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Abstract 

A state-of-the-art method for automatically segmenting liver tumours using Dynamic Contrast-Enhanced 

Magnetic Resonance Imaging (DCE-MRI) is shown in this study. This study is significant because it uses a 4D 

information deep learning model to tackle the hard problem of liver tumor segmentation. A combination of 3D 

CNNs and ConvLSTM networks, specifically built to capture spatial and temporal information inside the dynamic 

imaging sequence of DCE-MRI, is what the suggested model is all about. Utilizing diffusion-computed 

tomography (DCE-MRI) gives a lot of information vital for precise tumor segmentation by providing a complete 

picture of the vascular dynamics in the liver. The model makes use of spatial and temporal elements by combining 

3D Convolutional Neural Networks (CNNs) with ConvLSTM networks; this allows for a more detailed 

comprehension of the changes that are happening over time. To overcome the difficulties caused by the constantly 

changing nature of DCE-MRI data, this integration of 4D information greatly improves the accuracy and 

consistency of liver tumor segmentation. Implementing and optimizing the suggested deep learning model are the 

main goals of this work. The training and calibration of the model to accurately capture liver tumor 

characteristics in dynamic imaging sequences is of utmost importance. 

Keywords: Liver Tumor, Deep Learning, LSTM, CNN, CT Scan, Liver Segmentation. 

 

1. Introduction  

One of the leading causes of cancer-related mortality 

is liver cancer. Globally, hepatic cellular carcinoma 

(HCC) ranks third in terms of cancer-related mortality 

and ranks fifth among major malignant tumours [1]. 

It is the most prevalent form of primary liver cancer. 

Successful tumor excision requires early detection 

and treatment of HCC [2]. To better plan liver 

treatments, classify therapeutic responses, classify 

hepatic tumours, and estimate patient survival, it can 

be helpful to accurately segment tumours so volume-

based quantitative information, including textural 

qualities, can be measured.  Manual delineation is still 

used for liver tumor segmentation a lot of the time, 

although it's time-consuming, hard-working, and 

might vary from operator to operator [3-6]. For liver 

and lesion segmentation, many computer-aided 

approaches have been suggested, all based on 

conventional image processing algorithms [7-9]. 

Problems with automated segmentation arise from the 

fact that tumor form, appearance, and location can 

vary greatly, there are often no discernible borders, 

and contrast agents add noise to the mix [10-12]. 

Border leaking on hazy tumor borders [13-14] is a 

major issue with the previously stated approaches 

since they could only use restricted information, such 

as intensity information. In recent years, medical 

image processing has been considerably made easier 

because to the advent of deep learning. Brain tumor 
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segmentation and prostate cancer detection are two 

examples of effective applications of deep 

Convolutional Neural Networks (CNNs) [15–17]. 

Deep learning has also found use in the imaging of 

healthy livers, the staging of liver fibrosis, the 

classification of liver statuses, the identification of 

hepatic tumours, and the differentiating of liver 

masses [18]. The data-driven algorithms that make up 

deep learning allow for the automatic capture of high-

level features from photographs and performance 

improvements in these areas [19]. Deep learning has 

also shown to be quite effective in liver tumour 

segmentation, as all of the top algorithms in the 2017 

Liver Tumour Segmentation (LiTS) competition used 

it [20]. The main contribution of the paper: 

• Image denoising using Non adaptive threshold 

• Segmentation using fused U-Net 

• Feature extraction using Histogram of Oriented 

Gradients 

• Classification using 3D Convolutional Neural 

Networks (CNN) with Convolutional Long 

Short-Term Memory 

Following is the outline for the rest of the article. 

Section 2 covers a number of liver tumor diagnostic 

methodologies, written by several writers. In Section 

3, we can see the suggested model. Presented in 

Section 4 are the investigation's conclusions. Results 

and future work are discussed in Section 5. 

1.1. Motivation of the Paper 

 By presenting a 4D data deep learning model, 

this study tackles the difficulties of liver tumor 

segmentation in DCE-MRI techniques. A 

combination of 3D CNN and ConvLSTM networks 

allows the model to take advantage of the dynamic 

nature of DCE-MRI while capturing spatial and 

temporal characteristics. Improving accuracy in areas 

where current approaches are inadequate is the 

driving force. In line with the increasing need for 

clinical accuracy and with the goal of improving 

patient outcomes, the study advances accurate tumor 

segmentation in medical imaging by offering a strong 

answer. 

2. Background Study  

• Bakrania et al. [1] investigate the revolutionary 

function of ML models in the clinical detection 

of primary and metastasized liver tumours. Their 

in-depth research sheds light on how AI might 

change the face of diagnosis and provide new 

ways of thinking about patient care. The research 

highlights the need of incorporating sophisticated 

technologies into clinical practice by deciphering 

the models' impacts; this will allow for more 

precise and faster diagnosis. 

• Esposito et al. [2] provide a ground-breaking 

method for evaluating primary human liver 

cancer cells using Raman spectroscopy 

supported by artificial intelligence. Their work 

demonstrates how AI might enhance diagnostic 

capacities by offering deep insights into the 

molecular makeup of malignant cells. New 

possibilities for accurate and non-invasive cancer 

detection were presented by this study, which 

uses Raman spectroscopy in conjunction with 

machine learning. 

• Gavini and Lakshmi [3] put forth a novel long 

short-term memory (LSTM) model that uses 

convolutional neural networks (CNNs) to predict 

the grade of liver tumours in CT scans. An 

essential part of therapy planning was 

appropriately assessing tumours, and their study 

shows that deep learning algorithms work well 

for this task. With the use of associated 

characteristics taken from CT scans, the model 

was able to attain a high level of accuracy, giving 

doctors important data for individualizing patient 

treatment. 

• Hendi et al. [4] explore the use of deep learning 

methods for sub typing and predicting liver 

disorders using an adaptive strategy. The 

significance of personalized medicine techniques 

in enhancing patient outcomes was highlighted 

by their research. Improved methods of illness 

management were a direct result of this study's 
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focus on personalizing deep learning models for 

each patient. 

• Kang et al. [5] concentrate on applying AI to 

forecast the amounts of safe liver resections for 

large keratectomy operations. By improving 

resection planning for the benefit of both patients 

and surgeons, their work tackles an important 

facet of liver surgery. This project aims to 

improve surgical decision-making and patient 

outcomes by incorporating AI algorithms into 

preoperative planning. 

• Khan et al. [6] release a deep neural network that 

can detect liver cancer in several classes using 

multiple input modalities. Their work was 

groundbreaking because it improves diagnosis 

accuracy by combining data from several 

sources. Improved liver cancer diagnosis and 

subsequent treatment choices were made 

possible by the suggested model's incorporation 

of supplementary data from many modalities. 

2.1. Problem Definition 

The precise segmentation of liver tumours using 

Dynamic Contrast-Enhanced Magnetic Resonance 

Imaging (DCE-MRI) is the subject of this study. Due 

to the ever-changing nature of DCE-MRI data, 

current approaches struggle to capture the intricacies 

of liver tumor characteristics. To traverse these 

obstacles, the research suggests a new 4D data deep 

learning model that merges 3D CNN with 

ConvLSTM networks. Using spatial and temporal 

data collected from DCE-MRI dynamic imaging 

sequences, we want to improve tumor segmentation 

accuracy and reliability. Evaluating the suggested 

model's effectiveness in clinical settings and putting 

it into practice are other areas of emphasis in the 

study. 

3. Materials and Methods 

The experimental setup and techniques used in the 

mentioned papers are outlined in the materials and 

methods section. Research methods, including data 

collecting, model construction, and analytic 

approaches, are described in great depth. In order to 

grasp the scientific rigor of the presented results and 

to replicate the experiments, this section is designed 

to be a guide. 

3.1. Dataset Collection 

The dataset was collected from Kaggle web site 

https://www.kaggle.com/datasets/andrewmvd/lits-

png among male cancers, liver cancer ranks fifth, 

whereas among female cancers, it is ninth. More than 

840,000 new cases were reported in 2018, as shown 

in Figure 1. 

 

 
Figure 1 Overall Architecture 
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3.2. Image Denoising using Non-adaptive 

Threshold 

An easy method for picture denoising is non-adaptive 

thresholding, which involves applying a constant 

threshold value consistently throughout the whole 

image to determine whether pixels are signals or 

noise. In this approach, the noise properties and the 

intended denoising level are used to determine a 

threshold value. Then, pixels are classified as either 

signal or noise depending on how intense they are in 

comparison to the threshold. Denoising methods, 

such median or Gaussian filtering, are then used to 

modify or replace the noise pixels. Despite its 

computing efficiency and ease of implementation, 

non-adaptive thresholding cannot work as well when 

faced with complicated picture structures or situations 

where the properties of the noise fluctuate 

geographically. Our goal in writing this paper was to 

build upon Asymptotically, the time required to locate 

broken objects in a noisy setting can be limited, and a 

maximum number of tests can be determined (Zhao, 

Z. et al. 2023). The amount of encoding tests and the 

time needed for decoding in threshold group testing 

(TGT) with a gap can be decreased by building a 

matrix. To demonstrate this point, we use Algorithm 

1 to the (n, d _, u; z]-disjunction matrix shown in of. 

There must be numbers such that (e − r) (
x − r
d + 1

) 

holds. Figure it out. S is the defective set and z is the 

positive integer; we'll keep things simple. A non-

adaptive approach can successfully identify set using 

just(𝑥, 𝑒 − 𝑖, 𝑟; 𝑦] tests in a (𝑥, 𝑒 − 𝑖, 𝑟; 𝑦] − 𝑇𝐺𝑇 

model with a maximum of (𝑥, 𝑒 − 𝑖, 𝑟; 𝑦] incorrect 

outcomes, where the decoding difficulty is: 

O (g(x, e − i, r; y] × r ((
x
r

) + (e − r) (
x − r
d + 1

) (
e − 1

g
) (

e
r

))) --- (1) 

3.3. Segmentation using Fused U-Net 

To increase the accuracy of segmentation, Fused U-

Net makes use of a modified U-Net architecture that 

includes many input modalities or characteristics. U-

Nets are known for their effective collection of spatial 

information at various scales, to its encoder-decoder 

structure with skip links referred by Weimin, W. et al. 

(2024). Fused U-Net takes the original picture as 

input and fuses it with other modalities, such as 

complementing feature maps or other imaging 

modalities. The network's capacity to detect various 

picture features is improved by this data fusion, which 

ultimately leads to better and more accurate 

segmentation outcomes. To identify objects or areas 

of interest in input pictures, the network learns during 

training to efficiently combine data from several 

modalities or characteristics. With its ability to fuse 

data from numerous sources, Fused U-Net has shown 

effective in medical picture segmentation tasks. This 

is especially true in difficult situations involving 

structures with unclear borders or complicated 

structures. The Fused U-Net architecture features 

bypass channels connecting the encoder and decoder, 

and a thick convolution block with several 

convolution layers and concatenation layers 

preceding each convolution layer serves as the 

backbone. It is in the concatenation layer that the 

input and output of the preceding and current 

convolution layers are combined. With the 

information about the activation function convolution 

block (D), the maximum pooling operation (P), and 

the up sampling function (T), we can use Equation (2) 

to get𝑥𝑖𝑘. 

𝑥𝑖𝑗 = {
𝐷 (𝑝(𝑥𝑖−1𝑗))        𝑗 = 0

𝐷(𝑝([𝑥𝑖𝑘]𝑗−1
𝑘=0𝑇(𝑥𝑖+1𝑗−1)])  𝑗 > 0

 ------- (2) 

The input to Layer 0 comes exclusively from the 

encode layer before it, whereas the input to Layer j > 

0 comes from the j levels before it in the same skip 

route and also from the lower skip pathway's up-

sampled output 𝑇(𝑥𝑖+1𝑗−1). Fused U-Net design has 

several benefits over regular U-Net, including 

improved segmentation accuracy and fine-grained 

feature preservation. Objects of varying sizes can be 

handled via the hierarchical Fused U-Net's skip 

connections. 

3.4. Feature Extraction using Histogram of 

Oriented Gradients 

A well-known method in computer vision for 

representing the local gradient information in an 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 02 Issue: 04 April 2024 

Page No: 1010 - 1018 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2024.0141 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

1014 

 

image is feature extraction using Histogram of 

Oriented Gradients (HOG). In this method, the picture 

is partitioned into smaller spatial areas called cells, 

and the direction and amplitude of the gradients inside 

each cell are calculated. The distribution of gradient 

directions inside the cell is quantified by constructing 

a histogram of gradient orientations using these 

gradient values. To better capture the spatial 

interactions between cells, it is common practice to 

aggregate nearby cells into bigger blocks. The 

histograms of these blocks are then normalized to 

make them more resistant to variations in light and 

contrast. The resultant HOG feature descriptor is 

well-suited for applications like object identification, 

recognition, and classification as it contains details 

about the image's local edge or texture patterns. 

Situations where an object's form or texture 

discriminates across classes or categories are ideal for 

HOG features. Distributions of local intensity 

gradients or edge orientations can often accurately 

describe the form and look of local objects, even 

when exact information about the gradient or edge 

placements is not known. This statement defines the 

HOG approach, which has an extensive history of 

application in human identification and has been used 

in its mature version in Scale Invariant Features 

Transformation. By integrating gradient directions 

across a tiny spatial region known as a "cell" pixel, 

the HOG descriptor is built upon. Afterwards, a 1D 

histogram is built, and the features vector that will be 

considered later is the product of their combination. 

Let L denote the image to be examined as a grayscale 

(intensity) function. We use the following rule to find 

the x and y gradient directions in each pixel after we 

divide the image into cells of size N pixels: 

𝜃𝑥,𝑦 = 𝑡𝑎𝑛−1 𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
 -------- (3) 

The following is the normalization process for the 

single HOG feature vector h that is created by 

merging the normalized block features: 

ℎ ←
ℎ

√||ℎ||2+∈
 ----------- (4) 

ℎ𝑛 ← min (ℎ𝑛, 𝑡) ----------- (5) 

ℎ ←
ℎ

√||ℎ||2+∈
 ----------- (6) 

HN represents the nth element of h, whereas is a 

positive cutoff (= 0:2). If large gradients had an 

outsized impact, they would obscure every other 

feature in the image. The number of cell histograms 

relative to blocks in the resulting HOG characteristic 

is four times higher.  

3.5. Classification using 3D Convolutional 

Neural Networks (CNN) with Convolutional 

Long Short-Term Memory 

Classification using 3D CNNs with ConvLSTM 

networks is an effective method for looking at 

spatiotemporal data, especially for applications that 

include volumetric or video data. 3D convolutional 

neural networks (CNNs) are advancement over their 

2D predecessors, specifically built to handle data in 

three dimensions, including medical volumetric 

pictures or video frames. 3D convolutional layers 

make up these networks, and they capture spatial 

connections in the input data by extracting spatial 

properties over the whole volume. The model can 

detect temporal relationships in sequential data by 

using 3D CNNs with ConvLSTM layers. Like regular 

LSTM cells, convLSTM cells have a memory cell and 

gates to regulate the flow of data. Nevertheless, 

ConvLSTM enables the network to learn 

spatiotemporal patterns directly from the input by 

performing the operations in a convolutional fashion. 

The 3D convolutional layers allow the ConvLSTM 

model to learn how to extract spatial characteristics 

from the input data in each frame or volume during 

training. After that, the ConvLSTM layers get the 

features that were extracted and use them to record 

the dependencies that occurred over time in 

successive frames or volumes. This improves the 

model's classification performance by letting it learn 

and reflect the data's dynamics and mobility more 

effectively. An example of a deep learning model is a 

convolutional neural network, which can be used to 

analyze images. Convolutional layers with filters, 

batch normalization layers, pooling layers, non-linear 

activations, and FC layers are some of the many 

https://irjaeh.com/
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processing steps that Convolutional Long Short-Term 

Memory convolutional neural networks (CNNs) go 

through while processing images. The complete 

connection weights and convolution filter weights are 

the trainable parameters of a CNN model with 

Convolutional Long Short-Term Memory. The 

proposed convolutional neural network (CNN) model 

for brain tumor classification includes two feed 

forward (FC) layers (fc_1 and fc_2) and five 

convolutional (conv_1–conv_5) layers, as shown in 

Table 3.1. The proposed CNN model, which makes 

use of Convolutional Long Short-Term Memory, is 

capable of handling 256x256 images to its 256x256 

input layer. A convolution layer uses a series of 

filters, one after another, to collect various activations 

from the input image. The matrix 𝑦(𝑚, 𝑛) that results 

from the linear convolution of a size FxF filter 

𝑘(𝑚, 𝑛) with an image 𝑥(𝑚, 𝑛) is, 

𝑦(𝑚, 𝑛) = ∑ ∑ 𝑥(𝑖, 𝑗)𝑘(𝑚 − 𝑖, 𝑛 − 𝑗)
𝐹

2

𝑗=−
𝐹

2

𝐹

2

𝑖=−
𝐹

2

 --- (7) 

The input volume with dimensions (𝑋1, 𝑌1, 𝑍1) 

becomes a volume with dimensions (𝑋2, 𝑌2, 𝐾) after 

applying K filters. The formulas for X2 and Y2 are as 

follows, 

𝑋2 =
𝑋1−𝐹+2𝑃

𝑆
+ 1 -------- (8) 

𝑌2 =
𝑌1−𝐹+2𝑃

𝑆
+ 1 ------- (9) 

According to this plan, they are both the one and two 

people involved. Each batch normalization layer is 

followed by an activation layer using ReLU. Each 

ReLU operation is followed by a max-pooling.  

Algorithm 1: CNN with Convolutional Long 

Short-Term Memory 

Input: 

• A 4D tensor representing sequential 

volumetric data, where dimensions correspond 

to batch size, depth, height, and width. 

Steps: 

1. Input Preparation: Preprocess input data to 

ensure uniform dimensions and format. 

Normalize input data if necessary. 

𝑦(𝑚, 𝑛) = ∑ ∑ 𝑥(𝑖, 𝑗)𝑘(𝑚 − 𝑖, 𝑛 − 𝑗)
𝐹

2

𝑗=−
𝐹

2

𝐹

2

𝑖=−
𝐹

2

  

2. Model Construction: Define the architecture 

of the 3D CNN with ConvLSTM model, 

specifying the number and size of 

convolutional layers, LSTM layers, and fully 

connected layers. 

3. Model Compilation: Compile the model by 

specifying the optimizer, loss function, and 

evaluation metrics. 

𝑋2 =
𝑋1 − 𝐹 + 2𝑃

𝑆
+ 1 

4. Training: Train the model on a labeled dataset 

of sequential volumetric data, adjusting the 

model parameters using back propagation 

and optimization algorithms to minimize the 

loss function. 

Output: 

• Probability distribution over the classes for 

each input sequence. 

4. Results and Discussion 

The study's findings are reported and examined in 

depth in the results and discussion section. The 

purpose of this part is to analyze the results of the 

experiments, assess how well the techniques that were 

suggested worked, and talk about what those results 

mean in relation to the goals of the study. 

 
Figure 2 Training Accuracy Comparison Chart 

 

The Figure 2 shows training accuracy comparison 

chart the x axis shows epochs and the y axis shows 

accuracy. 
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Figure 3 Training Loss 

 

The Figure 3 shows training loss value comparison 

chart the x axis shows epochs and the y axis shows 

training loss and Figure 4 shows the denoisied image. 

 

 
Figure 4 Denoisied Image 

 
Figure 5 Grayscale Histogram 

 

The Figure 5 shows grayscale histogram chart the x 

axis shows grayscale value and the y axis shows 

pixels, and Figure 6 shows the feature values chart. 

 

 
Figure 6 Feature Values Chart 

Table 1 Classification Performance Metrics 

Comparison 

 

 

 
Figure 7 Performance Metrics Comparison Chart 
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The suggested technique surpasses current methods in 

every assessment parameter, including accuracy, 

precision, recall, and F-measure, as shown in Table 1 

and Figure 7. In particular, compared to SVM 

(94.32%), LSTM (95.24%), and CNN (96.37%), the 

suggested technique attains a much greater accuracy 

of 98.22%. It also shows less false positives (97.32%) 

and greater accuracy (97.34%) than SVM (90.74%), 

LSTM (92.54%), and CNN (95.00%). Better capacity 

to recognize true positives is shown by the suggested 

method's recall (97.10%), which is much greater than 

that of SVM (91.37%) and LSTM (92.14%). 

Furthermore, the suggested strategy outperforms 

SVM (90.21%), LSTM (93.000%), and CNN 

(95.00%) in terms of F-measure, suggesting a 

balanced performance in terms of recall and accuracy. 

When compared to other methods, these results 

demonstrate how much better the suggested technique 

is at producing trustworthy classifications. 

Conclusion  

Finally, this study presents a cutting-edge method for 

automated liver tumor segmentation that is 

specifically designed for DCE-MRI imaging. 

Specifically for dynamic imaging sequences, the 

research tackles the challenges of liver tumor 

segmentation by using a 4D information deep 

learning model that combines 3D CNN with 

ConvLSTM networks. The suggested model 

incorporates both spatial and temporal data, which 

greatly improves tumor segmentation accuracy, while 

DCE-MRI gives a complete picture of the vascular 

dynamics in the liver. The study's basic goals, which 

revolve on optimizing the model and evaluating its 

performance, highlight its dedication to improving 

tumor segmentation methods. This study adds to the 

body of knowledge in medical imaging by showing 

how the suggested strategy might improve upon or 

perhaps replace current practices. The increasing need 

for accuracy in healthcare settings is well-suited to a 

4D information deep learning model that incorporates 

both spatial and temporal variables. Positive effects 

on patient outcomes can result from the study's novel 

methodology, which shows potential in enhancing 

diagnostic and therapeutic capacities for liver 

tumours. 
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