Verinote - Fake Currency Detection Using Convolutional Neural Network

Sreejit Nair¹, Farhan Shaikh², Elrich Thomas³, Mizan Shaikh⁴, Mrs. Priyanka Sherkhane⁵

¹²³⁴ B. Tech Student, Department of Computer Engineering, Pillai College of Engineering New Panvel, India.
⁵Assistant Professor, Department of Computer Engineering, Pillai College of Engineering New Panvel, India.

Emails: snaig20comp@student.mes.ac.in¹, fshaikh20comp@student.mes.ac.in², mshaikh20comp@student.mes.ac.in³, ethomas20comp@student.mes.ac.in⁴, priyankasherkhane@mes.ac.in⁵

Abstract

The proliferation of counterfeit money poses a significant threat to financial systems and economies worldwide. To solve this problem, advanced technological solutions have emerged, such as the counterfeit money detection system “FCDS”. The system leverages advanced image processing, machine learning and data analysis techniques to identify counterfeit bills accurately and effectively [1]. FCDS works by analyzing various security features found on legal tender, including watermarks, security chains, holograms and microprinting. Using image recognition and pattern analysis, the system distinguishes between real and fake money. Machine learning algorithms play a central role in training systems to recognize the subtle nuances that counterfeiters try to reproduce. FCDS can be deployed in a variety of contexts, from banks and financial institutions to retail businesses, providing a robust and scalable solution to combat counterfeiting [1]. By quickly identifying fraudulent notes, it helps prevent economic loss and maintain the integrity of financial transactions. This summary describes the nature of counterfeit currency detection systems and its importance in maintaining financial security and confidence. Its integration into modern banking and commerce systems represents an important step towards a counterfeit-proof financial ecosystem.

Keywords: Convolutional Neural Network (CNN); Counterfeit Money; Financial Security; Image Processing; Machine Learning.

1. Introduction

In the 21st century, the proliferation of illicit activities like money laundering and counterfeit currency production poses a significant threat to financial integrity. To address this challenge, we present Verinote - an innovative Fake Currency Detection System aimed at swiftly discerning genuine currency notes from counterfeits. (Alekhya et al., 2014) Verinote's primary objective is to safeguard financial transactions and raise awareness about the presence of illegitimate currency. Key objectives include compiling a comprehensive dataset, preprocessing currency images, developing a Convolutional Neural Network (CNN) model, implementing the system in real-world scenarios, and continually enhancing its performance. Verinote leverages advanced technologies such as machine learning and image processing to protect customers from financial losses caused by counterfeit money [2]. Deployable in various financial institutions like banks, ATMs, and currency exchanges, Verinote contributes to maintaining trust in the monetary system. In essence, Verinote represents a concerted effort to combat counterfeit currency, reinforcing the sanctity of financial transactions and bolstering confidence in the broader financial landscape.

2. Proposed System

The proposed system architecture for the Fake Currency Detection System represents a significant advancement in currency authentication, leveraging Convolutional Neural Network (CNN) technology [3]. Comprising several key components, the
architecture ensures a systematic approach towards counterfeit detection:

- System User initiates image capture through mobile phone or laptop/desktop web cameras.
- Preprocessing transforms raw image data into an analyzable form:
 - Gray Scale Conversion prepares images for subsequent analysis.
 - Edge Detection enhances image clarity, crucial for identifying counterfeit features.
 - Segmentation partitions images into meaningful segments, facilitating object recognition.

Central to the architecture is the integration of Convolutional Neural Network (CNN) technology, specifically employing the VGG-16 model [3]. Supported by TensorFlow and OpenCV, the CNN serves as the cornerstone for assessing currency authenticity, enabling comprehensive feature extraction and classification.

2.1. Key Features of the Architecture Include

- Utilization of curated datasets comprising Fake and Real Currency samples from diverse sources, ensuring robust model training and validation.
- Culmination in providing a conclusive output indicating the authenticity of the detected currency.

By leveraging CNN technology within a meticulously designed architecture, the system offers a robust framework for counterfeit currency detection, systematically integrating preprocessing, edge detection, segmentation, and CNN-based analysis. The incorporation of curated datasets ensures adaptability and reliability in real-world scenarios, potentially mitigating economic losses and preserving financial integrity.

3. Implementation

3.1. Initialization

Initially, users interact with the system through a web interface, where they can upload images of banknotes captured via their local devices such as smartphones or webcams [4]. This initiates the scanning process, prompting the system to preprocess the uploaded image. Preprocessing begins with resizing the image to a standardized dimension, typically 256x256 pixels, and normalizing the pixel values to a range between 0 and 1. Additionally, data augmentation techniques are applied to augment the training dataset, which includes random rotations, flips, and translations, thereby enhancing the robustness of the model [4]. Subsequently, the preprocessed image is converted into grayscale to simplify information extraction from the banknote [5]. Edge detection algorithms are then employed to delineate the boundaries of features within the image, effectively filtering out noise and irrelevant information. The segmented image is then fed into a Convolutional Neural Network (CNN), a deep learning architecture well-suited for image classification tasks, to determine the authenticity of the banknote.

3.2. Model Design

The CNN model architecture comprises multiple layers of convolutional and pooling operations, followed by fully connected layers [6]. Activation functions such as Rectified Linear Unit (ReLU) are incorporated after each layer to introduce nonlinearity and enhance the model's discriminative power. Dropout layers are strategically inserted to mitigate overfitting and improve the model's generalization capabilities. The training phase involves splitting the dataset into training and validation sets to facilitate model training and evaluation [7]. Optimization algorithms like Adam or Stochastic Gradient Descent (SGD) are utilized in conjunction with a loss function, typically binary cross-entropy, to iteratively update the model parameters and minimize the classification error. Evaluation of the trained model entails assessing its performance using a separate test set, employing metrics such as accuracy, precision, recall, and F1 score. A confusion matrix is generated to visualize the model's performance in terms of false positives.
and false negatives, providing insights into its classification capabilities. Finally, the trained model is saved for deployment in a real-world counterfeit currency detection system [8]. New grayscale images of banknotes can then be processed through the deployed model to ascertain their authenticity, thereby assisting in the detection and prevention of counterfeit currency circulation.

3.3. Hardware Requirement
- **Processor**: 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor.
- **HDD**: 16 GB of available hard disk space for 32-bit (x86) version or 20 GB for 64-bit (x64) version.
- **RAM**: 1 GB of RAM for 32-bit version or 2 GB of RAM for 64-bit version.

3.4. Software Requirement
- **Operating System**: Windows 7 Home Premium, Professional, Ultimate, or Enterprise or above.
- **Programming Language**: Python
- **Keras**: Keras 2.15 has been used as a library acting as a backend totally integrated with Tensorflow.
- **Tensorflow**: Tensorflow 2.15 has been currently used for the project which provided the main support for the entire project application.

4. Experimental Results
In our experimental evaluation of a fake currency detection model, the results demonstrate a high level of overall performance [9]. The accuracy of the model stands at an impressive 92.754%, indicating that nearly 93% of predictions on the test set were correct. Furthermore, the precision score, which measures the model's ability to accurately predict the positive class (i.e., identifying fake currency), is notably strong at 93.616%. This implies that the model excels in correctly identifying instances of counterfeit currency, with a weighted consideration for class distribution. The F1 score, representing a balance between precision and recall, further reinforces the model's effectiveness, yielding a score of 92.676%. This suggests a well-rounded performance in terms of both identifying fake currency instances and minimizing false positives, emphasizing the model's capacity for accurate and reliable detection in the realm of counterfeit currency identification. The confusion matrix for our fake currency detection model provides a comprehensive overview of its classification performance [10]. In the context of predicting genuine currency, the model achieved 37 true negatives, accurately identifying instances where currency is legitimate. However, it recorded no false positives, indicating a commendable precision in not misclassifying genuine currency as counterfeit. On the other hand, when dealing with the prediction of counterfeit currency, the model exhibited 27 true positives, successfully identifying instances of fake currency. It did, however, encounter 5 false negatives, representing instances where the model failed to detect counterfeit currency when it was indeed present. Despite these false negatives, the overall performance, as reflected in the confusion matrix, underscores the model's robustness in distinguishing between genuine and fake currency, with a notable emphasis on minimizing false positives. [Fig 1]

![Confusion Matrix on Veri-Note’s Precision](https://irjaeh.com/fig1.png)
Conclusion

This comprehensive research paper delves into domain-specific techniques crucial for the development of our Fake Currency Detection System, thoroughly exploring aspects such as data preprocessing, edge-based detection, and grayscale conversion. The comparative analysis of these techniques provides valuable insights into their strengths and limitations. The research paper focuses on the implementation of Convolutional Neural Network (CNN) methodology, emphasizing performance metrics like precision and recall [11]. Two essential datasets, Kaggle and Github, facilitate robust testing and validation. The practical implications of our system in maintaining financial integrity and safeguarding against counterfeit money underscore its societal importance. Looking ahead, the future scope of counterfeit currency detection systems involves enhancing sustainability, adaptability, and researching advanced deep learning architectures. This includes incorporating cutting-edge image processing techniques and exploring emerging technologies like neural networks. Diversifying and expanding training datasets, cross-sector collaboration, ethical considerations, and knowledge dissemination contribute to the multifaceted academic exploration of the system's future scope. In summary, this research paper serves as a fundamental reference for the academic development and implementation of our project, offering a rich avenue for interdisciplinary inquiry and innovation.

References

