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Abstract 

This study reviewed state-of-the-art face-detection techniques like Haar cascade, Dlib HOG, MTCNN, and 

MediaPipe; implemented and tested them on Raspberry Pi, and evaluated their accuracy, speed, and frames 

per second. Overall, the research underscores the practical challenges of face detection, including varying 

lighting, facial expressions, occlusions, poses, scale of face, and accessories, and provides valuable insights 

for developers and researchers working on edge AI applications on low-cost edge devices. The study found 

that the MediaPipe face detection algorithm demonstrated robust performance, even with low-quality images, 

and showed good efficiency and resource management on the Raspberry Pi. The research emphasized the 

importance of considering factors like accuracy, speed, and resource efficiency in face detection on edge 

devices. The findings suggest that MediaPipe is a strong candidate for applications requiring efficient face 

detection, affordable and versatile platforms like Raspberry Pi. By focusing on the Raspberry Pi, the study 

offers a unique perspective on the performance of state-of-the-art face detection algorithms in real-world, 

resource-constrained environments, making it a significant contribution to the field of face recognition and 

edge computing.  
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1. Introduction

Face detection, once a concept relegated to science 

fiction, has become an integral part of modern 

technology, seamlessly integrated into our daily lives. 

Have you ever wondered how your camera identifies 

faces while taking a selfie? This is the magic of face 

detection [1]. It involves teaching computers to 

recognize human faces in images or videos, acting as 

a digital detective that scrutinizes visuals pixel by 

pixel. It looks for facial features such as the distance 

between the eyes, the curve of a smile, and the 

placement of the nose. Once these features are 

identified, the computer concludes that it has detected 

a face. Numerous applications rely on face detection, 

including home security systems, criminal 

identification, mobile phone unlocking, and Snapchat 

filters [1]. The face recognition process typically 

involves four main stages: face detection, face 

alignment, feature extraction, and face classification. 

Among these, feature extraction is particularly 

crucial as it significantly impacts the overall accuracy 

of face recognition for a given image. Despite 

significant advancements in face recognition, 

detecting faces under extreme variations remains 

challenging. Literature often discusses new face 

detection algorithms or compares them on CPU/GPU 

platforms, frequently claiming applicability to real-

time scenarios [2]. However, to test these claims in a 

practical context, we have undertaken a performance 

comparison of several state-of-the-art algorithms on 

the Raspberry Pi. The Raspberry Pi, known for its 

affordability, accessibility, and versatility, is widely 

used in various projects. This is because Raspberry Pi 

allows local data processing, resulting in reduced 

latency and dependence on cloud services; a critical 
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specification for devices used in real-time 

applications. It also helps that Raspberry Pi has 

multiple connectivity options for interfacing it with 

various sensors and devices, thus increasing its 

applications. The objective of this comparison is to 

identify the most accurate, fastest, and highest-

performing face detection algorithm suitable for 

implementation on edge devices like the Raspberry 

Pi. By focusing on this compact and affordable 

platform, we aim to provide valuable insights for 

developers and researchers working on real-time, 

resource-constrained edge AI applications [3]. 

2. Challenges in Face Detection 

While most face detectors perform well with large, 

frontal faces, real-world applications face challenges 

like occlusion, pose variations, and lighting changes, 

as shown in Figure 1. Variations in skin tone, 

makeup, expressions, poses, and accessories like 

eyeglasses affect detection accuracy. The use of 

masks due to COVID-19 and accessories such as 

sunglasses or scarves further complicates detection, 

particularly in surveillance. Uncontrolled 

environments introduce lighting, angle, and 

background challenges. [2] Additionally, edge 

devices like smartphones and CCTV cameras face 

performance limitations due to their constrained 

computational power, storage, and battery life, 

despite handling large volumes of facial data from 

selfies, video meetings, and surveillance footage. 

Using an efficient face detection algorithm is crucial 

for these devices to perform effectively under such 

limitations (Figure 1).  

 

 
Figure 1 Challenges in Face Detection 

 

3. Algorithms 

Face detection is a computer vision technology that 

identifies and locates human faces within digital 

images or videos. It works by analyzing visual data 

to detect facial features, such as eyes, nose, ears, 

mouth, and the overall shape of the face. This process 

is typically the first step for various applications like 

face recognition, biometric identification, etc.  

3.1. HAAR Cascade: Viola - Jones Algorithm 

The HAAR Cascade algorithm was one of the 

original face detection algorithms developed in 2001 

by Paula Viola and Michael Jones, hence giving it an 

alternate name of Viola – Jones Algorithm. It was 

used due to its simplicity, efficiency, and real-time 

performance in edge devices. It utilizes a cascade of 

classifiers trained with many positive and negative 

images, allowing it to quickly identify facial features 

through a combination of edge and line detection. Its 

ability to perform well on resource-constrained 

devices made it ideal for early face detection 

applications, particularly in environments where 

computational power and memory were limited 

[3][4]. 

3.2. DLib-HOG 

The DLib-HOG (Histogram of Oriented Gradients) 

algorithm was developed in 2014 as a part of the C++ 

libraries. It was used for face detection due to its 

balance of accuracy and speed. It works by extracting 

gradient features from images and applying a linear 

SVM classifier to detect faces, making it robust 

against variations in lighting, pose, and scale of face. 

The HOG-based approach is efficient and less 

computationally intensive than deep learning 

methods, making it suitable for applications where 

moderate hardware resources are available. It also 

offers better accuracy than simpler algorithms like 

HAAR Cascade, particularly in detecting faces in 

varied orientations and conditions [5]. 

3.3. MTCNN 

The MTCNN (Multi-task Cascaded Convolutional 

Networks) algorithm was developed in 2016. It was 

an effective method for face detection and alignment 

in images using deep convolutional neural networks 

(Figure 2a, 2b, 2c, 2d). It is normally chosen for 

applications that need accurate face detections at 

different scales and orientations, where getting a bit 

of time lag is of no issue. It combines three stages of 

neural networks, P-Net, R-Net and O-Net, that 

progressively refine face localization and alignment, 

handling challenging conditions such as varying 

lighting, occlusion, and complex backgrounds. 

https://irjaeh.com/
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MTCNN’s multi-task learning approach also enables 

it to perform face detection and landmark localization 

simultaneously, making it a popular choice for real-

world applications that require a reliable and robust 

face detection algorithm [7][8]. 

 

 
Figure 2(a) P-Net of MTCNN 

 

 
Figure 2(b) R-Net of MTCNN 

 

 
Figure 2(c) O-Net of MTCNN 

 

 
Figure 2(d) MTCNN 
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3.4. Media Pipe 

The MediaPipe is a framework developed by Google 

in 2019. It provides high accuracy, cross-platform 

compatibility, efficient, real-time perception 

pipelines for various computer vision tasks, including 

face detection, hand tracking, and pose estimation, 

using machine learning techniques [9]. It is normally 

chosen for applications that need fast face detections 

on resource-constrained devices like smartphones. It 

also supports multitasking, allowing it to detect faces 

and landmarks simultaneously, which is useful for 

applications like augmented reality, video 

conferencing, and facial recognition in dynamic 

environments like crowded public places or outdoor 

surveillance [10]. 

4. Hardware Specifications 

The Raspberry Pi 4 B features a 64-bit Quad-core 

Cortex SoC running at 1.5GHz with 2GB of RAM, 

making it suitable for various computing tasks. It 

offers dual-band Wi-Fi, Bluetooth 5.0, BLE for 

wireless connectivity and a Gigabit Ethernet port for 

wired connections. The board includes two USB 2.0 

ports, two USB 3.0 ports, a 40-pin GPIO header for 

external devices, a 2-lane MIPI CSI interface for 

camera connections, and a 2-lane MIPI DSI for 

touchscreens. It also supports up to 4K resolution via 

two micro-HDMI ports and is powered through a 5V, 

3A USB Type-C input. 

5. Software Specifications 

Raspberry Pi 4 B is compatible with various 

operating systems including Raspbian OS, Ubuntu, 

and other Linux distributions. It supports multiple 

programming languages such as Python, C/C++, 

Java, and Node.js, and offers a range of development 

tools and environments like Thony Python IDE, 

making it versatile for developers working on diverse 

applications (Figure 3 & 4). 

6. Setup 

 

 
Figure 3 Hardware Setup 

 

 
Figure 4 Example of Successful Face Detection 

Using the Above Setup 

 

7. Dataset 
We have used two datasets for this project – a 

standard dataset with all the images taken from the 

internet, and a personal dataset using casual pictures 

and selfies featuring the authors (Figure 5 & 6). Each 

of these datasets was divided into six categories based 

on various conditions in which a photo could be 

clicked. These six categories are accessories, facial 

expressions, lighting, occlusion, pose, and scale of 

face. The standard dataset contained about 120 

images. So, for each of these six categories, we have 

20 images for this dataset. The personal dataset 

contained about 60 images. So, for each of these six 

categories, we have 10 images for this dataset. 

8. Inference Comparison Under Various 

Conditions 

 

 
Figure 5 Results Based Images Processed for 

Various Categories for All the Algorithms 
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Figure 6 Results Based Images Processed for 

Various Categories for All the Algorithms 

 

9. Results and Discussion 

9.1. Results 

As mentioned, face detection algorithms struggle to 

outline exact faces in various scenarios. The 

following results showcase a quantitative analysis of 

four algorithms concerning edge devices like 

Raspberry Pi. We are comparing these four 

algorithms based on accuracy and speed to replace 

the older algorithms in IoTs and edge devices with 

newer and more efficient algorithms (Table 1 & 2). 

9.2. Discussion 

MediaPipe emerged as the fastest and most accurate 

face detection method in our study, making it ideal 

for real-time applications where both speed and 

precision are critical. Dlib ranked second in both 

execution time and accuracy, offering a good balance 

for diverse use cases. Viola-Jones showed moderate 

speed but the lowest accuracy, indicating it may not 

be suitable for applications where high precision is 

required. MTCNN, while achieving high accuracy, 

had the slowest execution time, making it less 

suitable for real-time applications despite its 

detection capabilities. 

Avg. execution time = 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒+𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

2
 

Frames per second (fps) = 
1

𝑎𝑣𝑔.  𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

Accuracy = 
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
 *100 

 

Table 1 Algorithm’s Quantitative Analysis (For a 

Standardized Dataset of Pictures Taken from the 

Internet) 

Algorithm 

Average 

Execution 

Time (s) 

Speed 

(fps) 

Accuracy 

(%) 

Dlib – 

HOG 
3.282 0.304 64.28 

MediaPipe 0.0615 16.26 71.43 

MTCNN 21.606 0.046 66.43 

Viola Jones 4.074 0.245 58.57 

 

Avg. execution time = 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒+𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

2
 

 

Frames per second (fps) = 
1

𝑎𝑣𝑔.  𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

 

Accuracy = 
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
 *100 

 

Table 2 Algorithm’s Quantitative Analysis (For a 

Dataset of the Author’s Casual Pictures) 

 

Algorithm 

Average 

Execution 

Time (s) 

Speed 

(fps) 

Accuracy 

(%) 

Dlib – HOG 7.0385 0.142 72.58 

MediaPipe 0.1155 8.658 37 

MTCNN 12.5085 0.0799 58 

Viola Jones 5.0885 0.196 50 

 

Conclusion 

This project has been a comprehensive exploration 

into the capabilities of various image processing 

algorithms on a resource-constrained platform. By 

analysing the data and performance metrics, we can 

draw valuable insights into the suitability of these 

algorithms for real-world applications. The 

Raspberry Pi 4 is known for its compact size and 

limited computational power. In this project, we 

tested the resilience of image processing algorithms 

in such an environment. Efficiency played a critical 

role in the evaluation of the algorithms. MediaPipe 

emerged as the most efficient choice, consistently 
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providing high Frames Per Second (FPS) while 

maintaining low execution times. This efficiency is 

pivotal for real-time image processing applications, 

particularly when operating under resource 

constraints. Each algorithm displayed unique 

strengths. MediaPipe excelled in real-time 

applications, offering rapid and reliable performance. 

Dlib - HOG showed robustness in scenarios with 

mostly frontal or slightly non-frontal faces. MTCNN 

demonstrated competence in detecting faces under 

diverse poses and lighting conditions. Viola Jones, 

although slightly less efficient, stood out for 

distinguishing faces in arbitrary images with low 

false positive rates and high true positives. In 

conclusion, real-time applications should prioritize 

efficiency and responsiveness, making MediaPipe a 

top choice. When accuracy is paramount, Dlib - 

HOG, MTCNN, and Viola Jones offer compelling 

alternatives. This project underscores the importance 

of making informed decisions when selecting image-

processing algorithms for resource-constrained 

platforms. The performance data and analysis 

provided here offer valuable guidance for developers 

and researchers working with Raspberry Pi 4 and 

similar embedded systems while implementing 

image processing tasks on SoC (System on Chip). 
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