

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2440 - 2445

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0334

International Research Journal on Advanced Engineering Hub (IRJAEH)

2440

Real-time Performance Comparison of Face Detection Algorithms using

Raspberry Pi
Hetvi Gunjan Shah1*, Vraj Bhavesh Suthar2, Shital P. Thakkar3, Vinay M. Thumar4
1,2Department of Electronics and Communication, Dharmsinh Desai University, India.
3Associate Professor, Department of Electronics and Communication, Dharmsinh Desai University, India.
4Professor, Department of Electronics and Communication, Dharmsinh Desai University, India.

Emails: shahhetvig@gmail.com1, vrajsuthar17@gmail.com2, shitalthakkar.ec@ddu.ac.in3,

vinay_thumar@ddu.ac.in4

Abstract

This study reviewed state-of-the-art face-detection techniques like Haar cascade, Dlib HOG, MTCNN, and

MediaPipe; implemented and tested them on Raspberry Pi, and evaluated their accuracy, speed, and frames

per second. Overall, the research underscores the practical challenges of face detection, including varying

lighting, facial expressions, occlusions, poses, scale of face, and accessories, and provides valuable insights

for developers and researchers working on edge AI applications on low-cost edge devices. The study found

that the MediaPipe face detection algorithm demonstrated robust performance, even with low-quality images,

and showed good efficiency and resource management on the Raspberry Pi. The research emphasized the

importance of considering factors like accuracy, speed, and resource efficiency in face detection on edge

devices. The findings suggest that MediaPipe is a strong candidate for applications requiring efficient face

detection, affordable and versatile platforms like Raspberry Pi. By focusing on the Raspberry Pi, the study

offers a unique perspective on the performance of state-of-the-art face detection algorithms in real-world,

resource-constrained environments, making it a significant contribution to the field of face recognition and

edge computing.

Keywords: Raspberry Pi, Face Detection Algorithms, Edge-Device.

1. Introduction

Face detection, once a concept relegated to science

fiction, has become an integral part of modern

technology, seamlessly integrated into our daily lives.

Have you ever wondered how your camera identifies

faces while taking a selfie? This is the magic of face

detection [1]. It involves teaching computers to

recognize human faces in images or videos, acting as

a digital detective that scrutinizes visuals pixel by

pixel. It looks for facial features such as the distance

between the eyes, the curve of a smile, and the

placement of the nose. Once these features are

identified, the computer concludes that it has detected

a face. Numerous applications rely on face detection,

including home security systems, criminal

identification, mobile phone unlocking, and Snapchat

filters [1]. The face recognition process typically

involves four main stages: face detection, face

alignment, feature extraction, and face classification.

Among these, feature extraction is particularly

crucial as it significantly impacts the overall accuracy

of face recognition for a given image. Despite

significant advancements in face recognition,

detecting faces under extreme variations remains

challenging. Literature often discusses new face

detection algorithms or compares them on CPU/GPU

platforms, frequently claiming applicability to real-

time scenarios [2]. However, to test these claims in a

practical context, we have undertaken a performance

comparison of several state-of-the-art algorithms on

the Raspberry Pi. The Raspberry Pi, known for its

affordability, accessibility, and versatility, is widely

used in various projects. This is because Raspberry Pi

allows local data processing, resulting in reduced

latency and dependence on cloud services; a critical

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2440 - 2445

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0334

International Research Journal on Advanced Engineering Hub (IRJAEH)

2441

specification for devices used in real-time

applications. It also helps that Raspberry Pi has

multiple connectivity options for interfacing it with

various sensors and devices, thus increasing its

applications. The objective of this comparison is to

identify the most accurate, fastest, and highest-

performing face detection algorithm suitable for

implementation on edge devices like the Raspberry

Pi. By focusing on this compact and affordable

platform, we aim to provide valuable insights for

developers and researchers working on real-time,

resource-constrained edge AI applications [3].

2. Challenges in Face Detection

While most face detectors perform well with large,

frontal faces, real-world applications face challenges

like occlusion, pose variations, and lighting changes,

as shown in Figure 1. Variations in skin tone,

makeup, expressions, poses, and accessories like

eyeglasses affect detection accuracy. The use of

masks due to COVID-19 and accessories such as

sunglasses or scarves further complicates detection,

particularly in surveillance. Uncontrolled

environments introduce lighting, angle, and

background challenges. [2] Additionally, edge

devices like smartphones and CCTV cameras face

performance limitations due to their constrained

computational power, storage, and battery life,

despite handling large volumes of facial data from

selfies, video meetings, and surveillance footage.

Using an efficient face detection algorithm is crucial

for these devices to perform effectively under such

limitations (Figure 1).

Figure 1 Challenges in Face Detection

3. Algorithms

Face detection is a computer vision technology that

identifies and locates human faces within digital

images or videos. It works by analyzing visual data

to detect facial features, such as eyes, nose, ears,

mouth, and the overall shape of the face. This process

is typically the first step for various applications like

face recognition, biometric identification, etc.

3.1. HAAR Cascade: Viola - Jones Algorithm

The HAAR Cascade algorithm was one of the

original face detection algorithms developed in 2001

by Paula Viola and Michael Jones, hence giving it an

alternate name of Viola – Jones Algorithm. It was

used due to its simplicity, efficiency, and real-time

performance in edge devices. It utilizes a cascade of

classifiers trained with many positive and negative

images, allowing it to quickly identify facial features

through a combination of edge and line detection. Its

ability to perform well on resource-constrained

devices made it ideal for early face detection

applications, particularly in environments where

computational power and memory were limited

[3][4].

3.2. DLib-HOG

The DLib-HOG (Histogram of Oriented Gradients)

algorithm was developed in 2014 as a part of the C++

libraries. It was used for face detection due to its

balance of accuracy and speed. It works by extracting

gradient features from images and applying a linear

SVM classifier to detect faces, making it robust

against variations in lighting, pose, and scale of face.

The HOG-based approach is efficient and less

computationally intensive than deep learning

methods, making it suitable for applications where

moderate hardware resources are available. It also

offers better accuracy than simpler algorithms like

HAAR Cascade, particularly in detecting faces in

varied orientations and conditions [5].

3.3. MTCNN

The MTCNN (Multi-task Cascaded Convolutional

Networks) algorithm was developed in 2016. It was

an effective method for face detection and alignment

in images using deep convolutional neural networks

(Figure 2a, 2b, 2c, 2d). It is normally chosen for

applications that need accurate face detections at

different scales and orientations, where getting a bit

of time lag is of no issue. It combines three stages of

neural networks, P-Net, R-Net and O-Net, that

progressively refine face localization and alignment,

handling challenging conditions such as varying

lighting, occlusion, and complex backgrounds.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2440 - 2445

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0334

International Research Journal on Advanced Engineering Hub (IRJAEH)

2442

MTCNN’s multi-task learning approach also enables

it to perform face detection and landmark localization

simultaneously, making it a popular choice for real-

world applications that require a reliable and robust

face detection algorithm [7][8].

Figure 2(a) P-Net of MTCNN

Figure 2(b) R-Net of MTCNN

Figure 2(c) O-Net of MTCNN

Figure 2(d) MTCNN

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2440 - 2445

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0334

International Research Journal on Advanced Engineering Hub (IRJAEH)

2443

3.4. Media Pipe

The MediaPipe is a framework developed by Google

in 2019. It provides high accuracy, cross-platform

compatibility, efficient, real-time perception

pipelines for various computer vision tasks, including

face detection, hand tracking, and pose estimation,

using machine learning techniques [9]. It is normally

chosen for applications that need fast face detections

on resource-constrained devices like smartphones. It

also supports multitasking, allowing it to detect faces

and landmarks simultaneously, which is useful for

applications like augmented reality, video

conferencing, and facial recognition in dynamic

environments like crowded public places or outdoor

surveillance [10].

4. Hardware Specifications

The Raspberry Pi 4 B features a 64-bit Quad-core

Cortex SoC running at 1.5GHz with 2GB of RAM,

making it suitable for various computing tasks. It

offers dual-band Wi-Fi, Bluetooth 5.0, BLE for

wireless connectivity and a Gigabit Ethernet port for

wired connections. The board includes two USB 2.0

ports, two USB 3.0 ports, a 40-pin GPIO header for

external devices, a 2-lane MIPI CSI interface for

camera connections, and a 2-lane MIPI DSI for

touchscreens. It also supports up to 4K resolution via

two micro-HDMI ports and is powered through a 5V,

3A USB Type-C input.

5. Software Specifications

Raspberry Pi 4 B is compatible with various

operating systems including Raspbian OS, Ubuntu,

and other Linux distributions. It supports multiple

programming languages such as Python, C/C++,

Java, and Node.js, and offers a range of development

tools and environments like Thony Python IDE,

making it versatile for developers working on diverse

applications (Figure 3 & 4).

6. Setup

Figure 3 Hardware Setup

Figure 4 Example of Successful Face Detection

Using the Above Setup

7. Dataset
We have used two datasets for this project – a

standard dataset with all the images taken from the

internet, and a personal dataset using casual pictures

and selfies featuring the authors (Figure 5 & 6). Each

of these datasets was divided into six categories based

on various conditions in which a photo could be

clicked. These six categories are accessories, facial

expressions, lighting, occlusion, pose, and scale of

face. The standard dataset contained about 120

images. So, for each of these six categories, we have

20 images for this dataset. The personal dataset

contained about 60 images. So, for each of these six

categories, we have 10 images for this dataset.

8. Inference Comparison Under Various

Conditions

Figure 5 Results Based Images Processed for

Various Categories for All the Algorithms

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2440 - 2445

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0334

International Research Journal on Advanced Engineering Hub (IRJAEH)

2444

Figure 6 Results Based Images Processed for

Various Categories for All the Algorithms

9. Results and Discussion

9.1. Results

As mentioned, face detection algorithms struggle to

outline exact faces in various scenarios. The

following results showcase a quantitative analysis of

four algorithms concerning edge devices like

Raspberry Pi. We are comparing these four

algorithms based on accuracy and speed to replace

the older algorithms in IoTs and edge devices with

newer and more efficient algorithms (Table 1 & 2).

9.2. Discussion

MediaPipe emerged as the fastest and most accurate

face detection method in our study, making it ideal

for real-time applications where both speed and

precision are critical. Dlib ranked second in both

execution time and accuracy, offering a good balance

for diverse use cases. Viola-Jones showed moderate

speed but the lowest accuracy, indicating it may not

be suitable for applications where high precision is

required. MTCNN, while achieving high accuracy,

had the slowest execution time, making it less

suitable for real-time applications despite its

detection capabilities.

Avg. execution time =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒+𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

2

Frames per second (fps) =
1

𝑎𝑣𝑔. 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

Accuracy =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
 *100

Table 1 Algorithm’s Quantitative Analysis (For a

Standardized Dataset of Pictures Taken from the

Internet)

Algorithm

Average

Execution

Time (s)

Speed

(fps)

Accuracy

(%)

Dlib –

HOG
3.282 0.304 64.28

MediaPipe 0.0615 16.26 71.43

MTCNN 21.606 0.046 66.43

Viola Jones 4.074 0.245 58.57

Avg. execution time =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒+𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

2

Frames per second (fps) =
1

𝑎𝑣𝑔. 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

Accuracy =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
 *100

Table 2 Algorithm’s Quantitative Analysis (For a

Dataset of the Author’s Casual Pictures)

Algorithm

Average

Execution

Time (s)

Speed

(fps)

Accuracy

(%)

Dlib – HOG 7.0385 0.142 72.58

MediaPipe 0.1155 8.658 37

MTCNN 12.5085 0.0799 58

Viola Jones 5.0885 0.196 50

Conclusion

This project has been a comprehensive exploration

into the capabilities of various image processing

algorithms on a resource-constrained platform. By

analysing the data and performance metrics, we can

draw valuable insights into the suitability of these

algorithms for real-world applications. The

Raspberry Pi 4 is known for its compact size and

limited computational power. In this project, we

tested the resilience of image processing algorithms

in such an environment. Efficiency played a critical

role in the evaluation of the algorithms. MediaPipe

emerged as the most efficient choice, consistently

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 10 October 2024

Page No: 2440 - 2445

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2024.0334

International Research Journal on Advanced Engineering Hub (IRJAEH)

2445

providing high Frames Per Second (FPS) while

maintaining low execution times. This efficiency is

pivotal for real-time image processing applications,

particularly when operating under resource

constraints. Each algorithm displayed unique

strengths. MediaPipe excelled in real-time

applications, offering rapid and reliable performance.

Dlib - HOG showed robustness in scenarios with

mostly frontal or slightly non-frontal faces. MTCNN

demonstrated competence in detecting faces under

diverse poses and lighting conditions. Viola Jones,

although slightly less efficient, stood out for

distinguishing faces in arbitrary images with low

false positive rates and high true positives. In

conclusion, real-time applications should prioritize

efficiency and responsiveness, making MediaPipe a

top choice. When accuracy is paramount, Dlib -

HOG, MTCNN, and Viola Jones offer compelling

alternatives. This project underscores the importance

of making informed decisions when selecting image-

processing algorithms for resource-constrained

platforms. The performance data and analysis

provided here offer valuable guidance for developers

and researchers working with Raspberry Pi 4 and

similar embedded systems while implementing

image processing tasks on SoC (System on Chip).

References
[1]. M. Zamir, N. Ali, A. Naseem, et al., “Face

detection & recognition from images &

videos based on CNN & raspberry pit,”

Computation, vol. 10, no. 9, p. 148, 2022.

[2]. Y. Feng, S. Yu, H. Peng, Y.-R. Li, and J.

Zhang, “Detect faces efficiently: A survey

and evaluations,” IEEE Transactions on

Biometrics, Behavior, and Identity Science,

vol. 4, no. 1, pp. 1–18, 2021.

[3]. I. Gupta, V. Patil, and S. Kadam, “Face

detection and recognition using raspberry pi,”

Dec. 2016.

[4]. M.Dahake and N. Mandaogade,

“Implementation of raspberry pi for human

face detection & recognition,” Tech Res Pap

Compet Students, pp. 2–5, 2017.

[5]. A. Jadhav, S. Lone, S. Matey, T. Madamwar,

and S. Jakhete, “Survey on face detection

algorithms,” Int. J. Innov. Sci. Res. Technol,

vol. 6, pp. 291–297, 2021.

[6]. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint

face detection and alignment using multitask

cascaded convolutional networks,” IEEE

signal processing letters, vol. 23, no. 10, pp.

1499–1503, 2016.

[7]. “Histograms of Oriented Gradients for

Human Detection” by Navneet Dalal and Bill

Triggs, presented at the IEEE Computer

Society Conference on Computer Vision and

Pattern Recognition (CVPR) in 2005.

[8]. "Rapid Object Detection using a Boosted

Cascade of Simple Features" by Paul Viola

and Michael Jones, presented at the 2001

IEEE Computer Society Conference on

Computer Vision and Pattern Recognition

(CVPR).

[9]. “Joint Face Detection and Alignment using

Multi-task Cascaded Convolutional

Networks" by Kaipeng Zhang, Zhanpeng

Zhang, Zhifeng Li, and Yu Qiao, published in

2016.

[10]. "MediaPipe: A Framework for Building

Perception Pipelines" by François Bérard,

Clément Henry, Irene Alvarado, Daniel

Smullen, and many others, presented at the

2020 ACM Multimedia Conference.

https://irjaeh.com/

