A Study on the Patients Effected with Diabetic Retinopathy

Mr. Kundan. B, Dr. S. Pushpa

Research Scholar, Department of Computer Science and Engineering, St. Peter’s Institute of Higher Education and Research, Avadi, Chennai-TN, India.

Emails: kbaws2021@gmail.com, pushpasangar96@gmail.com

*ORCID: https://orcid.org/0009-0007-9511-1983

Abstract

Diabetes-related retinal disease (DR) is the subject of the investigation. One of the main reasons why diabetic individuals become blind is diabetic retinopathy syndrome. DR is classified into two major types, first Non-Proliferative Diabetic Retinopathy (NPDR) and the second Proliferative Diabetic Retinopathy (PDR). The treatment can be given to the patients based on the neovascularization (Abnormal Blood Vessel Growth) in the retina. Early findings of neovascularization are much important. Based on this report only an optometrist can identify, whether if the patient comes under NPDR or PDR. NPDR is further classified into three stages, Mild NPDR, Moderate NPDR and Severe NPDR. The main causes of vision impairment in this group of patients are of concern. Early diagnosis, careful observation, and appropriate evidence-based management—which frequently involves several different health care disciplines and professions—are necessary for diabetes and diabetic retinopathy (DR). The one area of the body where physical damage to blood vessels brought on by systemic disorders can be seen noninvasively is treated and observed by an optometrist. This highlights how crucial it is to keep an eye on all diabetic patients and collaborate with endocrinologists or primary care physicians (PCPs) to properly manage these individuals. In the past, skilled professionals would treat patients by hand. However, with the rapid advancement of technology, diabetic retinopathy may now be treated digitally. A specialist can identify the more intricate characteristics of the eye and treat patients appropriately.

Keywords: Diabetic Retinopathy (Dr); Non- Proliferative Diabetic Retinopathy (Npdr); Proliferative Diabetic Retinopathy (Pdr); Pcp.

1. Introduction

Diabetic Retinopathy (DR) was one of the major causes of blindness. DR mutilates the retinal blood vessels of a patient having diabetes. The DR had two major types: the Non-Proliferative Diabetic Retinopathy (NPDR) and Proliferative Diabetic Retinopathy (PDR) [9]. The DR in the early stages was called NPDR which was further divided into Mild, Moderate, and Severe stages. Where the mild stage has one Microaneurysma (MA), which is a small circular red dot at the end of blood vessels. In the Moderate stage the MAs rapture into deeper layers and form a flame-shaped hemorrhage in the retina. The severe stage contains more than 20 intra retinal hemorrhages in each of the four quadrants, having definite venous bleeding with prominent intra retinal microvascular abnormalities [10]. PDR was the advanced stage of DR which leads to neovascularization, a natural formation of new blood vessels in the form of functional micro vascular networks that grow on the inside surface of the retina [11]. Globally, the number of DR patients was expected to increase from 382 million to 592 million by 2025 [12]. Diabetes patients are susceptible to neurovascular problems that might result in diabetic macular edema (DME) and/or diabetic retinopathy. Non-proliferative diabetic retinopathy (NPDR) was discovered by researchers to be present in 25% of patients five years following the diagnosis of diabetes, 60% at ten years, and 80% at fifteen years. According to these investigations, the incidence of proliferative
diabetic retinopathy (PDR) ranged from 2.5% in people with diabetes for less than five years to 15.5% in people with the disease for fifteen years or longer [1]. The only area of the human body where systemic disease-related physical damage to blood vessels can be observed noninvasively is by optometrists. This underlines the significance of closely monitoring all diabetic patients and collaborating with endocrinologists or primary care physicians (PCPs) to assist in their management [2]. Patients diagnosed with type 1 diabetes are advised by optometrists to get a thorough dilated eye examination no later than five years from the commencement of the disease. At the time of diagnosis and every year after, patients with type 2 diabetes should get a thorough dilated eye examination. A thorough dilated eye examination should be performed on women who have previously been diagnosed with type 1 or type 2 diabetes either prior to becoming pregnant or during the first trimester of pregnancy in Figure 1.

Hemorrhages could occur through capillary walls progressively deteriorating and breaking up. IRMAs are either preexisting vessels with proliferation endothelial cells traveling through nonperfusion regions or new blood vessels formation within the retina [23-24]. The presence of IRMA signals ischemia and serves as a trigger for neovascularization [3]. Severe retinal hypoxia is the cause of venous looping and beading, which represent a higher risk of neovascularization progression. When you have a diabetic patient in your chair, it is critical to learn as much as you can about their health.

1.1. Stage1: MILD Non-Proliferative Diabetic Retinopathy (NPDR)
These patients show no other abnormalities in the picture below, but they do have at least one MA. Since results are frequently subtle, careful examination and observation are crucial in Figure 1 [4].

Every year, these patients ought to undergo a dilated eye exam. And there is a chance of five percent that mild NPDR will turn into PDR. A patient should be referred to a PCP for further examination if they are diagnosed with one or more MAs in their eyes and are suspected of being diagnosed with diabetes [6]. You can keep an eye on patients’ disease progression by recording tiny discoveries and specifying their precise locations. If available, use fundus images to facilitate

Table. Diagnosing Diabetic Retinopathy

<table>
<thead>
<tr>
<th>DIABETIC RETINOPATHY LEVEL</th>
<th>RETINAL FINDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild NPDR</td>
<td>MAs only</td>
</tr>
<tr>
<td>Moderate NPDR</td>
<td>At least one hemorrhage or MA and/or at least one of the following: • Retinal hemorrhages • Hard exudates • Cotton wool spots • Venous beading</td>
</tr>
<tr>
<td>Severe NPDR</td>
<td>Any of the following but no signs of PDR (4-2-1 rule): • >20 intraretinal hemorrhages in each of four quadrants • Define venous beading in two or more quadrants • Prominent IRMA in one or more quadrants</td>
</tr>
</tbody>
</table>
| PDR | One of either: • Neovascularization • Vitreous/pericentral hemorrhage

What to Look?

In most cases, patients with NPDR have different-sized hemorrhages, venous looping or beading, hard exudates, soft exudates (cotton wool patches), microaneurysms (MAs), and intraretinal microvascular abnormalities (IRMAs). Loss of intramural pericytes has damaged the retinal capillaries, resulting in the formation of MAs, which are saccular outpouchings [5].
comparisons in the future. Unless you have verified a diagnosis of DME or are concerned about a patient with mild NPDR, there is no need to refer them to a retina expert. Patients should be informed of the findings and their potential consequences, particularly if they are newly diagnosed with diabetes [7]. It is crucial to explain to them that MAs signify early end organ damage from their condition. Motivate them to keep an eye on their nutrition and blood sugar levels. Provide the patient's PCP and/or endocrinologist a thorough report so they are aware of the results and can use it to help them decide on a course of treatment [25-26].

1.2. Stage 2: Moderate NPDR
Every six to eight months, patients with moderate NPDR should be examined. Within a year, there is a 12% to 27% chance that they will get proliferative diabetic retinopathy (PDR). In cases when you suspect DME, you may choose to obtain macular OCT images [8]. Fundus photography is advised for these individuals in Figure 3. Unless you have proven DME or you feel OCT imaging is necessary but cannot obtain this technology, these individuals do not need to be referred to a retina expert. Informing these patients about the results and their implications for the course of the disease is crucial once more.

Figure 3 Patient with Moderate NPDR

It can be essential to send patients back to their PCP or endocrinologist earlier than planned so they can discuss treatment modifications, depending on their most recent blood sugar management and the results of their most recent diabetic examination with those professionals [27-28].

1.3. Stage 3: Severe NPDR
These patients exhibit venous beading in two or more quadrants, an IRMA in one or more quadrants, and intraretinal hemorrhages [14]. The 4:2:1 rule refers to this. Neovascularization, which would suggest PDR, must not be present in these data in Figure 4.

Figure 4 Severe NPDR

Macular OCT and fluorescein angiography should be used in conjunction to follow patients with severe NPDR to identify any early neovascularization or DME [29-30]. Patients should be followed up with dilated fundus examinations every three to four months, and referrals to retina specialists are advised [15]. To monitor these individuals, you might be able to collaborate with a retina specialist by scheduling alternating consultations. Discussing with patients who have severe NPDR the significance of blood sugar control and close observation is vital, since they have a 52% chance of developing PDR within a year. To discuss retinal findings, it is also necessary to contact the patient's PCP or endocrinologist. Currently, these patients are probably having neuropathy elsewhere and are at a significant risk of both permanent visual loss and disease progression [16].
1.4. Stage 4: Proliferative Diabetic Retinopathy

These patients show evidence of either vitreous/preretinal bleeding or neovascularization of the disc/elsewhere after their NPDR advanced to PDR. For additional testing and treatment, these patients need to be referred right away to a retina expert Figure 5. Laser panretinal photocoagulation is the typical treatment for peripheral neovascularization. In addition, they frequently receive intravitreal injections of anti-VEGF, which may be administered in addition to PRP [17].

![Figure 5 PDR](image)

These individuals require monthly follow-up visits with a retina specialist until their illness stabilizes. After that, they might see someone every six to twelve months. Inform the patient's PCP and/or endocrinologist of all results. If the patient's PDR is new, a phone call is necessary.

2. Research Methodology

Diabetic Retinopathy (DR) is a common complication of diabetes mellitus, which causes lesions on the retina that effect vision. If it is not detected early, it can lead to blindness. Unfortunately, DR is not a reversible process, and treatment only sustains vision. DR early detection and treatment can significantly reduce the risk of vision loss [13]. The manual diagnosis process of DR retina fundus images by ophthalmologists is time, effort, and cost-consuming and prone to misdiagnosis unlike computer-aided diagnosis systems. Recently, deep learning has become one of the most common techniques that have achieved better performance in many areas, especially in medical image analysis and classification. Hence, we aimed to develop a DR detection approach with the adoption of deep learning structure in the segmentation phase and the detection phase. Initially, the required images for the detection of DR will be collected from the standard online data sources. Then, the collected image will be given for blood vessel segmentation using the Swinunet-based segmentation. For instance, the segmented images will be given to the Dilated-Densenet with Resnet for the extraction of stacked features. The final stage detection will be carried out with the help of Hierarchical Multi-scale RNN with parameter optimization to give promising results over DR detection [18]. The newly developed Manta Ray Foraging Optimization (MRFO) and Shark Smell Optimization (SSO) algorithm will be used here for maximizing the effectiveness of the developed DR detection approach. The implementation outcome will be analyzed over various DR detection approaches for validating the performance of the developed model [19-20].

3. The Shifting Paradigm of DME Treatment

From minor DR to severe proliferative disease, diabetic macular edema (DME) can develop at any stage of retinopathy. Over the previous twenty years, there has been a significant shift in the therapeutic paradigm for individuals with DME. The Early Treatment Diabetic Retinopathy Study (ETDRS) results, which showed that focal laser photocoagulation was superior to observation for clinically significant DME, although a significant proportion of treated patients eventually lost vision, served as the foundation for standard protocol for many years. Currently, intravitreal injections of one or more anti-VEGF medicines constitute the first-line treatment for the majority of DME cases [21-22]. These drugs have good safety profiles and over time can stabilize and even improve vision. It is no longer a concern to determine whether DME meets the ETDRS
criteria for clinical significance. Nowadays, doctors employ OCT to identify whether edema is center-involving or non-center-involving. Based on this finding and the patient's VA, they then decide what course of treatment to take. For imaging, identification, categorization, and management, OCT is unquestionably the gold standard of therapy, especially for patients whose BCVA is less than 20/20 and who do not have another evident cause of vision loss. Of course, we still perform OCT and view the macula stereoscopically through a dilated pupil.

Conclusion

Prior until recently, low vision rehabilitation and laser therapy were the only forms of treatment and management that doctors could provide to patients with DME and PDR. The future is now more promising than ever for people with diabetic eye disease thanks to the development of safe and efficient pharmaceutical treatments and the tremendously advancing of technologies like Artificial Intelligence, Machine Learning and Deep learning, that enhance both visual outcomes and quality of life.

Acknowledgements

The source of the study has been rooted to previous papers, FAAO, etc.

References

[1]. Cecelia Koetting, OD, FAAO, Referral, Optometric Care and Externship Program Coordinator, Virginia Eye Consultants, Norfolk.

[26]. Azat Garifullin, Lasse Lensu, Hannu Uusitalo, "Deep Bayesian baseline for segmenting diabetic retinopathy lesions: Advances and challenges," Computers in

