained effectively on smaller datasets 

by leveraging pre-trained networks, thus reducing the 

need for extensive labeled data while still achieving 

high accuracy. Furthermore, the application of data 

augmentation techniques has been instrumental in 

addressing class imbalance, which has traditionally 

been a challenge in skin cancer detection datasets. By 

artificially increasing the size and diversity of 

training sets, these methods help to ensure that the 

models generalize well across different skin types 

and lesion characteristics. However, despite the 

substantial progress made, several challenges remain. 

While deep learning models have proven to be highly 

accurate, there is still a need for greater model 

interpretability and transparency. Understanding how 

these models make decisions is essential for gaining 

trust from clinicians and patients alike. As AI-based 

systems move closer to clinical implementation, 

efforts to improve explainability and ensure ethical 

considerations in healthcare will be crucial for their 

widespread adoption.Looking ahead, the future of 

skin cancer detection lies in multi-modal approaches 

that integrate various data sources, such as patient 

medical history, genetic data, and imaging from 

different modalities. These innovations, along with 

ongoing advancements in AI model efficiency, will 

drive the next wave of improvements in diagnostic 

systems, offering more accurate, personalized, and 

accessible tools for skin cancer detection. In 

conclusion, AI and machine learning have the 

potential to transform the landscape of skin cancer 

diagnosis, making it more accessible, accurate, and 

efficient. The collaboration between researchers, 

clinicians, and regulators will be fundamental in 

overcoming current challenges and ensuring the 

ethical deployment of AI tools in healthcare. As 

technology evolves and datasets become more 

diverse, AI-driven skin cancer detection systems are 

poised to become an integral part of clinical practice, 

improving patient outcomes and helping to reduce the 

global burden of skin cancer. 
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