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Abstract 

Human Activity Recognition (HAR) is a fundamental task in the field of computer vision and machine learning, 

with applications spanning from healthcare monitoring to human- computer interaction. This research paper 

presents a novel approach to HAR utilizing a hybrid model combining Convolutional Neural Networks (CNNs) 

and Long Short-Term Memory (LSTM) networks, referred to as the VGG-LSTM model. The proposed VGG-

LSTM model leverages the power of deep learning to address the challenges associated with HAR, including 

capturing spatial features and modeling temporal dependencies in complex human activities. In this research, 

we employ the VGG architecture as the feature extractor to capture discriminative spatial information from 

input sensor data, such as images or videos. Furthermore, the LSTM layer is integrated to model the temporal 

dynamics of human activities. This enables the model to effectively recognize and differentiate between a wide 

range of human activities, such as walking, running, sitting, and more, in real-world scenarios. The research 

demonstrates the effectiveness of the VGG-LSTM model on benchmark datasets, achieving state-of-the-art 

performance in human activity recognition tasks. The model’s accuracy, robustness, and ability to generalize 

to diverse scenarios make it a promising solution for applications in healthcare, sports analytics, security, 

and beyond. The contributions of this paper lie in the development of a powerful hybrid model that combines 

spatial and temporal information seamlessly, improving the accuracy and applicability of HAR systems. The 

results underscore the potential of the VGG-LSTM model in advancing human activity recognition technology, 

with implications for improving the quality of life and safety in various domains. 

Keywords: Human Activity Recognition, Deep Learning, Convolutional Neural Networks, LSTM, VGG, 

Spatial Features, Temporal Dependencies. 

 

1. Introduction 

Human Activity Recognition (HAR) based on Inertial 

Measurement Unit (IMU) data has gained significant 

prominence due to its ability to monitor not only 

human activities but also the behavior of devices, 

machine components, and even pets. This approach 

ensures high levels of privacy and user comfort. 

While various methods for accurately classifying user 

activities using IMU sensor data have been proposed, 

many of them pose significant challenges, demanding 

substantial resources, domain expertise, and other 

barriers. The advent of deep learning has 

revolutionized HAR, rendering the task of activity 

recognition far more accessible. Deep learning has 

emerged as a dominant force in machine learning, 

significantly impacting various fields. However, it 

has not received as much attention in the context of 

HAR. In a typical HAR scenario, a user equipped 

with a device, such as a standalone sensor, 

smartwatch, or smartphone, containing gyroscopes 

and accelerometers, continuously transmits sensor 

data to a monitoring server. Modern smart devices, 

with their enhanced processing units, larger 

memories, and superior sensors, can perform activity 

recognition independently. Deep learning has 

simplified the training of models to recognize 

specific activities from raw sensor data swiftly and 

efficiently. This is in stark contrast to traditional 

machine learning algorithms like Support Vector 

Machines (SVM) and feature extraction techniques 

like the Histogram of Gradients (HOG) used in the 
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past, which required extensive data preparation, 

domain knowledge, and preprocessing. Deep 

learning models, such as Convolutional Neural Net- 

works (CNNs) for spatial feature extraction, and 

Long Short- Term Memory (LSTM) networks for 

temporal modeling, have been proposed individually. 

Each approach possesses its unique strengths and 

weaknesses, tailored for specific applications. 

However, there is a compelling opportunity to 

enhance the robustness of activity recognition by 

combining the strengths of both networks. This 

research paper introduces a novel CNN-LSTM 

classifier for human activity recognition. While 

CNNs and LSTMs have been extensively explored in 

isolation, our study aims to harness the synergies 

between these two architectures, particularly in the 

context of human activity recognition. In the 

following sections, we provide a comprehensive 

background, review prior research, and detail our 

methodology and its implementation. We evaluate 

the performance of the CNN- LSTM model against 

other models using both the Intelligent Signal 

Processing Lab (iSPL) dataset and the UCI Human 

Activity Recognition (HAR) dataset. Finally, we 

conclude our research in Section V. 

2. Background and Related Works 

Human Activity Recognition (HAR) is a technology 

that characterizes human actions, allowing computer 

systems to anticipate and cater to users’ needs. It 

categorizes various human activities such as walking, 

standing, working, or lying down as sequences of 

actions performed by individuals over a certain 

period. 

2.1. Related Works 

In the realm of Human Activity Recognition (HAR), 

re- searchers have delved extensively into various 

aspects, encompassing sensor technology and 

algorithmic approaches. Notably, the forefront of 

HAR research has witnessed a shift towards the 

adoption of artificial intelligence-driven recognition 

methods, made possible through the application of 

machine and deep learning techniques. This 

transition typically follows the extraction of relevant 

human motion features from the sensor data. HAR 

typically relies on data sources such as wearable 

devices, cameras, and millimeter-wave radar. One 

notable contribution comes from Ronald Mutegeki et 

al. [1], who introduced a CNN-LSTM approach 

achieving impressive accuracy levels, with 99% 

accuracy on the internal iSPL dataset and 92% 

accuracy on the publicly available UCI HAR dataset, 

surpassing other deep neural network architectures 

and traditional machine learning models that depend 

on manually crafted features. NA Choudhary [2] 

presents an efficient CNN-LSTM model for 

recognizing human activities, particularly in 

uncontrolled environments. Their approach employs 

adaptive batch sizes during training and validation 

and attains remarkable results with minimal data 

preprocessing and augmentation. The model reaches 

a peak accuracy of 99.29% with an average loss of 

0.08 ± 0.136%, and it validates successfully on two 

public datasets, health and Motion Sense, with 

impressive accuracies of 99.5% and 99.8%, 

respectively, highlighting the model’s robustness and 

high- performance capabilities. Sakorn 

Mekruksavanich [3] introduces a hybrid model 

known as a multichannel CNN-LSTM network. This 

model’s performance is assessed using key 

evaluation metrics such as accuracy, precision, recall, 

and F1-score on the publicly available DHA dataset, 

which contains accelerometer data from 

smartwatches. Impressively, the multichannel CNN- 

LSTM model outperforms other deep learning 

approaches, achieving an accuracy of 96.87. 

Additionally, researchers like NA Choudhary [4] and 

Shibo Zhang [5] propose an efficient CNN-LSTM 

model for recognizing daily human activities using 

smartphone sensor data. They create a contemporary 

CNN-LSTM model that efficiently handles 

hierarchical features through time-distributed feature 

extraction layers and LSTM memorization schemes. 

MST. Alema Khatun [6] employs a CNN-LSTM 

approach with different datasets, including 

MHEALTH and UCI-HAR, demonstrating the 

model’s comparative performance. The pro- posed 

model achieves high accuracy, reaching 99.93% with 

H-Activity data, 98.76% with MHEALTH data, and 

93.11% with UCI-HAR data, showcasing its 

effectiveness in human activity recognition. 

Furthermore, Zhu [7] introduces a deep learning (DL) 

model that combines 1-D convolutional neural 
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networks (1D-CNNs) with long short-term memory 

(LSTM). Experimental findings indicate that this 

model effectively captures spatiotemporal patterns in 

radar data, resulting in superior recognition accuracy 

while maintaining a relatively lower level of 

complexity compared to existing 2D-CNN 

approaches. Sakorna [8], through experimentation 

with the DHA dataset, finds that their proposed 

multichannel CNN-LSTM model surpasses other 

deep learning techniques, achieving a notably high 

accuracy score of 96.87. Tan [9] introduces the 

Enhanced Learning Architecture (ELA), which 

combines a Gated Recurrent Unit (GRU), a 

Convolutional Neural Network (CNN) stacked on the 

GRU, and a Deep Neural Network (DNN). The 

inclusion of an additional feature vector containing 

561 time-domain and frequency-domain parameters 

contributes to the models performance. The DNN 

component acts as a fully connected layer, integrating 

the outputs of the three models for activity 

classification. S. Challa [10] introduces a multi-

branch CNN-BiLSTM network for automatic feature 

extraction from raw sensor data, requiring minimal 

preprocessing. This model combines CNNs and 

BiLSTMs to capture both local features and long-

term dependencies in sequential data, demonstrating 

high accuracy on benchmark datasets. Suneth 

Ranasinghe [11] provides an insightful overview of 

HAR applications, discussing their strengths and 

weaknesses. The article also highlights publicly 

available datasets tailored for assessing these 

recognition systems. Furthermore, it con- cludes by 

drawing a comparison between the current 

methodologies, offering insights into potential 

research questions for future advancements in real-

world scenarios. Lastly, Charikleia Chatzaki [11] 

focuses on developing an efficient computational and 

analysis pipeline for precise recognition of Activities 

of Daily Living (ADLs) and falls. This effort results 

in two optimized feature sets (OFS1 and OFS2) 

achieved through iterative testing, removing less 

effective features, and showcasing promising results 

for ADL and fall recognition. 

3. Method and Experiment Setup 

The UCI HAR dataset is a collection of 3D (x, y, z) 

raw signals obtained from the accelerometer and 

gyroscope of a smartphone positioned at the waist of 

30 subjects aged between 19 and 48 years [6]. The 

participants engaged in six activities: Walking, 

Walking Upstairs, Walking Downstairs, Sitting, 

Standing, and Laying. The dataset consists of 7,352 

training samples and 2,947 test samples. Figure 1& 2 

shows the   Data Split for Train. 

 

 
Figure 1   Data Split for Train 

 

 
Figure 2   Data Split for Train 

In the preprocessing phase, noise filters were applied 

to the sensor signals. The data was then segmented 

into fixed-width sliding windows lasting 2.56 

seconds with a 50% overlap (128 readings per 

window). To isolate the gravitational and body 

motion components within the sensor acceleration 

signal, a Butterworth low-pass filter was employed. 

This separation resulted in distinct signals for body 

acceleration and gravity. In processing nine signals—
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total acceleration (ax, ay, az), angular velocity from 

the gyroscope (gx, gy, gz), and linear acceleration 

excluding gravitational effects (lax, lay, laz)—we 

conducted a controlled experiment. This involved 

employing a singular 1D convolution layer with 64 

filters, a kernel size of 3, and ReLU activation. In 

pursuit of a controlled and well-defined experimental 

framework, we initiated our study with a foundational 

1D convolution layer employing Tensor Flow’s 

Keras library. This layer featured 64 filters, a kernel 

size of 3, and a Rectified Linear Unit (ReLU) 

activation function. The subsequent addition of a 1D 

max-pooling layer, with a pool size set to 2, and a 

flatten layer aimed to format the extracted features for 

seamless integration into the subsequent Long Short-

Term Memory (LSTM) layer. Figure 3 shows Model 

Architecture. Following the LSTM layer, a Gated 

Recurrent Unit (GRU) layer was seamlessly 

integrated to further capture and understand intricate 

patterns within the temporal sequences. The GRU 

layer, with its gating mechanism, enhanced the 

model’s ability to retain important information over 

extended sequences. The combined output from the 

LSTM and GRU layers flowed into a fully connected 

(FC) output layer. Equipped with a Softmax 

activation function, this layer facilitated the 

classification of input data into predefined classes. 

Our experiments encompassed a 3-class 

classification for the iSPL dataset and a 6-class 

classification for the UCI HAR dataset. 

 
Figure 3   Model Architecture 

 

3.1. Performance Metrics 

To assess and compare the performance of our 

models, we employed several key metrics: Precision, 

Recall, F1-Score, and Accuracy, each serving a 

distinct purpose: 

Precision: Precision gauges the accuracy of our 

model’s predictions for positive classes. It calculates 

the ratio of true positives to the sum of true positives 

and false positives. In mathematical terms, Precision 

is expressed. 

Given the inherent disparities between the 

convolutional and LSTM layers, we adopted the 

Keras provided Time Distributed wrapper to apply 

convolutions while preserving the temporal. 

Precision   TPositive                     (1) 

       TPositive ` FPositive 

Integrity of the data for LSTM processing. The input 

signal, initially structured as (None, 128, 9), 

underwent reshaping to (None, 4, 32, 9) to suit the 

requirements of the Time Distributed 1D convolution 

layer. This wrapper encapsulated all layers preceding 

the LSTM components. The flattened feature maps 

were then channeled into an LSTM layer boasting 

128 units and a Rectified Linear Unit (ReLU) 

activation. This LSTM layer effectively extracted 

temporal dependencies inherent in sequential data—

a crucial aspect, given the sequential nature of signal 

data. Leveraging the advantages of LSTM, 

categorized under the recurrent. 

Recall: Recall measures our model’s effectiveness in 

identifying actual positive instances. It computes the 

ratio of true positives to the sum of true positives and 

false negatives. Mathematically, Recall is defined as 

      Recall
  TPositive  (2) 

             TPositive ` FNegative 

F1-Score: The F1-Score quantifies the trade-off 

between Precision and Recall. It calculates the 

harmonic mean of Precision and Recall to provide a 

balanced evaluation metric. The formula for the F1-

Score is neural network (RNN) domain, we 

highlighted its superiority over conventional deep 

neural networks, as discussed in [1]. 
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F 1 
2 ¨ Precision ¨ Recall                                                                                                      (3) 

               
Precision ` Recall 

Accuracy: Accuracy serves as a straightforward 

metric representing the ratio of correctly predicted 

observations to the total number of observations. It 

takes into account true positives, true negatives, false 

positives, and false negatives. The accuracy formula 

is 

Accuracy                 T Positive, T Negative   (4) 
T Positive T Negative F Positive T Negative 

These metrics collectively allow us to 

comprehensively evaluate our model’s performance, 

addressing aspects like precision, recall, balance, and 

overall correctness in making predictions. 

3.2. Performance Analysis 

In our comprehensive model evaluation, we 

conducted an extensive analysis of various ensemble, 

deep learning, and traditional supervised learning 

models, uncovering notable performance metrics that 

offer valuable insights into their capabilities. K-

Nearest Neighbors (KNN) demonstrated robust 

performance, achieving an impressive accuracy of 

85%. It excelled with a commendable recall rate of 

84.86%, a high precision rate of 85%, and an 

exceptional F1 score of 84.93%. Conversely, 

XGBoost displayed remarkable accuracy at 86%, 

accompanied by outstanding recall and precision 

rates of 86% and 85.96%, resulting in an impressive 

F1 score of 84.98%. Random Forest exhibited a 

commendable accuracy of 86.3%, complemented by 

a recall rate of 86.2% and a precision rate of 86.1%, 

yielding an F1 score of 85.98%. Support Vector 

Machine (SVM) provided solid performance with an 

accuracy of 80%, supported by precision and recall 

rates of 80% and 81%, respectively, resulting in an 

F1 score of 80.5. Long Short-Term Memory (LSTM) 

outshone all other models, achieving an outstanding 

87% accuracy. It was accompanied by a precision 

rate of 87.1%, a recall rate of 86.95%, and an 

impressive F1 score of 87.02%. Additionally, the 

Extra Trees Classifier achieved an accuracy of 

87.13%, further solidifying its efficacy. Significantly, 

our proposed CNN-LSTM-GRU model emerged as 

the standout performer, boasting a remarkable 

accuracy of 91.8%. This was coupled with a precision 

rate of 91.7%, a recall rate of 90.25%, and an 

exceptional F1 score of 90.47%. These findings 

collectively highlight the exceptional performance 

and potential of our ensemble learning model in 

activity recognition, reaffirming its status as a 

powerful tool for this application. Looking ahead, we 

envision exploring more complex human activities 

and incorporating additional physical attributes to 

further enhance our system’s capabilities. Figure 4 & 

5 shows the Accuracy and Loss. 

 

 
Figure 4   Loss 

 

 
Figure 5   Accuracy 

Conclusion 

In this study, we introduced a CNN-LSTM approach 

for human activity recognition, aiming to enhance 

accuracy by combining the robust feature extraction 

capabilities of a CNN network with the temporal 

analysis strengths of an LSTM model used in time 

series forecasting and classification. The spatial and 
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temporal depth of our CNN-LSTM model yielded. 

Superior performance compared to other deep 

learning methods utilizing raw signal data. 

Evaluation on a publicly available dataset (UCI 

HAR) demonstrated its superiority, achieving over 

and nearly 2% lower Soft ax loss. While we did not 

explicitly assess runtime metrics in this paper, our 

experiments hinted at the efficiency of our proposed 

approach compared to other models. For future 

research, we plan to further develop and 

systematically evaluate the model with varying hyper 

parameters, including learning rate, batch size, and 

regularization. The extension of the model to more 

intricate activities will be explored to address 

additional challenges in deep learning and human 

activity recognition, involving assessments on 

diverse datasets. Additionally, we aim to benchmark 

our approach against state-of-the-art results for the 

UCI dataset and other publicly available datasets. 
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