

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2529

Cinematic Cloud: Implementing a Video Streaming Platform with

Containerization, Infrastructure as Code, And CI/CD Data Pipelines
Vinisha Manoju1, Likhita Konakalla2, Maneesha Vedantham3, C Praveen Kumar4
1,2,3UG -Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana,

India.
4Associate Professor, Computer Science and Engineering, Institute of Aeronautical Engineering,

Hyderabad, Telangana, India.

Emails: mvinisha2004@gmail.com1, konalikhita@gmail.com2, maneeshavedantham@gmail.com3,

c.praveenkumar@iare.ac.in4

Abstract

In today's digital landscape, video streaming platforms have become the cornerstone of entertainment

consumption, reshaping how we engage with media. However, traditional approaches to building these

platforms, often relying on monolithic architectures, are struggling to keep pace with the evolving demands

of users and the complexities of modern infrastructure. This solution explores a new approach that uses

contemporary methods like DevOps and microservices to make video streaming platforms faster, more

reliable, and easier to use. The system starts by providing a user interface for streaming content and its

entire backend architecture is built using specialized tools and methodologies. The methodologies include

containerization using Docker and automation of IT infrastructure using Terraform or AWS

CloudFormation which serve as Infrastructure as Code. Lastly, CI/CD pipelines are used to automate all

stages of the SDLC life cycle. The application will be deployed on AWS cloud and there will be extensive use

of AWS services.

Keywords: Cloud Computing; AWS; Docker; Adaptive Bitrate Streaming algorithm; containerization;

CloudFormation; Infrastructure as Code; CI/CD pipeline.

1. Introduction

Video streaming is becoming ubiquitous-from the

mass- market mainstream platforms like Netflix and

Amazon Prime Video to the social media

behemoths: Instagram. So, the streaming of videos

over the internet without cable is named OTT or

over-the-top streaming. However, in the

background, building these streaming applications is

no cakewalk. Traditionally, the whole pieces of

software had to be looked after by developers. This

caused the problem with scaling and smooth

deployment. This is where containerization comes

into the picture. It is the new silver bullet that

simplifies the process of deploying software by

packaging applications and dependencies into a

small container. Such containers carry benefits such

as flexibility and consistency across different

environments; therefore, tremendous importance

should be attached to the streamlining of the

processes of deployment. Containers are not

sufficient but can be optimized in the right approach

if using a DevOps approach. It is the approach

which focuses on producing collaboration,

automation, and continuous improvement

throughout the software development life cycle. In

the practice of DevOps, its implementation is going

to be used with a CI/CD pipeline. CI/CD refers to

continuous integration of code, continuous delivery

of products, and continuous deployment of products.

CI/CD makes use of tools like Jenkins that provide

automation for the testing and delivery of the code

also changes hence provide support for rapidly and

reliably deployed features. For this reason,

infrastructure, servers etc. also get automated

through an Infrastructure as Code. [1-5]

2. Literature Review

Video streaming platforms have literally

transformed the mode through which content is

consuming worldwide with its fast growth. With

https://irjaeh.com/
about:blank
about:blank
about:blank
about:blank

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2530

this increase in demand for quality and ad- free

streaming services, the underlying technology and

architecture that power these platforms have

evolved by default. Traditionally, monolithic

architectures were used to build such a platform,

though usually resulting in problems with

scalability, flexibility, and deployment. With rising

user expectations, comes the scale of video content

to handle and deliver. Thus, a need for a more

modern and agile approach has come forth. Cloud

computing in video streaming came along with

tremendous prospects of scalability and flexibility

offering immense performance in delivery and

consumption of video content. Innovations in cloud-

based infrastructure have contributed significantly

to live streaming; for example, enhanced cache

capacity, adaptive bitrate streaming, and reduced

latency, according to Kumar et al. (2024). All of

these aspects seem to have exceptional importance

in relation to high-quality video delivery to a

myriad of devices in different network conditions,

making cloud computing an integration necessity in

modern streaming services. In other technical

details of cloud-based video stream, Li et al. (2021)

explained how in both encoding, transcoding, and

encryption processes, these developed within the

implementation of the cloud-based application to

make content delivery easy for users without

addressing any momentous research challenges

today, such as bandwidth management, data

security, and therefore constant innovation required

to improve the quality of video streaming. The

strategies that such streaming services have to

employ about DevOps and containerization

regarding scaling and optimization have been

discussed by Cukier (2013) and Prabowo et al.

(2020). This approach serves to present the

evidence of improving resource usage and easy

service migration between cloud environments

when using orchestrators for containers, like

Kubernetes. These developments not only aid in

smoothening deployments but also allow streaming

services to adapt very fast in changing demands at

hand; therefore, overall system reliability and

performance increase. [6-10]

3. Video Streaming

Video streaming is the continuous transmission of

video and audio data from a server to a client. It

allows users to watch videos online without

downloading them and sometimes embed them in

high resolutions up to 4K. Video streaming can

provide a variety of content on the Internet, such as

interesting videos, video conferences, movies, live

concerts, etc. Whenever a video is played, it begins

streaming from the server to the user's device in real

time. The user's device can be anything from a

computer or laptop to a phone which has internet

access. The video and audio files are broken down

into small pieces called packets, which are then

transmitted over the internet to the user's device.

These packets are reassembled by the client device

into video and audio files. There are two types of

video streaming:

 On-Demand Streaming: This involves using

pre-recorded videos to deliver content.

Examples include video lectures, shows, and

movies on platforms like Netflix.

 Live Streaming: These broadcasts live video

and audio content in real time. Examples

include sports events and YouTube live

streams.

For on-demand streaming, we use HTTP streaming

protocols such as HLS (HTTP Live Streaming) and

DASH (Dynamic Adaptive Streaming over HTTP).

For live streaming, protocols like RTMP (Real-Time

Messaging Protocol) and DASH are commonly

used. When delivering video content, a higher

bitrate transmits more information, resulting in

higher quality. However, a higher bitrate also

requires more storage space and bandwidth. To

manage this, we use ABS (Adaptive Bitrate

Streaming). ABS works by encoding the video at

multiple bitrates and allowing the viewer's device to

automatically switch between different bitrates

based on the internet speed. This ensures the highest

possible quality without buffering or interruptions.

4. Abbreviations and Acronyms

 ABS - Adaptive Bitrate Streaming

 VPC – Virtual Private

Cloud

 CDN – Content Delivery Network

 IaC – Infrastructure as Code

 IaaS – Infrastructure as a Service

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2531

 PaaS – Platform as a Service

 AWS – Amazon Web Services

 SDLC – Software Development Lifecycle

 API – Application Program Interface

 OTT – Over The Top

 EBS – Elastic Block Storage

 EFS – Elastic File Storage

 EC2 – Elastic Compute Cloud

 DASH – Dynamic Adaptive Streaming over

HTTP

 CI/CD-Continuous Integration and

Continuous Deployment.

5. Existing System

The current video streaming platform is built using a

monolithic architecture, where all components, such

as the user interface, business logic, and data access

layer, are tightly integrated and operate as a single

service. The entire application is deployed as a

single unit, meaning any update or change requires

redeployment of the entire system. Scaling is

typically achieved by duplicating the entire

application across multiple servers. Testing is

conducted only after the implementation phase is

complete.

5.1. Drawbacks of the Existing System

 Difficulty in Introducing New Services:
The tightly coupled nature of the monolithic

architecture makes adding new services

cumbersome and time-consuming. Every

change affects the entire system, leading to

prolonged development cycles.

 Intensive Testing Requirements: The close

integration of components necessitates

frequent and extensive unit and system

testing. Regression testing must be

performed at an extensive level to ensure

that if changes are made to one part of the

application, the rest of the code doesn’t

break due to dependencies.

Rigid Technology Stack: In monolithic architecture,

a single technology stack is used to build the entire

application. When new technologies arise that are

more efficient, it is difficult to migrate current

services to the new technologies without rebuilding

the entire application. Hence, the application

becomes outdated and inefficient compared to

competitive applications. (Refer Figure 1) [11-16]

Figure 1 Monolithic Architecture of Video Streaming Platform

6. Proposed System

To overcome the limitations of monolithic

architectures in video streaming platforms, the

application uses micro services architecture to build

the various components. This approach involves

building independent micro services, each one

responsible for a specific functionality in the video

streaming platform.

6.1. Technologies and Tools

 Terraform: This tool automates the process of

creation of infrastructure on AWS using

Hashicorp language (HCL). This is an easier

way of provisioning infrastructure in

comparison to AWS management console.

 AWS Account: An AWS account is required

to create infrastructure required for the video

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2532

streaming platform.

 Docker Containers: Docker is used for

containerization of the components. Every

container is composed of all the packages and

dependencies required for the development and

deployment of that specific component.

 Container Deployment: To deploy the

containers, the containers are first stored in

ECR (Elastic Container Registry) and managed

using ECS (Elastic Container Service).

 CI/CD Pipeline: The CI/CD Pipeline is used to

automate the deployment process, whenever

new changes are made to the application.

Multiple environments can be configured here

like dev, stag, test and prod. This can be

undergone using AWS developer tools or

github actions.

 Message Queuing: AWS SQS is used for

communication between micro services by

passing and storing the messages in a queue.

The component sending the message passes the

message into a queue, and the component

receiving the message, fetches it from the

queue.

 Content Delivery Network: To ensure that the

content is distributed in a fast and efficient

way, AWS Cloud Front is utilized. AWS Cloud

Front uses edge locations for caching

frequently accessed data hence, providing

faster delivery of videos.

 Frontend Application A client side interface is

built for the users to interact with the

application seamlessly. The interface provides

various functionalities and features that

improve the experience for users.

 Adaptive Bitrate Streaming Algorithm: This

algorithm is essential for the video streaming

platform. This algorithm is responsible for

automatically adjusting the quality of video

viewed by user based on the user’s internet

speed.

 Streaming Protocols: Two streaming

protocols are implemented for adaptive bitrate

streaming. HLS (HTTP Live Streaming) and

DASH (Dynamic Adaptive Streaming over

HTTP). Implements HLS (HTTP Live

Streaming) and DASH (Dynamic Adaptive

Streaming over HTTP) for adaptive bitrate

streaming.

7. Methodology And Implementation

Terraform: Before the development and

deployment of microservices, the necessary cloud

infrastructure must be provisioned in the respective

AWS account. This infrastructure includes Virtual

Private Clouds (VPCs), public and private Subnets,

Elastic Container Service (ECS), Elastic Container

Registry (ECR), EC2 instances, security groups, etc.

Terraform is used to easily provision the

infrastructure by creating configuration files for the

infrastructure. This way, the same configuration file

can be used to provision huge number of

infrastructure components without concern about

manual errors. These configuration files also enable

creation of same infrastructure in multiple

environments using workspaces. Hence, the

architecture is provisioned effectively. (Refer Figure

2)

Figure 2 Terraform Templates to Build Infrastructure

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2533

Microservice: Implementing a microservices

architecture allows each service to act as an isolated

unit. Every service can be built with a different tech

stack, and can be scaled individually based on the

demand. The entire microservice is packaged as a

docker container along with all the required

dependencies for the service. The entire system is

built as a decoupled architecture. The containers are

developed in a Docker environment, and stored in a

container registry (ECR). These containers are later

managed and deployed using Elastic

Containerization Service (ECS). This approach is

flexible and suitable for high scalability. (Refer

Figure 3)

Figure 3 Implementing Micro Service Architecture Using Docker

Continuous Integration/Continuous Deployment

(CI/CD): For every change made to the application,

and with new versions being released, production

must be an ongoing process. Therefore, the

development and deployment processes will be

streamlined. The platform utilizes AWS Developer

Tools, such as AWS Code Pipeline, along with

Github actions to implement the CI/CD pipeline.

This ensures that updates to microservices are

automatically tested in testing environment and

deployed to go live. (Refer Figure 4)

Figure 4 System Architecture

7.1. Microservices Overview

1. Video Uploading Service: This service enables

users to upload videos using the client side

interface.

2. Video Processing Service: This service

manages encoding, transcoding, and other

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2534

processing tasks to ensure videos are available in

varied formats and resolutions for the user.

3. Storage Service: To store raw and processed

video files, AWS Simple Storage Service (S3) is

used as a storage service.

4. Database Service: This service is used to host

the databases that manage the application’s data,

along with user information, metadata, and

service configurations.

5. Metadata Service: This service is responsible

for handling the creation and management of

metadata associated with the videos.

6. CDN Service: Integrates with AWS CloudFront

for distributing content efficiently to users across

the globe.

7. User/Frontend Service: Provides the frontend

interface for users, including video playback and

user account management. (Refer Figure 5)

Figure 5 Microservice Architecture of Video Streaming Platform

Inter-Service Communication: To facilitate

communication between microservices, a queueing

service is employed. Both AWS SQS and RabbitMQ

are viable options for message queuing; however,

the application uses AWS SQS. This queueing

service facilitates asynchronous communication

between components of a distributed system,

allowing messages—representing information or

tasks—to be transferred and processed by

microservices as needed, allowing processes to

remain decoupled and operate independently

without relying on direct dependencies. (Refer

Figure 6)

Figure 6 Inter-Service Communication Using Message Queue

Content Delivery: Once processed, the video

content is distributed to users through a Content

Delivery Network (CDN) to cache content and

ensure low latency and high transfer speeds

globally. While options like Cloudflare and

CloudFront are available, the application

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2535

specifically utilizing AWS CloudFront for this

purpose.

Frontend Development/User Service: Develop the

frontend user interface using React, Angular, or

Vue.js frameworks. Implement features such as

video playback, user authentication, search

functionality, etc.

Frontend Technologies:

 React/Angular

Middleware Technologies:

 NodeJS, ExpressJS

Video Streaming:

 FFmpeg Library

Algorithms:

 Adaptive Bitrate Streaming Algorithm

 Content Delivery Network Algorithms

 Load Balancing Algorithms

Functional Requirements:

 Content Upload: Content creators should be

able to upload videos, including metadata

(title, description, tags).

 Adaptive Streaming: Automatically adjust

streaming quality based on user’s bandwidth.

 Streaming Quality: Support for multiple

streaming qualities (e.g., 240p, 360p, 480p,

720p, 1080p, 4K).

Store playback data: Save the playback position

data on the server associated with the user’s account

8. Results And Discussions

The resulting application is a robust video streaming

platform architected using a microservices approach,

ensuring scalability, maintainability, and fault

tolerance. The infrastructure is provisioned using

Terraform configuration files utilizing Infrastructure

as Code (IAC) practices. This ensures consistency

across all environments. Docker containers are used

to package the various microservices into isolated

units. They are deployed and orchestrated using

AWS ECS. The platform utilizes CI/CD pipeline, by

usage of AWS Code Pipeline. This pipeline

automates the build, test, and deployment processes,

reducing manual intervention and therefore reducing

repetitive tasks. AWS SQS serves as the backbone

for communication by ensuring that messages are

passed effectively between microservices. It

decouples the components and handles message

queues efficiently. Additionally, the platform

integrates AWS CloudFront as a Content Delivery

Network (CDN) tool, which is responsible for

caching and delivering video content to users in

distant locations with low latency. The application

also utilizes adaptive bitrate streaming algorithms to

ensure that video quality is dynamically adjusted

based on the user's network conditions and

connectivity issues. This provides a smooth viewing

experience for users. The primary objective of the

platform is to provide top-quality video streaming

that's quick, reliable, and able to handle a growing

number of users, all while making sure the

experience stays smooth and enjoyable for

everyone. (Results are shown in Figure 7-10)

Conclusions and Future Scope

A. Conclusion

In conclusion, the growth of video streaming

platforms has been greatly influenced by cloud

computing, DevOps practices, and containerization

technologies. These innovations have solved many

problems that came with older, monolithic systems

by providing scalable, flexible, and efficient content

delivery solutions. DevOps, along with CI/CD

pipelines, has made the development and

deployment process faster and more reliable,

allowing new features and updates to be released

more smoothly. Containerization, especially using

tools like Docker, has improved how streaming

services are deployed, making it easier to scale

quickly. As the video streaming industry continues

to advance, using these technologies will be key for

staying competitive and ensuring platforms can

deliver smooth experiences in a more demanding

digital world.

B. Future Scope

The current application uses a microservice design

for a video streaming platform with an on-demand

model, meaning videos are streamed as needed and

safely stored. In the future, the goal is to expand this

setup to include live streaming, allowing real-time

video playback. This change will add interactive

features like live chat, reactions, and comments,

making the platform more engaging and offering a

lively experience for both on-demand and live

content.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2536

Figure 7 The Home Page

Figure 8 The Filter Section Displaying the

Trending, Top Rated and Action Movies

Figure 9 The Video Streaming Section

Figure 10 The Running EC2 Instance

References

[1]. Kumar, T., Sharma, P., Tanwar, J., Alsghier,

H., Bhushan, S.,Alhumyani, H., Sharma, V.,

&Alutaibi, A. I. (2024). Cloud‐based video

streaming services: Trends, challenges, and

opportunities. CAAI Transactions on

Intelligence Technology, 9(2), 265–285.

[2]. Li, X., Darwich, M., Salehi, M. A., &

Bayoumi, M. (2021). A survey on cloud-

based video streaming services. In Advances

in computers (pp. 193–244).

[3]. Sidik Prabowo,Rizal Dwi Prayogo,SA

Karima(2020) Performance analysis of video

streaming using container orchestration. IOP

Conference Series Materials Science And

Engineering 830(2):022100

[4]. Midoglu, C., Zabrovskiy, A., Alay, Ö.,

Hoelbling-Inzko, D., Griwodz, C., &

Timmerer, C. (2019).Docker-Based

Evaluation Framework for Video Streaming

QOE in broadband networks.International

Journal of Network Management.

[5]. Cukier, D. (2013). DevOps Patterns to scale

web applications using cloud

services.Proceedings of the 2013 companion

publication for conference on Systems,

programming, & applications: software for

humanity

[6]. Patel, N., Shah, M., & Desai, K. Privacy-

Preserving Data Sharing in IoT-Enabled

Healthcare Systems(2020). 50, 771–998.

[7].
[8]. Bodi, A. (2024, July 25). Building live

streaming and VOD workflows on AWS.

TrackIt - Cloud Consulting & S/W

Development. https://trackit.io/build-live-

streaming-vod-workflows-on-aws/

[9]. Xiangbo Li*f, Mohsen Amini Salehif,

Magdy Bayoumi*,"VLSC: Video Live

Streaming Using Cloud Services",2016 IEEE

International Conferences on Big Data and

Cloud Computing (BDCloud).

[10]. Abubakr O. Al-Abbasi,"Multi-Tier Caching

Analysis in CDNBased

[11]. Over-the-Top Video Streaming

Systems",published in 2019.

[12]. Private Cloud Computing

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2529 - 2537

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0347

International Research Journal on Advanced Engineering Hub (IRJAEH)

2537

Infrastructure",Vol. 7, No. 6, December

2017, pp. 3529~3535.

[13]. Xin Liu1, Dehai Zhao2, Liang Xu2, Weishan

Zhang2, Jijun Yin1, And Xiufeng Chen1,"A

Distributed Video Management

[14]. Cloud Platform Using Hadoop",date of

current version December 22, 2015.

[15]. Akshay Kashyap,"Efficient HD Video

Streaming Over the Internet".

[16]. Aws:"Working with Amazon s3 buckets".

https://irjaeh.com/

