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Abstract  

This study delves into the analysis of the free vibration characteristics of a Timoshenko sandwich beam tapered 

along both width and thickness, subjected to an axially pulsing load on a Pasternak foundation. Integral to 

this investigation are the comprehensive considerations of energy expressions encompassing bending, axial 

deformation, kinetic energy, and strain energy induced by transverse shear stress. Subsequently, the 

differential equations governing the system, along with the associated boundary conditions, are deduced 

utilizing Hamilton's principle, followed by their non-dimensionalization. Leveraging series solutions from 

prior research that satisfy these equations and boundary conditions, each coordinate of the system is 

addressed. In the quest for a deeper understanding, Galerkin’s energy principle is employed to derive matrix 

expressions for key parameters such as mass and stiffness. Utilizing these matrices, Eigenvalues are computed 

to ascertain the natural frequencies of the system. The findings are presented through a series of graphical 

representations, elucidating the influence of various system parameters. 

Keywords: Timoshenko Sandwich Beam; Free Vibration; Natural Frequency; Taper Parameter; Temperature 

Gradient. 

 

1. Introduction  

In order to reduce noise and vibration, sandwich 

beam are often used in the automobile, aerospace, and 

marine industries. The strength to weight ratio of 

Timoshenko sandwich beam is higher that of solid 

straight beams. In order to reduce noise and vibration, 

it is necessary to look at the needs in numerous 

industries and extensive study has been done on 

sandwich beams. Ray and Kar [1] investigated the 

instability of sandwich beams across various 

boundary conditions, scrutinizing parametric 

vibrations extensively. In a separate study, Kerwin et 

al. [2] delved into the damping effects on the free 

vibration of sandwich beams, particularly focusing 

on cases where the core material exhibits viscoelastic 

behavior. Meanwhile, Saito and Otomi [3] conducted 

an analysis on the stability of beams supported by 

viscoelastic supports, incorporating the influence of 

mass placement along the beam's length. 

Additionally, Kar and Sujata [4] observed a 

correlation between increasing taper parameters and 

decreased stability against periodic forces, as well as 

diminished static buckling loads. The core density 

parameter has no impact on the static but it does have 

a discernible effect on the beam’s sensitivity to 

pulsating force, either increasing or decreasing. 

Nayak and Dash [5] Observed that the static stability 
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of the beam increases as the pre-twist angle increases, 

but only for odd modes. Ansari et al. [6] studied a 

cantilever sandwich beam with tip mass and the effect 

of tip mass on the stability of the system. Lin and 

Chen [7] employed FEM to investigate the dynamic 

stability of a rotating sandwich beam. Their study 

showed that increasing the thickness of the 

viscoelastic layer and angular velocity led to 

improved dynamic stability. However, large setting 

angles were found to have a negative impact on 

dynamic stability. Nayak et al. [8] investigated a 

tapered beam of exponential variation, pre-twisted 

system on a Pasternak foundation supported 

viscoelastically and a temperature grade. Pradhan et 

al. [9] examined the stability of an uneven 

sandwiched beam on a foundation of Pasternak type 

with a temperature grade. The stability of a non-

uniform uneven sandwich beam on a Pasternak base 

in a temperature environment was investigated by 

Pradhan et al. [10]. Malekzadeh et al [11] analysed 

on a functionally graded circular curved beam and 

found that the frequency parameter decreases as the 

opening angle increases. The dynamic Timoshenko 

beam subjected to axial periodic force was studied by 

Sabuncu and Evran [12]. The researchers concluded 

that as the distance between the centroid and the 

centre of flexure rises, the coupled bending dominant 

frequency grows. Ditaranto and Blasingame [13] 

found generalized result for composite loss factor and 

natural frequencies. The forced vibration was 

analysed by Mead and Marcus [14] for different 

boundary conditions by using the solutions provided 

by Ditaranto and observed different uncoupled 

complex modes. Banerjee [15] presented the 

problem-solving approach by dynamic stiffness 

method for sandwich beam. Nayak et al. [16] 

investigated a tapered beam of exponential variation, 

pre-twisted system on a Pasternak foundation 

supported viscoelastically and a temperature grade. A 

functionally graded, pre-twisted thick cantilever 

beam was the subject of an investigation by Mohanty 

et al. [17] into its vibration and dynamic stability. 

They discovered that a low index damages the 

system's stability when power levels rise. Liao & 

Huang [19] enriched the literature by exploring the 

parametric instability of spinning pre-twisted beams 

under periodic axial forces, contributing to a deeper 

comprehension of the intricate phenomena dictating 

these structures. In a complementary study, Shiau & 

Tong [20] explored the intricate relationship between 

stability and response in rotating pre-twisted tapered 

blades, shedding light on the nuanced dynamics at 

play. Joubaneh et al. [21] conducted numerical and 

experimental analyses of free vibration in sandwich 

beams with tip masses using higher-order theory, 

highlighting the significant impact of tip masses on 

natural frequency. Freidani et al. [22] considered the 

consequence of a moving mass and curvature radius 

on dynamic deflection, observing substantial 

increases with higher parameter values. As 

investigation of free vibration analysis of an 

asymmetric Timoshenko sandwich beam which has 

tapered along depth subjected to axial pulsating 

excitation is not available till date, the existing work 

shares out with the above said system configuration 

2. Problem Formulation 

Figure 1 shows a 3-layer Timoshenko tapered 

sandwiched beam with a periodic axial load. The 

periodic axial load is denoted by .

 

                Figure 1 System Configuration 

2.1 Materials 

In this analysis, a three-layer sandwich beam is 

constructed using plywood as the viscoelastic middle 

layer, with structural steel and Cu-Al alloy being 

considered for the top and bottom sheets, 

  0 1 cos P t P P t
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respectively. Using the right adhesive, the layers are 

joined. The materials used to build the beam are listed 

in Table 1 along with a variety of mechanical 

attributes. 

Table 1 Mechanical characteristics of the 

Considered Materials 

Materials Density 

(kg/m³) 

highest 

tensile 

strength 

(MPa) 

Young’s 

modulus 

(MPa) 

ASTM 

A36 Steel, 

plate 

7800 550 200*103 

Cu-Al 

Alloy 

CuAl8Fe3 

7850 470 170*103 

Materials Density 

(kg/m³) 

the 

highest 

tensile 

strength 

(Pa) 

Young’s 

modulus (Pa) 

Plywood 650 13.8 620*103 

 

The equations of motion for the beam are formulated 

under specific assumptions, which are as follows. 

1.The elastic layers of the skin adhere to Euler's 

theory, while the beam's core undergoes shear 

deformation theory 

2.The system's pre-twist angle is incredibly 

modest. 

3.It is presumed that there is no sliding at the 

intersection of the beam's several levels. 

4.It is possible to disregard the strain energy and 

extensional inertia of the core caused by in-plane 

stresses. 

5.The beam faces' rotational inertia may be 

minimal. 

6.The deflection curves have short slopes. This is 

owing to the expectation that any deflection will 

be constrained by an increase in the stiffness of 

the system brought on by a high elastic modulus 

or a thicker viscoelastic layer. 

7.It is deemed possible to ignore the resulting force 

in the intermediate viscoelastic layer of the 

beam. Its elastic modulus is far lower than those 

elastic layers. 

The total kinetic energy of the system can be written 

by 

     (1) 

The total potential energy of the system can be 

written by 

 

 

The total work done of the system can be written by 

                                                 (3) 

Energy principle by Hamilton , the 

following are the governing 

 

   (4) 

        (5) 

    

         (6) 

    

                (7) 

and the boundary conditions for the system are 

                      (8) 
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                                                                  (11) 

The dimensionless form of total energy terms are as 

follows 

    (12)

   

 

The total dimensionless work done becomes 

                                            (14)

        

The dimensionless governing equations for motion 

are 

 

   (15) 

       (16)

     

                  (17) 

     

      (18)
 

    
 

2.2 Solution by Variation Method 

The system's solution was estimated through the use 

of the following set of equations     

                                    (19)  

        

                                        (20) 

        

                                       (21) 

        

                                        (22) 

 

The generalised coordinates are , , ,  

The equations (19) - (22) provide the expressions for 

the shape functions that correspond to the pinned-

pinned boundary condition as in [12]. 

 

𝑤𝑖(�̅�) = sin(𝑖𝜋�̅�)                                     (23) 

     

�̅�1 = cos(𝑘𝜋�̅�)                                    (24) 

     

�̅�1 = sin(𝑚𝜋�̅�)                                    (25)  

 

�̅�3 = sin(𝑜𝜋�̅�)                                    (26)  

 

After non-dimensionalising, the extended Galerkin 

method is applied to the energy equations to obtain 

the following matrix equation 

     

                                                                              (27)   

 and  are global mass matrix and global 

stiffness matrix correspondingly. 
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                                       (29) 

 The various sub matrices are 

                                          (30) 
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       (34) 

                               (35)
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                   (37)
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                        (39) 

           (40)

                (41) 

      (42)      

                                                   (43) 

2.3 Free Vibration Analysis 

For determination of the natural frequencies P(t) is 

occupied as zero (i.e., ) in (27).  The 

natural frequencies can be obtained from the Eigen 

values of the matrix. Referring [13] from above 

the following equations can be derived  

3. Result and Discussion 

Numerical data are available for parameters such as 

shear, thermal gradient, taper, spring characteristics, 

and spring loss factors. Figures 2 to 8 depict the 

influence of various system parameters on the 

structure's free vibration. 

 

Figure 2 Response of  for  

 

Figure 3 depicts the impact of the  on the natural 

frequencies of the system. For larger vales of   , 

the natural frequencies of the system increase. 

 

 
           Figure 3 Response of  for  
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Figure 3 depicts the impact of the width tapper   on 

the natural frequencies of the system. For larger vales 

of   , the natural frequencies of the system increase. 

 
           Figure 4 Response of  for  

 

Figure 4 The  outcome enhances the natural 

frequencies across all the three modes due to the 

improved rigidity of the system. 

 
Figure 5 Response of for  

 

 
            Figure 6 Response of  for  

 

Figures 5 and 6 illustrate the change in natural 

frequencies with increasing values of the thickness 

taper parameter. It's evident that as the taper 

parameter rises, the natural frequencies decrease. 

This decline is attributed to the reduction in cross-

sectional area, which leads to a slenderizing effect on 

the beam and consequent deterioration in natural 

frequencies. 

Conclusion 

The findings derived from the comprehensive study 

shed light on the positive correlation between the 

width taper and the enhancement of the beam's 

natural frequency. Additionally, it was observed that 

the ratios involving the thickness of the shear layer to 

the length of the beam and the modulus of the shear 

layer to the modulus of elasticity of the elastic layer 

play pivotal roles in augmenting the natural 

frequencies. On the contrary, elevating the taper 

parameter along the thickness was found to have a 

detrimental effect on the natural frequency, while a 

corresponding increase along the width was 

associated with improvements in the system's natural 

frequencies. 
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