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Abstract 

Recently, High entropy alloys have attracted a lot of interest because of their unique properties. which include 

outstanding strength, remarkable corrosion resistance, and consistent thermal stability. Powder metallurgy is 

one of the production procedures commonly used to manufacture these alloys. Metal powders are compacted 

and sintered to create a cohesive material in the production process known as powder metallurgy. The 

capacity to produce a fine-grained microstructure and a homogeneous distribution of various elements are 

two benefits of this technology for the synthesis of high entropy alloys. Moreover, powder metallurgy makes it 

possible to precisely combine various alloying constituents, which can improve the qualities of high entropy 

alloys even more. Powder metallurgy allows for the manufacture of intricate shapes and dimensions, 

rendering it well-suited to a range of uses. With the use of powder metallurgy, high entropy alloys can be 

fabricated with improved mechanical properties and enhanced performance.  
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1. Introduction  

Materials made of high entropy alloys are made of 

approximately equal proportions of multiple 

elements[1].These alloys are characterized by their 

high degree of disorder and randomness in their 

atomic structure, which is different from traditional 

alloys that typically have a dominant element with a 

few secondary alloying elements[2]. The idea 

behind high entropy alloys was first put out by 

researchers to explore the potential benefits of 

mixing multiple elements with similar atomic sizes 

and electronegativity’s in an effort to produce 

materials with special qualities [3]. These metal 

combinations have attracted a lot of attention lately 

because of their exceptional mechanical, thermal, 

and magnetic properties [4]. Alloys with high 

entropy exhibit the potential for diverse applications 

in sectors such as aerospace, automotive, 

electronics, and energy[5].They have shown great 

promise in material design and engineering, as they 

offer a range of desirable properties that traditional 

alloys cannot achieve [6]. These properties include 

high strength, excellent corrosion and oxidation 

resistance, good thermal stability, and enhanced 

mechanical properties at both high and low 

temperatures [7].Compositionally, HEA are 

characterized as alloys containing a minimum of 

five primary metallic elements, with each element 

constituting an atomic percentage ranging from 5% 

to 35%.Solid solution alloys known as HEAs are 

created by combining multiple metallic elements 

and demonstrate uncomplicated crystal structures, 

including hexagonal close-packed lattices, body-

centered cubic lattices, and face-centered cubic 

lattices [9][10].Nearly equal amounts of four or 

more metals, such as Fe, Cu, Mn, Co, Ti, Cr, Ni, 

etc., can be added to create HEAs[11]. 
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Figure 1 Crystal Structural Difference Between Conventional Alloy and High Entropy Alloys[12] 

 

2. High-Entropy Alloys' Four Main Effects

High-entropy alloys display four significant effects, 

which include the lattice distortion effect and the 

thermodynamic impact of high entropy. The 

cocktail effect in performance, the slow diffusion 

effect in kinetics, and crystallography. High-entropy 

alloys' unique characteristics and enhanced 

performance are mostly due to these factors. [13]. 

Figure 2 illustrates the four core effects. Crystal 

Structural Difference Between Conventional Alloy 

and High Entropy Alloys shown in Figure 1. 
 

 
Figure 2 Four Core Effects [14] 

2.1 High-Entropy Effect  

In high entropy alloys, the term "high-entropy 

effect" describes the special behaviour of these 

materials as a result of a high level of atomic 

structural disorder and randomness. Strength, 

hardness, and resistance to deformation are only a  

 

few of the improved mechanical and physical 

qualities that result from this impact [15]. 

Additionally, the high-entropy effect also results in 

improved thermal stability and resistance to 

corrosion and oxidation [16]. 
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2.2 Lattice Distortion Effect  

The lattice distortion phenomenon in high-entropy 

alloys arises from the incorporation of diverse 

elements with varying atomic sizes and 

electronegativities, resulting in an irregular and 

highly disordered arrangement of atoms within the 

crystal lattice [17]. Because of structural features, 

every main element will differ. There will 

unavoidably be some divergence in the lattice atom 

as a result of these differences [18]. It then generates 

the lattice distortion [19]. One distinctive feature 

that greatly affects the lattice distortion effect is 

responsible for the microstructure and properties of 

high-entropy alloys [20]. The remarkable 

mechanical characteristics of high-entropy alloys, 

such as increased strength, ductility, and toughness, 

are a result of this lattice distortion effect [21]. 

2.3 Sluggish Diffusion Effect  

The sluggish diffusion effect in high-entropy alloys 

refers to the slow movement of atoms within the 

crystal lattice, which results in reduced diffusion 

rates compared to traditional alloys [22]. When 

atoms move from their initial positions, a 

phenomena known as diffusion takes place, which 

results in the macroscopic flow of material [23]. The 

high level of atomic disorder and the existence of 

several elements with various atomic sizes are the 

causes of this slow diffusion effect [24]. There are 

several repercussions from the slow diffusion 

phenomenon in high-entropy alloys. It first causes a 

stable solid solution with an even distribution of 

components to form, improving the alloy's 

mechanical and physical qualities. Secondly, it 

prevents phase separation and the production of 

hazardous intermetallic compounds, both of which 

can impair the performance of the alloy [25][26]. 

Finally, the sluggish diffusion effect also promotes 

improved resistance to grain growth, leading to 

enhanced stability and longevity of high-entropy 

alloys [27]. 

2.4 Cocktail Effect  

Professor Ranganthan was the one who first 

hypothesised the cocktail effect. High-entropy 

alloys' microstructure and characteristics are 

influenced by the addition of different elements, and 

their performance can be significantly affected by 

altering the composition of their primary component 

[28]. The performance of the alloy is enhanced by 

the synergistic interaction of several components 

with various properties [29]. These synergistic 

effects arise from the unique interactions between 

the different elements, such as higher thermal 

stability, improved corrosion resistance, and 

strength and toughness [30]. 

3. Essential Properties of High Entropy Alloys 

The Essential Properties of High Entropy Alloys 

include:  

High Degree of Disorder: High entropy alloys 

exhibit a high degree of disorder in their atomic 

structure, with multiple elements randomly 

distributed [31]. This disorder contributes to their 

unique properties and differentiates them from 

traditional alloys [32]. 

Large Mixing Enthalpy: The inclusion of several 

elements with comparable atomic sizes and 

electronegativities causes high entropy alloys to 

have a substantial mixing enthalpy [33]. This 

substantial mixing enthalpy is thought to improve 

high entropy alloys' mechanical characteristics and 

stability [34]. 

Multicomponent Composition: High entropy 

alloys are composed of at least 5 or more elements 

in roughly equal proportions, resulting in a 

multicomponent composition that contributes to 

their unique properties and allows for a wide range 

of material design possibilities [35]. 

Multifunctional Properties: High entropy alloys 

exhibit a combination of desirable properties, such 

as high strength, excellent corrosion and oxidation 

resistance, good thermal stability, and enhanced 

mechanical properties at extreme temperatures 

[36][37]. 

Easy processability: High entropy alloys are 

typically easier to process compared to traditional 

alloys, allowing for easier manufacturing and 

fabrication of complex components [38]. 

Additionally, high entropy alloys have shown good 

ductility, which is important for applications 

requiring deformation and forming processes [39]. 

These unique characteristics make high entropy 

alloys attractive for a variety of applications [40]. 
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4. Elements Used in Preparation OH High 

Entopy Alloys  

Seventy-two of the 118 recognised elements in the 

periodic table are potentially useful for alloying 

HEAs because they are not halogens, noble gases, 

or radioactive. A large number of HEAs have been 

made with more than 37 elements [41]. The primary 

15 elements employed for producing HEAs include 

Iron, Nickel, Chromium, Cobalt, Aluminum, 

Copper, Titanium, Manganese, Vanadium(V), 

Zirconium, Molybdenum, Niobium, Silicon, 

Tantalum, and Tin. Among these, Co, Cu, Ni, Fe, 

and Mn have seen extensive usage [42]. 

5. Preparation of High Entropy Alloys 

Typically, arc melting, powder metallurgy, casting, 

and mechanical alloying are used to make high 

entropy alloys. High entropy alloys can have 

varying microstructures and characteristics 

depending on the preparation techniques used [43]. 

For instance, in mechanical alloying, elemental 

powders are repeatedly deformed and then cold 

welded together to form a solid solution. Arc 

melting, on the other hand, uses an electric arc to 

melt and solidify a mixture of elemental powders. A 

single-phase alloy with a random distribution of 

components is encouraged to form by this approach 

[44]. All things considered, the preparation process 

and elemental makeup are major factors in defining 

the characteristics and alloying behaviours of high 

entropy alloys [45]. 

6. Powder Metallurgy Technique for HEA 

Preparation 

The powder metallurgy technique is commonly 

used for the preparation of high entropy alloys [46]. 

This method involves the mixing of elemental 

powders in a predetermined ratio, followed by 

compaction and sintering [47]. The compacted 

powder mixture is then subjected to high 

temperatures, leading to the atoms' diffusion and the 

solid solution's creation [13]. More than three-

quarters of the developed PMHEAs utilized 

mechanical alloying as the primary method for 

powder processing. The resulting alloys exhibited 

strong thermodynamic stability and favorable 

mechanical characteristics [48]. Purchasing the 

right powders for the process is the first step in any 

PM technique [49]. When it comes to this particular 

class of alloys that contain when fully prealloyed 

powders are utilised as the starting material, the PM 

technique ought to be easier when dealing with at 

least five different metals [50]. Nonetheless, we 

have seen numerous publications where the standard 

mixture of powders is used as the starting point, 

employing powdered pure metals [51]. A commonly 

employed technique for producing a complete pre-

alloyed HEA powder is atomization, which is well-

suited for various additive manufacturing 

approaches [52][53]. An alternative method of 

generating fully prealloyed HEA powders involved 

MA and atomization [54]. Alloys were produced by 

melting the materials, and then the resulting bulk 

part was turned into powder using high-energy 

milling [55]. The powders in these studies 

underwent a number of shaping procedures, 

including uniaxial pressing, cold isostatic pressing, 

and spark plasma sintering [56]. One common 

method in powder metallurgy for creating spark 

plasma sintering is used for high entropy alloys [57]. 

In order to quickly consolidate the powder 

combination and produce a dense, totally bonded 

alloy, high electric current and pressure are applied 

[58][59]. Two of the main advantages of SPS are the 

early attainment of the sintering temperature and the 

usually short dwell time [60]. The most common 

processing method for producing conventional PM 

in large quantities is the "press and sintering" 

technique, which is also the second most prevalent 

method after SPS for producing PM HEAs [61]. A 

protective milling atmosphere was employed in all 

instances. Various researchers have chosen distinct 

approaches to achieve the ideal powder for the 

process, based on their desired alloy composition 

goals [62]. Most studies utilize a carbon-based 

process control agent, but only a limited number of 

researchers take into account the potential impact or 

pollution it may have on the ultimate formation of 

the High entropy alloy [ 63] One potential drawback 

of mechanical alloying is the risk of cross-

contamination between the powder from two 

different sources: grinding medium and process 

control agent (PCA) [64]. For instance, when 

stainless steel serves as the grinding media and iron 
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and/or chromium are present in the target alloy there 

may be a transfer of these elements [65] [66]. This 

transfer can be managed, similar to how tungsten 

carbide is utilized in creating certain refractory 

high-entropy alloys [67]. However, it's important to 

note that the impact of PCA should not be 

overlooked despite it being often omitted in most 

analyzed literature [68]. A hardmetal with a HEA 

binder was created throughout the study. The 

authors mixed pure Ti with WC, Mo2C, TaC, NbC, 

and VC in a high-energy mill as opposed to starting 

with pure elemental powders and combining them 

with TiC to create the alloying components of the 

binder [69]. Utilising SPS, the combined powders 

were sintered at 1500°C in order to reduce all 

refractory carbides and benefit from titanium's 

strong carbon affinity. The end result was a BCC 

HEA matrix reinforced with TiC [70]. 

7. Structural Properties of Powder Metallurgy 

HEA  

7.1 Tensile Strength 

High-entropy alloys (HEAs) obtained by powder 

metallurgy have been shown to have high tensile 

strength [71]. Precipitation strengthening and fine-

grain strengthening can both increase the tensile 

strength of HEAs. The HEA showed a 48-hour 

annealing temperature of 600 °C and a 1.9 GPa 

tensile strength, but only 8% elongation. However, 

after 12 hours of annealing at 800 °C, the material 

had an elongation of 31% and a tensile strength of 

1.2 GPa.[72] 

7.2 Corrosion Resistance 

An alloy containing over 20% (by weight) of 

chromium, along with titanium and aluminum, 

strongly indicates the potential for favorable 

corrosion or oxidation resistance. It has been 

demonstrated that high-entropy alloys (HEAs) made 

via powder metallurgy have exceptional resistance 

to corrosion [73]. The unique properties of HEAs' 

resistance to corrosion may be explained by the 

local deformation and disordered chemical 

environment [74][75]. A layer that is resistant to 

corrosion forms on the surface of the materials when 

HEAs, which have a higher resistance to corrosion, 

are deposited on them [76]. 

 

7.3 Compression Strength 

The compressive strength of powder metallurgy 

high-entropy alloys can be significantly enhanced 

by adjusting the composition and processing 

parameters [77]. The compressive strength of high-

entropy alloys obtained through powder metallurgy 

can vary depending on the specific composition and 

processing conditions [78]. For example, a powder 

metallurgy HEA with a composition of Ti-Fe-Cr-

Ni-Co-Al exhibited a compressive strength of 2 GPa 

[79] 

7.4 Wear Resistance 

The wear resistance of powder metallurgy high-

entropy alloys is typically higher compared to 

conventional alloys [80]. The wear resistance of 

powder metallurgy high-entropy alloys can be 

improved by incorporating reinforcing particles or 

coatings [81]. For instance, introducing carbide 

particles such as TiC or WC can significantly boost 

HEAs' resistance to wear. The durability of powder 

metallurgy-derived high-entropy alloys may differ 

based on the particular composition and the 

presence of reinforcing particles. High tensile 

elongation and a notable strain hardening capability 

are characteristics of the CoCrFeNiMn high entropy 

alloy (HEA), although wear resistance is low [82]. 

Enhancing the wear resistance of the CoCrFeNiMn 

HEA through powder metallurgy alloying with 

carbon element appears to be a workable and 

economical solution [83]. 

7.5 Oxidation Resistance 

High-entropy alloys have been found to exhibit 

excellent oxidation resistance, particularly at high 

temperatures [84]. The high configurational entropy 

of high-entropy alloys contributes to their 

exceptional oxidation resistance. Oxidation 

resistance is an essential characteristic for materials 

operating at elevated temperatures over extended 

periods, as it can significantly degrade the 

mechanical properties of these materials [85]. 

Aluminum, silicon, and chromium are commonly 

regarded as elements that form protective oxides. 

(such as Al2O3, SiO2, and Cr2O3) to stop materials 

from oxidising any more [86]. Because a protective 

complex CrTaO4 oxide layer forms, (Mo-Ta-Ti-

Nb-Zr-Hf) -(Al, Si, and Cr) systems have recently 
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shown good oxidation resistance within the 900–

1100 °C temperature range [87]. MoTaTiCr MEA, 

shielded by a continuous CrTaO4 scale layer, 

displayed the highest degree of oxidation resistance 

[88]. 

8. Functional Performances 

8.1 Thermoelectric Properties  

Strong electrical conductivity, low heat 

conductivity, and a high Seebeck coefficient 

characterise the ideal thermoelectric materials. But 

as these three attributes are inextricably related, 

enhancing one will unavoidably have a detrimental 

effect on the others [89].  A wide range of intriguing 

functional characteristics, including charge storage, 

magneto caloric, thermoelectric (TE), ferroelectric, 

and magnetic, can also be seen in HEAs [90]. High 

entropy oxides (HEAs) and their numerous 

functional properties, including electronic, 

magnetic, thermoelectric, and magneto dielectric, 

have been the subject of current research [91][92]. 

Elevated Entropy Alloys, a promising material for 

thermoelectric applications, have a thermal 

conductivity that is several orders of magnitude 

lower than that of conventional alloys. However, 

they inevitably lose electrical conductivity as 

well[93]. Furthermore, it is more likely that the 

highly symmetrical solid solution structures of 

HEAs will aid in the convergence of electronic 

bands, resulting in a greater Seebeck coefficient 

[94]. It is clear that HEAs have great potential for 

application as high-performance, effective 

thermoelectric materials [95]. 

8.2 Irradiation Resistance 

High entropy alloys have also shown promising 

irradiation resistance, making them suitable for 

applications in nuclear reactors and other radiation-

intensive environments [96] [97]. Irradiation 

resistance is an important property for materials 

used in nuclear applications [98]. Due of their 

remarkable radiation resistance, high entropy alloys 

have attracted a lot of attention [99]. A recent study 

found that the high entropy effect of equiatomic 

CoCrCuFeNi HEA contributes to its better radiation 

resistance following multiple bombardments [100]. 

According to another review article, the alloy's 

irradiation resistance is enhanced by composition 

complexity because of the high entropy, which 

alters minimises lattice damage and the interstitial 

atom-vacancy migration energy barrier [101]. 

8.3 Magnetic Properties 

High entropy alloys also exhibit intriguing magnetic 

properties. They can be categorized into soft 

magnetic alloys and hard magnetic alloys based on 

their magnetization behavior. Soft magnetic high 

entropy alloys possess low coercivity and can 

magnetize to saturation when exposed to a weak 

magnetic field [102]. Conversely, high entropy hard 

magnetic alloys have a high coercivity and can 

maintain their magnetic properties even after 

magnetization [103]. Because of this, high entropy 

alloys can be used in a variety of magnetism-related 

applications, including motors, sensors, and 

magnetic storage devices [104][105]. Numerous 

research papers have delved into the magnetic 

properties of high-entropy alloys. One example 

involves the development of a five-component 

magnetic alloy through powder metallurgy, 

providing enhanced manipulation over the 

characteristics of magnetic storage materials and 

enabling a broader variety of magnetic 

configurations. [106][107]. Another work focuses 

on a high entropy FeCoNiCuMn alloy with good 

soft magnetic properties, low coercivity (7 Oe), low 

magnetic remanence ratio (0.03), adequate 

saturation magnetization (40 emu/g), and soft 

magnetic properties [108]. Studies have 

demonstrated that HEAs can enhance mechanical 

behaviour and soft magnetic characteristics at the 

same time [109]. This capability is due to the 

presence of certain ferromagnetic elements, such as 

Co, Ni, and Fe, which enhance the tribological 

behaviour, strength, and hardness by producing 

strong solid solution effects and high magnetic 

saturation (MS) [110][111]. 

8.4 Catalytic Properties 

High entropy alloys have also demonstrated notable 

catalytic properties [112]. They have been 

investigated for their potential use as catalysts in 

various chemical reactions, including hydrogen 

evolution reaction, oxygen reduction reaction, and 

CO2 reduction reaction [113]. These properties 

make them promising candidates for use in fuel 
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cells, electrochemical devices, and environmental 

applications [114][115]. The fact that HEAs' solid-

solution structure and adaptable composition design 

offer a tone of configuration options for creating 

novel catalytic materials is also encouraging. 

9. Future Perspectives of Powder Metallurgy 

High Entropy Alloy Research 

In the study of metal materials, high-entropy alloys 

have emerged as a unique type of material with 

significant academic significance and a broad range 

of potential applications [116]. High-entropy alloys' 

exceptional properties allow them to be customised 

to satisfy a wide range of performance requirements. 

These alloys are promising for a variety of 

applications, including radiation protection 

materials, surface engineering, mould 

manufacturing, catalytic materials, aerospace 

technology, and other fields because of their 

advantageous mechanical, thermal, and magnetic 

properties [117]. It's critical to improve already-

existing preparatory techniques and develop fresh 

ones while honing the synthesis methodology. For 

the purpose of determining, verifying, and analysing 

the properties, composition, and structure of high-

entropy alloys, material characterisation technology 

is essential [118]. Therefore, it is imperative that 

future research focus on how to efficiently combine 

characterization data with material characteristics 

and use sophisticated methodologies to identify and 

analyse the features of a high-entropy structure and 

their interaction. High-entropy alloy nanoparticles 

still have a lot of undiscovered functional qualities, 

and further research is needed to understand the 

underlying performance mechanism [119]. High-

entropy alloy industrial production and 

manufacturing can be greatly accelerated by the 

utilisation of big data and artificial intelligence, as 

well as by the development of automated, 

intelligent, and integrated technologies for these 

alloys' preparation [120]. 

Conclusion 

The study on HEAs and the process of powder 

metallurgy manufacture has been covered in this 

review.PM alloys with improved properties and 

microstructures mostly rely on the composition of 

the alloy and the methods used in its production, as 

outlined in this publication.The distinct properties 

of high-entropy alloys in dynamics, 

thermodynamics, and structure have generated 

significant interest in materials designed for specific 

functions.[121]. The HEAs may open the door to the 

creation of fascinating functional materials with 

previously unheard-of combinations of functional 

and mechanical characteristics. Rather than merely 

reproducing present performance, a desirable long-

term objective for HEAs is to create and build 

potentially unique applications to meet the 

increasing needs. 
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