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Abstract 

This study aims to utilize computational techniques to analyse the natural vibration characteristics of a 

rotating asymmetric sandwich beam with varying width and thickness, subjected to a pulsating axial load. The 

equation of motion and boundary conditions are derived employing the extended Hamilton's concept and 

subsequently non-dimensional zed using the extended Galerkin method. Hills equations are then obtained, and 

Galerkin’s energy principle is applied to formulate matrix expressions for crucial parameters like mass and 

stiffness. These matrices are used to compute Eigenvalues, determining the natural frequencies. The results 

are presented graphically to illustrate the impact of different system parameters, such as taper parameters, 

shear parameter, rotational speed, and core-loss factor. MATLAB is utilized for graphical representation and 

analysis. 
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1. Introduction 

The study of sandwich beams' vibration study has 

gained significant importance, especially in 

applications where high strength-to-weight ratios are 

crucial, such as space vehicles, airplanes, military 

aircraft, and ships. These beams, often used as load-

bearing elements, find wide applications in various 

mechanical fields. Understanding their vibration 

characteristics, including natural frequencies and 

mode shapes, is essential for effective structural 

design. Sandwich beams typically consist of three 

layers: upper and bottom face materials and a core 

material. The faces endure both compressive and 

tensile loads and provide bending strength to the 

structure, while the core supports the faces and 

prevents deformation. Viscoelastic cores are 

preferred for their effective support and damping 

properties compared to other core materials. The 

choice of materials for sandwich beam construction 

depends on desired properties such as strength, 

temperature resistance, and surface finish, tailored to 

specific applications. A well-designed sandwich 

beam ensures structural integrity throughout its 

lifespan, effectively bearing loads. Viscoelastic 

materials exhibit a combination of elastic and viscous 

properties. They return to their original shape after 

stress is released (elastic behavior), but they also 

exhibit flow under sustained stress (viscous 

behavior). Creep, observed in viscoelastic materials 

under constant strain, and hysteresis, occurring due to 

cyclic loading, contribute to their damping properties. 

Faraday [1] gave a very important remark from his 

experiment on the parametric excitation, while 

performing the experiment he used a container filled 

with fluid when Faraday gave vibration vertically on 

the container the inside fluid surface oscillates at half 

of the frequency of the container. Heteny [2] went 

into greater depth about the concept of beams on 

elastic foundations. Madhusmita Pradhan [3] 
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considered an asymmetric sandwich beam tapered 

which placed under a Pasternak foundation and 

pulsating load applied on it after that by using 

different parameters both the static and the dynamic 

stability measured. Yokoyama [4]as the FEM(finite 

element method) a today’s most popular method to 

calculate the boundary condition, the Timoshenko 

beam was place in the elastic base and the both 

dynamic and static boundary condition examine and 

the effect of the base also shown on this Dinget al. [5] 

Many no of research carried out on the field of free 

vibration by many researchers which are listed below. 

[6]The frequency response curve of a non-uniform 

beam experiencing nonlinear oscillation is estimated 

mathematically using the various timeline approach, 

yielding approximate but accurate data. [7] 

Motohirosato explained when a beam having equal 

distance elastic support it will take as a elastic 

foundation and my the computational method the 

stability also calculated. [8] Hu Dinga shows how the 

Galerkin technique for calculating the It is possible to 

improve the dynamic behavior of an elastic beam 

sitting on a non-linear base using viscous 

damping.[9] E.Babilo investigates beam which is 

basically supported and undergo to axial are liant on 

time the dynamic stability calculated with the time. 

[10-12] Functionally graded material is defined as a 

continuous variation of material qualities.[13]Saito 

and Otomi mentioned lots of conditions as well as 

cases to plot the stability diagram for both static and 

the dynamic stability analysis which is a key point to 

our project point of view. By taking the taper 

parameters of sandwich beam and the taper width of 

the sandwich beam was examine with respect to the 

loading in both the static and dynamic condition for 

the different boundary condition. From these the 

related research papers were listed below [14] 

Hetenyi was the first to explain the notion of beams 

on elastic foundations in detail. Kerwin [15] offered 

a basic analysis of damping by a visco-elastic layer 

that is damping restricted. [16] Wang and Stephens 

examined the variation of natural frequencies in a 

Timoshenko beam with rotating inertia, shear 

deformation, and elastic foundation constants. 

Clementi et al. [17] Using the multiple time scale 

technique analytically, the frequency response curves 

of a non-uniform beam exhibiting nonlinear 

oscillations were derived. Caruntu [18-20]. The basic 

resonance of non-uniform non-uniform beams had 

rectangular cross section, uniform width, and convex 

parabolic thickness variation was investigated using 

forced and undammed bending vibrations (Figure 1). 

 
Figure 1 Sandwich Beam Layers 

 

2. Problem Formulation 

Figure 2 shows a 3-layer Non uniform sandwich 

beam tapered along width and thickness with a 

periodic axial load. The periodic axial load is denoted 

by . 

 

Figure 2 System Configuration 

2.1 Materials 

In this study, a sandwich beam comprising three 

layers is created, featuring plywood as the 

viscoelastic core, and structural steel and Cu-Al alloy 

for the upper and lower sheets, respectively. 

Employing suitable adhesive, the layers are bonded 

together. The following are the expressions for 

potential energy, kinetic energy, and work done; 
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                                              (03) 

By putting Hamilton's idea into practice, 

                                           (04) 

To determine equations of motion, the following 

assumptions are used. 

1. The beam has transverse deflection is modest 

also during the course of a certain cross 

section it is uniform. 

2. The layers are properly linked so that there is 

no slippage between them. 

3. The metallic layer follows the Euler-

Bernoulli beam theory assumption. 

4. The core's extensional and bending effects are 

insignificant. 

5. Shear is the primary cause of core damping. 

6. The effects of rotary inertia are minimal 

inside the layer. 

7. There is no axial inertia in the higher and 

lower layers. 

By using the extended Hamilton’s principle along 

with the generalized Galerkin’s method, the 

following non-dimensional equations of motion are 

obtained. 

    (05) 

(06) 

 

Boundary conditions for the sandwich beam as 

follow At and,  

       (07) 

                                                             (08) 

  (09) 

                                                               (10) 

    (11) 

 

                                                             (12) 

 

2.2 Approximate Solution 

Equations (05) and (06) are assumed to have 

solutions  

                               (13) 

                              (14) 

 

Here the shape functions are and and the 

generalized coordinates are and . The following 

matrix equations of motion in generalized 
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coordinates are obtained by substituting the 

aforementioned equations in equations (05) and (06) 

and using the general Galerkin's method. 
               (15) 

                            (16) 

Where 

                                (17) 

                          (18) 

 
The sub matrixes are listed below 

 

                                             (19) 

       (20) 

 

         (21) 

 

     (22) 

                                                  (23) 

In the above, ,  and . 

The equations (15) and (16) are further simplified to 

(24) 

Where 

                                (25) 

                                               (26) 

2.3 Free Vibration Analysis 

For determination of the natural frequencies P(t) is 

occupied as zero (i.e., ) in equation (24). 

The natural frequencies are obtained from the Eigen 

values of the matrix.   

3. Result and Discussion 

Numerical data are available for parameters such as 

shear parameter, rotational speed, tapper parameter 

along width and thickness, core-loss factor. Figures 3 

to 8 depict the influence of various system parameters 

on the structure's free vibration. 

 

               Figure 3 Variation of  with  

 

Figure 3 depicts the impact of the width taper on the 

natural frequencies of the system. For larger values 

of , the natural frequencies of the system 

increases.        

 

Figure 4 Variation of  with  
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Figure 4 depicts the impact of the taper parameter 

acting on the thickness on the natural frequencies of 

the system. For larger values of , the natural 

frequencies of the system decreases.     
    

 

Figure 5 Variation of  with  

 

 

Figure 5 depicts the impact of the taper parameter 

acting on the thickness on the natural frequencies of 

the system. For larger values of , the natural 

frequencies of the system decreases 

 
             Figure 6 Variation of  with  

 

Figure 6 depicts the impact of the core-loss factor on 

the natural frequencies of the system. For larger 

values of , the natural frequencies of the system 

remains independent with the increase in the value. 

 

 
Figure 7 Variation of  with  

 

 

Figure 7 depicts the impact of the shear parameter on 

the natural frequencies of the system. For larger 

values of g, the natural frequencies of the system 

increases. Due to the increment of g the stiffness as 

well as the shearing behavior of viscos-elastic 

material increase by which its increase the rigidity of 

the system and attend stability.  
      

 

                Figure 8 Variation of  with  

 

Figure 8 depicts the impact of the rotational speed 

acting on the thickness on the natural frequencies of 

the system. For larger values of , the natural 

frequencies of the system increase significantly. 

Conclusion 

The examination of free vibration analysis of a 

sandwich beam that's asymmetric, rotating, and 

tapered across its width and thickness, subjected to 

pulsating loads, takes into account varying factors 

such as core-loss factor, taper width, taper 
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characteristics, shear parameter, and rotational 

velocity. This investigation focuses on the static 

scenario, considering a clamped-free boundary 

condition. The deduction is that as the taper width, 

rotational speed, and shear parameter are heightened, 

there's a simultaneous increase in the natural 

frequency across all four modes. As the taper 

parameter along the thickness is incremented, there's 

a simultaneous decrease in the natural frequency 

across all modes and the core loss factor’s natural 

frequency remains independent while increasing. 
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