

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2521

Scalable Cloud Execution Engines
G Renugadevi1, M L Sharvesh2, S Subhashini3, V S Vaishaal Krishna4
1Associate professor, Dept. of CSE, Sri Krishna College of Engg. & Tech., Coimbatore, Tamil Nadu, India.
2,3,4UG Scholar, Dept. of CSE, Sri Krishna College of Engg. & Tech., Coimbatore, Tamil Nadu, India.

Emails: grenugadevi@skcet.ac.in1, 20eucs130@skcet.ac.in2, 20eucs145@skcet.ac.in3,

vaishaalinc@gmail.com 4

Abstract

Scalability remains a major concern for many organizations, and as technology evolves expeditiously, the

number of users utilizing it also increases rapidly. In this paper, we propose a novel approach to address

this challenge through the implementation of a scalable cloud execution engine using a microservices

architecture. By using this design we can achieve a system with loosely coupled and independently

deployable methods. Also through this, we can achieve enhanced flexibility, scalability, and reusability in

our application. Through experimenting with various execution engines it is evident that most of their design

relies on monolithic architecture. However, this design poses potential challenges especially when the traffic

experiences sudden spikes. Our proposed design provides practical insights for architects and developers

seeking to design and deploy highly scalable cloud applications.

Keywords: Microservice Architecture, Container Orchestration, Cloud Computing, Docker, and Kubernetes,

Execution Engines.

1. Introduction

Microservices [1] is an approach to decomposing

complex applications into modular components or

services. Each module is an independent deployable

service and is implemented for a specific purpose.

This design helps developers build and deploy

applications quickly, enhance fault isolation, adapt

to the architecture easily, and scale components

independently. The proposed system, “Scalable

Cloud Execution Engine using Microservices” aims

to implement the principles of microservice

architecture to establish a coherent and robust

execution engine for cloud-based applications. By

cultivating this approach, our proposed project can

overcome the limitations of traditional monolithic

architecture and experience the advantages of cloud

computing. This introduction plays a major role in a

comprehensive exploration of the project,

highlighting the importance of microservice

architecture to address problems like scalability,

efficiency, and flexibility in cloud-based

architecture. The project uses containerization,

orchestration, scalability, fault tolerance, security,

and load balancing as its key components.

1.1. Monolithic vs Microservices

Monolithic architecture [2] is a traditional way of

building software applications where the entire

application is developed as a single, tightly coupled

unit. In monolithic architecture, all the components,

like user interface, business logic, and data layer,

are packed and deployed together as a single unit

on servers. Microservices architecture is a modern

approach to building software applications where

the application consists of small, independent

modules where each module communicates with

each other through well-defined APIs. Each

microservice module is responsible for a specific

functionality that can be developed, deployed, and

scaled independently. Monolithic architecture

involves building a single, tightly integrated

application, whereas microservices architecture

involves breaking the application into smaller,

independent services. Scaling monolithic

applications can be tedious as their applications are

large and tightly coupled but in microservices

architecture, the application can be scaled easily

enabling independent development and

deployment. Monolithic applications have limited

https://irjaeh.com/
mailto:grenugadevi@skcet.ac.in1
about:blank
about:blank
about:blank

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2522

flexibility in choices of technology while

microservices allow for diversity in technology

stacks.

1.2. Microservices Architecture

Microservices architecture [3] allows a large

application to be divided into small manageable

functionalities where each has its own roles and

responsibilities in the application.Each service has

an individual codebase and are managed by small

teams. Components like containers, orchestration,

and API Gateway play an impressive role in

microservices architecture.Containers are an isolated

environment where the code of each service is

placed on individual containers such that each

container can be managed accordingly.Each

container holds the code and all its dependencies of

a specific functionality such that it can be executed

in any computing environment quickly. Containers

also provide various benefits such as resource

efficiency, portability, rapid deployment, and

version control. Container orchestration is used for

automatic provisioning, deployment, scaling, and

managing the containers without worrying about the

application’s architecture.This makes it easier to

manage the containers and can ensure scalability

and security. API Gateway is a server between

clients and microservices that enables

communication between them. API defines the data

formats that the application uses to request and

exchange data, enabling interoperability between

different systems and services.

1.3. Containers

Operating system virtualization is achieved through

containers [4]. Anything from a little software

process or microservice to a more complex program

can be run inside a single container. All required

libraries, configuration files, binary code, and

executables are contained inside a container.

However, operating system images are not present

in containers as they are in server or machine

virtualization methods. As a result, they have

substantially reduced overhead and are more

lightweight and portable. It is possible to deploy

several containers as one or more container clusters

in bigger application deployments. Kubernetes, or

another container orchestrator, may be in charge of

these clusters.

1.4.Container Orchestration

A key technology in contemporary software

development, especially in the context of

microservices architecture, is container orchestration

[5]. It simplifies the deployment, scaling, load

balancing, and resource allocation processes by

automating the management of containerized

applications. Developers may concentrate on writing

code by using orchestration technologies like

Kubernetes [6] and Docker Swarm [7], which

abstract away the complexity of infrastructure

management and guarantee dependable and efficient

application deployment. Automating deployment

procedures is one of container orchestration's main

advantages. Orchestration technologies eliminate

manual intervention and lower the risk of human

error when deploying containerized applications

across dispersed environments. Organizations are

able to provide software updates more often and

dependably thanks to this automation, which also

speeds up the release cycle. Furthermore, fault

tolerance, resource optimization, and scalability are

made easier by container orchestration. Applications

stay responsive and performant as orchestration

systems dynamically scale container instances to

match changing workload demands. By allocating

workloads effectively and proactively managing

problems, they also maximize resource usage by

reducing downtime and improving application

reliability. All things considered, container

orchestration gives enterprises the ability to create

and manage highly accessible, scalable, and resilient

software systems in the current dynamic computing

environment.

1.5.Advantages of Microservices

Microservice architecture provides various benefits,

making it a popular alternative for designing and

delivering new systems. Increased scalability is one

important benefit. Applications built with

microservices are made up of tiny, independently

deployable services, each handling a single task.

Instead of expanding the entire application, teams

may scale specific services independently in

response to demand thanks to this modular

framework. Consequently, entities are able to

distribute resources more effectively and manage

workload variations more skillfully. Microservices

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2523

also encourage better fault isolation. A failure in one

service does not always impact the entire application

because each one runs separately. Because of this

isolation, the impact of errors is reduced and

developers can swiftly locate and fix problems

without interfering with other system components.

Microservices also make continuous integration and

deployment procedures easier. Teams can create,

test, and implement changes to specific services

without impacting the application as a whole since

services are decoupled. Because of its agility,

enterprises are able to provide updates and new

features more quickly by speeding up the

development cycle[8]. Furthermore, microservices

design promotes flexibility and technological

diversity. Teams can take use of the advantages of

several technologies inside a single application by

having each service built with the best technology

stack for its unique needs. This adaptability extends

to development procedures as well, since groups can

work on several services at once, cutting down on

bottlenecks and expediting development. Increased

fault tolerance and resilience are two additional

benefits of microservices. Organizations can create

apps that are more resilient to failures by spreading

functionality across several services. Multiple

servers or data centers can replicate services,

guaranteeing redundancy and high availability.

Furthermore, because problems are limited to

individual services rather than being entangled with

the entire application, microservices facilitate

simpler debugging and troubleshooting. Scalability,

fault isolation, agility, flexibility, resilience, and

fault tolerance are just a few advantages that come

with microservice architecture overall.

Organizations can create applications that are more

resilient, scalable, and flexible to the needs of

contemporary computing environments by adopting

these principles.

2. Literature Review

An empirical study by Xiang et al.,[9] (2021)

explores microservice methods in the industry,

revealing 11 real-world difficulties and different

levels of maturity. These results provide

practitioners with useful recommendations to help

align microservice systems with business objectives

and capabilities. Furthermore, the study offers

scholars a useful resource by emphasizing ways to

improve industrial microservice practices.

Optimizing container orchestration techniques,

removing organizational adoption barriers, and

improving microservices architecture's scalability

and robustness are among the areas that need more

research. By utilizing these discoveries, researchers

and practitioners alike can assist in the development

and successful implementation of microservices in

practical settings, guaranteeing that microservice

architectures live up to their claims of autonomy,

scalability, and agility in software development.

Koleini et al.,[10] (2019) introduces Fractal, an

automated application scaling technology that

integrates orchestration logic into the program itself.

With Fractal, developers can automate scaling

operations directly within their applications, in

contrast to traditional approaches that divide

development from deployment. Fractal, which is

based on the Jitsu platform, automates a variety of

processes, including network traffic distribution

across replicas, replica lifetime management, failure

recovery, and scaling up and down. The paper

outlines the architecture and salient characteristics

of the Fractal implementation and uses a self-scaling

website to assess its efficacy. The findings show that

Fractal is a novel approach to application scaling in

distributed systems, and that it is both possible and

useful. This work advances cloud application

automation capabilities, expediting the scaling

process for increased effectiveness and performance.

A modular monolith is used by Faustino et al.,[11]

(2022) to study the step-by-step transition of a

monolith with a rich domain model to a

microservices architecture. For both steps, they

assess the effect on migration effort and

performance. Although previous research has

concentrated on the migration from monoliths to

microservices, this study emphasizes the substantial

work and performance concerns involved in

switching to a modular monolith. Their research

highlights the trade-offs between moving to a

modular monolith and finishing the full migration

process, which offers software architects insightful

information. Informed decision-making for

architects planning such transitions is facilitated by

this research, which adds to our understanding of the

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2524

difficulties and factors to be taken into account

when moving monolithic systems. Pallewatta et

al.,[12] (2023) provides MicroFog, a platform for

the scalable deployment of microservices based IoT

applications in federated fog environments. They

emphasize how crucial microservices' scalability

and loose coupling are for dispersed deployment

among fog and cloud clusters. By supporting MSA

application location, dynamic microservice

composition, scalability, and heterogeneous

application deployment, MicroFog overcomes

limitations in current fog computing frameworks.

The control engine of the framework provides

dynamic composition capabilities, abstracts

container orchestration, and runs placement

algorithms and applications across federated fog

environments. The evaluation's findings show how

scalable, extensible, and capable MicroFog is at

integrating creative placement strategies and cutting

application service response times by as much as

54%. The advancement of fog computing

frameworks made possible by this research makes it

possible to deploy microservices-based applications

in remote IoT environments more effectively. In

their 2022 study, Lourenço et al.,[13] examine

automated methods for locating potential

microservices in monolithic systems. They evaluate

468k decompositions across 28 codebases using five

quality indicators, comparing representations based

on code structure and development history. The best

results are obtained by combining the data from both

representations. The significance of taking into

account both elements in microservice identification

is shown by their discovery that changing authorship

representation in codebases with many authors

provides results that are comparable to or better than

access sequence representation in codebases with

few authors. By addressing shortcomings in current

methods and offering insights into the efficacy of

various representation strategies in determining the

best microservice decompositions, this research

advances tools for microservice extraction.

Wenkai.Lv et al.,[14] (2022) discuss the deployment

of microservices in edge computing, taking into

account the effects of node loads and fluctuating

interaction frequency. They present a multi-

objective deployment problem (MMDP) with the

goal of minimizing communication overhead while

balancing node loads, and they represent

microservice invocation as an interaction graph. To

tackle MMDP effectively, they present Reward

Sharing Deep Q Learning (RSDQL) and suggest

Elastic Scaling (ES) for dynamic request

management. Their Kubernetes studies show that

RSDQL is superior in accomplishing load balancing

and faster response times while maintaining elastic

service scaling. By guaranteeing scalability and load

balancing, while optimizing resource utilization and

response times, this work adds insights into

microservice deployment strategies in edge

computing.

3. Proposed Solution

Traditional monolithic architectures face challenges

in scalability, flexibility, and efficient resource

utilization. The proposed solution aims to address

these issues by implementing a Scalable Cloud

Execution Engine using Microservices.

Utilizing microservices architecture involves

breaking down the application into small,

independent services that communicate through

well-defined APIs. Each microservice focuses on a

specific function, enabling flexibility, scalability,

and easier maintenance.

3.1.Design Patterns

To use microservices, first we need to decide upon

the design pattern to be used in our application, this

plays a vital role in the efficiency of our application.

While applying design patterns we have to ensure

that shared access and dependencies have to be

managed correctly, data has to be consistent, smooth

communication between services, and secure

services. There are several design patterns like

backend for frontend, keystore value, document

value, API Gateway [15] , chain of responsibility,

strangler pattern, etc. Our proposed design for a

“scalable execution cloud engine” uses an API

gateway as a design pattern to facilitate

communication between various services. This

approach is advantageous for connecting user

interfaces to various microservices, this model

would be great for enhancing communication

between different microservices. Also, using this,

we can aggregate the results and send it back to the

client easily. Furthermore, the utilization of an API

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2525

gateway ensures high security by providing a single

point of contact, thereby following the security

protocols on every aspect of the system. By utilizing

an API gateway our system optimizes

communication, and data aggregation and also

strengthens the security framework, making it an

ideal design that can be easily scaled, flexible, and

secure.

3.2.Deployment Strategies

Usually, microservice architecture consists of many

services, and dependencies that are hard to manage.

Also after deployment updates and monitoring needs

to be done in any application. So, choosing the

correct deployment strategy plays a vital role in the

efficiency of the application. There are deployment

strategies like single service per host and multiple

service per host. Our model uses multiple services

per host [16], in this pattern, multiple service

instances will share the same server and operating

system. This pattern not only provides efficient

resource utilization but also scalability and

performance can be improved by using this pattern.

Furthermore, leveraging this deployment strategy

facilitates dynamic scaling and load balancing.

3.3.Communication Mechanism

Microservices are made up of numerous tiny

modules, and in order to communicate between

services or between processes, they require an

appropriate and intelligent channel. Synchronous

communication [17] is used in our suggested

solution. The request and response method is used in

this kind of communication. After submitting a

request, the client waits for a response and

occasionally even blocks other clients for a

predetermined amount of time. All processes must

respond promptly and on schedule in order for

communication to run smoothly. REST [18]

(Representational State Transfer) or HTTP [19]

(Hypertext Transfer Protocol) protocols can be

utilized for this.

3.4.Proposed Architecture

Our system aims to build a scalable executable

cloud engine that uses containerization technologies,

Kubernetes orchestration, and Nginx [20] as a

reverse proxy and load balancer. This project tackles

multiple difficulties with its diverse components,

which include front-end services, orchestration

services, Kubernetes clusters, and links to an S3

bucket [21] for data storage. First and foremost, the

system makes it easier to create an online Integrated

Development Environment (IDE) [22] that can run

frontend and backend apps together smoothly for

longer periods of time. Because users can start a

new environment using whatever programming

language they choose, adaptability and diversity are

guaranteed. In addition, the technology allows

servers to automatically scale in response to

incoming requests, which maximizes resource usage

and performance. Code execution in isolated

contexts is essential to this architecture because it

increases security and stability and prevents

interaction between separate operations. Our project

uses WebSockets [23] to allow real-time

communication between the client and server. By

synchronizing metadata with an S3 bucket, this

bidirectional communication mechanism makes it

possible to transmit live changes from the frontend

to the backend instantly. WebSocket allows for the

asynchronous exchange of messages in contrast to

regular HTTP, which is unidirectional. This allows

for real-time updates without the need for frequent

polling or refreshing.

Figure 1 Proposed Architecture

Pseudo-terminals [24] controlled by the Node.js

"node-pty" module are used to run commands from

the frontend on distant servers. Pseudo-terminals

facilitate command execution and provide smooth

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2526

interaction between the UI and distant services. The

architecture is made up of orchestration services that

oversee task execution within Kubernetes clusters,

reverse proxy and load balancer Nginx, front-end

services that function as the user interface, and

access to an S3 bucket for data storage. For the

overall system design to be scalable, reliable, and

efficient, each component is essential. (Refer Figure

1)

4. Implementation

In order to implement our system, we strategically

used containerization technology, Kubernetes

orchestration, and Nginx for reverse proxy and load

balancing. Our cloud execution engine is scalable

and efficient because of the well-integrated

integration of many technologies.

4.1.Workflow

In our system architecture, a web interface is used

by users to communicate with the front-end service.

Nginx handles HTTP requests and uses predefined

Ingress rules to route them to the correct backend

service. By interacting with the orchestration

service, the front-end service handles user requests

and starts orchestration activities. The orchestration

service schedules the task for execution on the

Kubernetes cluster after determining the task type

(node.js or Java) based on the requests it receives.

Pods that run Java and node.js code are deployed

and scaled by Kubernetes, which takes workload

demands and resource availability into account.

These execution pods run the designated code,

obtain the required data from the S3 bucket, and

produce output. Ultimately, these findings are

obtained by the front-end service, which uses the

web interface to display them to users.

4.2.Frontend Service

As the primary user interface that makes application

interactions possible, the frontend service is

essential. It acts as a portal for users to interact

fluidly with a range of features and functionalities.

Users interact with this interface using a wide range

of carefully crafted elements that are intended to

improve user experience. These parts consist of

necessary components like input fields and buttons

that are carefully placed to allow for simple

operation and navigation. Uploading code,

triggering runs, and visualizing the results are some

of the main features provided by the frontend

service. Users may now interact with the program

with ease thanks to this streamlined procedure,

which promotes an easy-to-use and productive

workflow. Additionally, the frontend service creates

a vital link with the S3 object store, which is an

essential part of getting access to the base code

needed to run code. This connection makes it

possible for the frontend service to easily interact

with the S3 object store and retrieve the files

required for code execution. The frontend service

also makes sure that users have simple access to the

resources they require for modification or execution,

which improves the application's general usability

and functionality by handling the process of fetching

files from S3. (Refer Figure 2)

Figure 2 Frontend Service

4.3.Execution Service

The orchestrator service carefully oversees the

execution service's deployment procedure to

guarantee best use of available resources. With a

cluster environment that is both scalable and

resilient, the execution service is delivered as pods,

utilizing Kubernetes as the underlying architecture.

The deployment technique that is orchestrated

guarantees optimal resource allocation and

containerized instance management. Fundamentally,

the execution service takes on the vital duty of

supervising the execution of user-submitted code. It

coordinates the execution of particular scripts or

code snippets in response to requests from the

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2527

frontend service, configuring the execution

environment to meet the demands of the current job.

The service guarantees the smooth processing of

code given by users by effectively managing the

execution environment, which in turn promotes

dependable and efficient execution processes. In

addition, to facilitate data transfer between the S3

object storage and the frontend service, the

execution service uses a pseudo-terminal method.

This novel technique enables smooth

communication and data interchange, allowing the

execution service to transmit important signals and

data with the least amount of latency between the

object store and the user interface. Through the use

of this mechanism, the service maximizes the

effectiveness of data transfer procedures, improving

the application's overall responsiveness and

performance. (Refer Figure 3)

Figure 3 Execution Service

4.4.Orchestrator Service

In the Kubernetes cluster, the orchestrator service is

essential to the deployment and administration of

the execution service pods. It is in charge of

managing the scaling, provisioning, and general

upkeep of the execution environment in addition to

coordinating different parts of the deployment

process. The orchestrator service makes sure that the

execution service in the Kubernetes ecosystem runs

well by orchestrating these vital tasks. The

orchestrator service's primary function is to serve as

a mediator between the execution environment and

the frontend service. When the frontend service

makes requests to begin code execution, it

coordinates the launch of the execution service pods,

carefully distributing resources and setting up the

execution environment to meet the demands of the

current task. The orchestrator service makes sure

that requests for code execution are processed

quickly and efficiently within the Kubernetes cluster

by means of good coordination. Additionally, the

orchestrator service strengthens the performance and

durability of the execution environment by

implementing strong methods for fault tolerance and

scalability. It maximizes resource consumption and

improves the system's overall scalability by

dynamically adjusting the number of execution

service pods in response to shifting workload needs.

The orchestrator service also keeps a close eye on

the availability and health of the pods, quickly

identifying and resolving any possible issues or

disturbances to guarantee the execution service runs

consistently and dependably. The orchestrator

service protects the integrity of code execution

workflows inside the Kubernetes cluster and

strengthens the system against future failures by

taking these preventative actions. (Refer Figure 4)

Figure 4 Orchestrator Service

Conclusion

In conclusion, our study highlights how

microservices design can be a game-changer when it

comes to creating a scalable execution engine.

Through breaking down the engine into discrete

services, we have explained how this method

overcomes the drawbacks of monolithic systems.

Numerous advantages come with this paradigm

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2521 - 2528

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0346

International Research Journal on Advanced Engineering Hub (IRJAEH)

2528

shift, such as improved resilience, scalability, and

modularity, which promote effective resource use

and easy workload adaptation. Furthermore, the

incorporation of containerization technologies and

orchestration platforms such as Kubernetes

guarantees improved system availability while also

expediting deployment processes, providing a solid

basis for flexible and adaptable software

ecosystems. Because microservices architecture

offers unmatched flexibility, scalability, and

efficiency in tackling the issues of modern

computing environments, our study thus promotes

the adoption of microservices architecture as a

cornerstone of contemporary software development.

Acknowledgements

The authors wish to thank the Department of

Computer Science and Engineering of Sri Krishna

College of Engineering and Technology for

providing us with continuous support during the

development of the project.

References
[1]. https://microservices.io/

[2]. https://www.techtarget.com/whatis/definition

/monolithic-architecture

[3]. https://microservices.io/patterns/microservic

es.html

[4]. https://www.docker.com/resources/what-

container/

[5]. https://www.vmware.com/topics/glossary/co

ntent/container-orchestration.html

[6]. https://kubernetes.io/

[7]. https://docs.docker.com/engine/swarm/

[8]. https://www.javatpoint.com/software-

engineering-software-development-life-cycle

[9]. Xiang, Q., Peng, X., He, C., Wang, H., Xie,

T., Liu, D., Zhang, G., & Cai, Y. (2021). No

Free Lunch: Microservice Practices

Reconsidered in Industry. arXiv:2106.07321

[cs.SE].

[10]. Fractal: Automated Application Scaling, M.

Koleini, C. Oviedo, D. McAuley, C. Rotsos,

A. Madhavapeddy, T. Gazagnaire, M.

Skejgstad, and R. Mortier, 2019,

arXiv:1902.09636 [cs.DC]

[11]. Faustino, D., Gonçalves, N., Portela, M.,

Rito Silva, A. (2022). Stepwise Migration of

a Monolith to a Microservices Architecture:

Performance and Migration Effort

Evaluation. arXiv:2201.07226 [cs.SE].

[12]. Pallewatta, S., Kostakos, V., Buyya, R.

(2023). MicroFog: A Framework for

Scalable Placement of Microservices-based

IoT Applications in Federated Fog

Environments. arXiv:2302.06971 [cs.DC].

[13]. Lourenço, J., & Silva, A. R. (2022).

Monolith Development History for

Microservices Identification: a Comparative

Analysis. arXiv:2212.11656 [cs.SE].

[14]. W. Lv et al., "Microservice Deployment in

Edge Computing Based on Deep Q

Learning," in IEEE Transactions on Parallel

and Distributed Systems, vol. 33, no. 11, pp.

2968-2978, 1 Nov. 2022, doi:

10.1109/TPDS.2022.3150311.

[15]. https://www.redhat.com/en/topics/api/what-

does-an-api-gateway-do

[16]. https://microservices.io/patterns/deployment/

multiple-services-per-host.html

[17]. https://www.ringcentral.com/gb/en/blog/defi

nitions/synchronous-communication/

[18]. https://www.codecademy.com/article/what-

is-rest

[19]. https://developer.mozilla.org/en-

US/docs/Web/HTTP

[20]. https://www.nginx.com/

[21]. https://aws.amazon.com/s3/

[22]. https://www.codecademy.com/article/what-

is-an-ide

[23]. https://developer.mozilla.org/en-

US/docs/Web/API/WebSockets_API

[24]. https://unix.stackexchange.com/questions/21

147/what-are-pseudo-terminals-pty-tty

https://irjaeh.com/

