

IOT Based Railway Track Clearance Alert System

V.R Mani¹, N Harini², J Jayasri³, A Joanna⁴, M Kalpana Devi⁵

¹Assistant Professor, Dept. of ECE, Sri Ranganathar Institute of Engg & Tech., Coimbatore, Tamilnadu, India

^{2,3,4,5}UG Scholar, Dept. of ECE, Sri Ranganathar Institute of Engg. & Tech., Coimbatore, Tamilnadu, India

Emails: mani@sriet.ac.in¹, harininehru810@gmail.com², jsrijsrijsri80@gmail.com³, joanabraham2005@gmail.com⁴, 2005kalpanam@gmail.com⁵

Abstract

Railway transportation is one of the most widely used modes of transport, but it is also prone to accidents caused by track obstructions, human errors, and lack of real-time monitoring. Ensuring track clearance before the arrival of a train is critical to prevent derailments and collisions. Traditional monitoring systems are often manual, time-consuming, and ineffective in detecting sudden obstacles on railway tracks. The IoT Based Railway Track Clearance Alert System aims to enhance railway safety by continuously monitoring track conditions using sensors and wireless communication technologies. The system detects obstacles, track damage, or unauthorized presence and transmits real-time alerts to the train driver or control station using IoT platforms. This enables quick decision-making and timely preventive actions. By integrating sensors, microcontrollers, and cloud-based communication, the proposed system provides a cost-effective, automated, and reliable solution. The implementation of this system can significantly reduce railway accidents, improve operational efficiency, and enhance passenger safety.

Keywords: IoT, Railway Safety, Track Clearance, Obstacle Detection, Sensors, Wireless Alert.

1. Introduction

With the rapid increase in the human population in the world, the need for transportation has grown significantly. With more people relying on railways for their daily travel and long-distance transportation, railway traffic has increased, making safety a major concern. Railway transportation is one of the most widely used modes of transport due to its cost-effectiveness and ability to carry large numbers of passengers and goods. One of the critical challenges faced by railway systems is ensuring that the tracks are clear from obstacles such as animals, vehicles, fallen trees, and other unexpected intrusions [1]-[3]. The IoT Based Railway Track Clearance Alert System is proposed to address this issue by continuously monitoring railway tracks and detecting obstacles in real time. By using IoT technology along with sensors and wireless communication, the system provides instant alerts to railway authorities or train operators, helping to prevent accidents and improve overall railway safety. Traditional railway safety systems depend largely on manual inspection and fixed signaling methods, which may not be effective

in detecting sudden obstructions on the track. This can lead to delayed responses and increase the risk of accidents. The proposed IoT-based system reduces human intervention by enabling automatic detection, real-time monitoring, and instant alert generation. By improving response time and reliability, this system enhances operational efficiency and ensures safer railway transportation for the growing population. The proposed system reduces the risk of accidents and improves operational efficiency. It also by providing real-time alerts and remote monitoring capabilities, the proposed system reduces the risk of accidents and improves operational efficiency [4]-[6].

1.1. Methods of Sign Language

Visual Signaling Method: - Visual signaling is used to indicate the condition of the railway track through LED indicators. A green light shows that the track is clear and safe for train movement, a yellow light indicates a warning or caution, and a red light represents danger due to an obstacle or unsafe track condition. These signals are simple, easily

understandable, and visible from a distance.

Wireless Signaling Method:- Wireless signaling is used to send alert messages to remote locations such as the control room or train driver. Communication modules like GSM, Wi-Fi, or LoRa transmit real-time information about track clearance and obstacle detection. This ensures fast communication and timely preventive action.

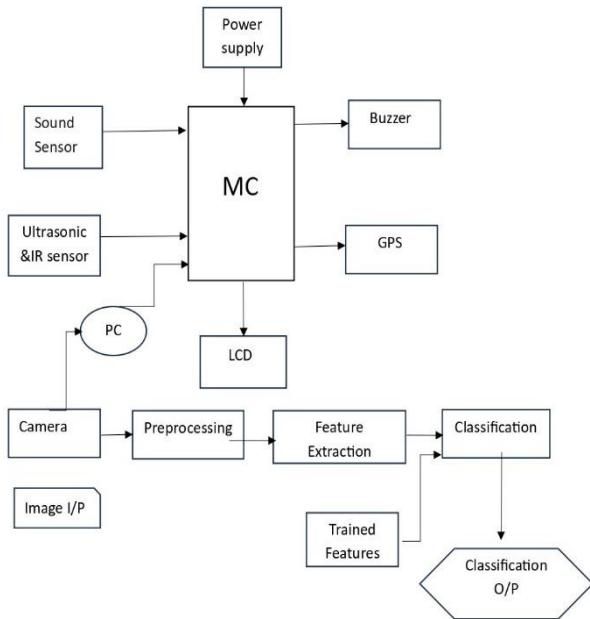
Cloud-Based Signaling Method:- In cloud-based signaling, the sensor data collected from the railway track is uploaded to an IoT cloud platform. Authorities can continuously monitor track conditions using dashboards and receive instant notifications during abnormal situations. This method also supports data storage and analysis for future safety improvements

On-Train Alert Display Method: - On-train alert displays provide warning messages directly inside the train cabin. Information is shown on LCD screens or mobile applications, allowing the train driver to quickly understand the situation and take necessary safety measures.

Audio Signaling Method:- Audio signaling is provided using buzzers or alarms. When an obstacle or fault is detected on the railway track, the buzzer produces a loud sound to alert nearby railway staff and maintenance workers. This method is especially useful in foggy conditions or when visual signals are not clearly visible.

Safety and Reliability: - The **IoT Based Railway Track Clearance Alert System** is designed to enhance both safety and reliability in railway operations. In terms of safety, the system continuously monitors railway tracks for obstacles, damages, or unauthorized presence using sensors. Real-time alerts are transmitted through visual signals, audio alarms, wireless messages, and cloud dashboards, enabling train drivers and control authorities to respond immediately. This reduces the chances of collisions, derailments, and other accidents, ensuring the protection of passengers, staff, and railway infrastructure.

1.2. Purpose of the Project

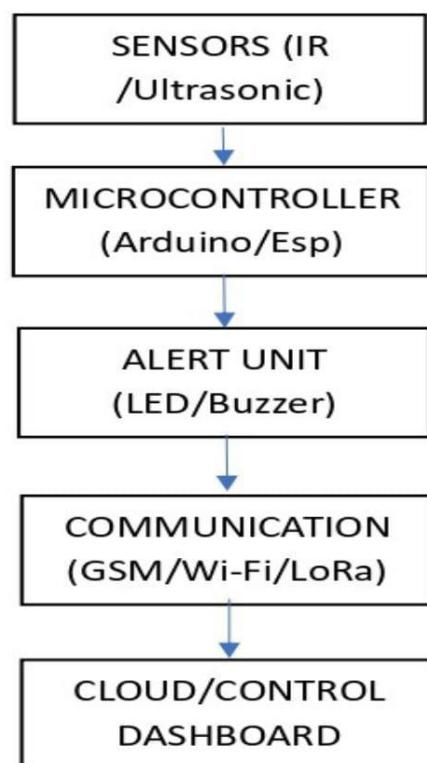

The purpose of this project is to design and develop an IoT-based Railway Track Fault Detection and Clearance System to enhance railway safety and reliability. The system aims to continuously monitor

railway track conditions and detect faults such as cracks, breaks, misalignment, or vibrations in real time [7]-[9]. By using IoT sensors and wireless communication, the proposed system provides early fault detection and immediate alerts to railway authorities. Additionally, the track clearance mechanism ensures that only fault-free tracks are authorized for train movement, thereby preventing accidents, reducing human dependency, and enabling efficient and timely maintenance operations.

1.3. Critical Operational Challenges

The implementation of an IoT-based Railway Track Fault Detection and Clearance System faces several critical operational challenges. One of the primary challenges is ensuring sensor accuracy and reliability, as the sensors are continuously exposed to harsh environmental conditions such as extreme temperatures, rain, dust, and constant vibrations from train movement. These conditions can degrade sensor performance over time and lead to inaccurate readings [10]-[12]. Additionally, differentiating between normal track vibrations and actual faults is difficult, which may result in false alarms or missed detections, reducing system effectiveness. Another major challenge is maintaining a reliable power supply for IoT devices, especially in remote railway locations where conventional power sources may not be available. Wireless communication reliability also poses a significant issue, as network connectivity can be inconsistent in rural, underground, or isolated areas, causing delays or data loss in real-time monitoring. Furthermore, scaling the system to cover long stretches of railway tracks requires large-scale sensor deployment, increasing system complexity, installation effort, and cost. The continuous generation of large volumes of sensor data presents challenges in data management, processing, and storage. Any latency in data transmission or processing can delay fault detection and clearance decisions, which may compromise safety. Integrating the proposed system with existing railway signaling and control infrastructure, as it must comply with strict railway safety standards and regulations. Regular maintenance, calibration, and replacement of IoT devices are also necessary to ensure long-term reliability [13]-[15].

2. Block Diagram


Figure 1 Integrated Microcontroller-Based Monitoring and Image Classification System Architecture

The proposed system integrates multi-sensor inputs with vision-based classification for real-time monitoring and alert generation. A regulated power supply provides stable voltage to the microcontroller, sensors, camera, and output units (Figure 1). The microcontroller (MC) acts as the central control unit, collecting data from sensors, coordinating with the PC, and controlling output devices. A sound sensor detects abnormal acoustic signals and forwards them to the MC for event triggering. Ultrasonic and IR sensors are used for proximity and obstacle detection, enabling continuous environmental monitoring. A camera module captures real-time images and sends them to a PC for advanced image processing. The image processing pipeline includes: Image acquisition. Preprocessing (noise removal and enhancement). Trained features improve classification accuracy by enabling reliable comparison with real-time image features. The classification output is transmitted to the MC for decision-making. An LCD display shows system status, sensor readings, and classification results. A

buzzer provides immediate audible alerts during abnormal or critical events. A GPS module supplies real-time location information for location-based monitoring and response. The system ensures accurate detection, real-time alerts, and location awareness, making it suitable for intelligent monitoring applications.

2.1. Flow Chart and Graph

The sensors responded accurately, triggering visual LED signals and audio buzzer alerts immediately when a hazard was detected. Wireless communication using GSM and Wi-Fi modules reliably transmitted real-time alerts to the control room and train operators, while the cloud-based dashboard provided continuous remote monitoring and clear visualization of track conditions. Overall, the results show that the system is reliable, and capable of enhancing railway safety by providing continuous, real-time track monitoring and alerts (Figure 2).

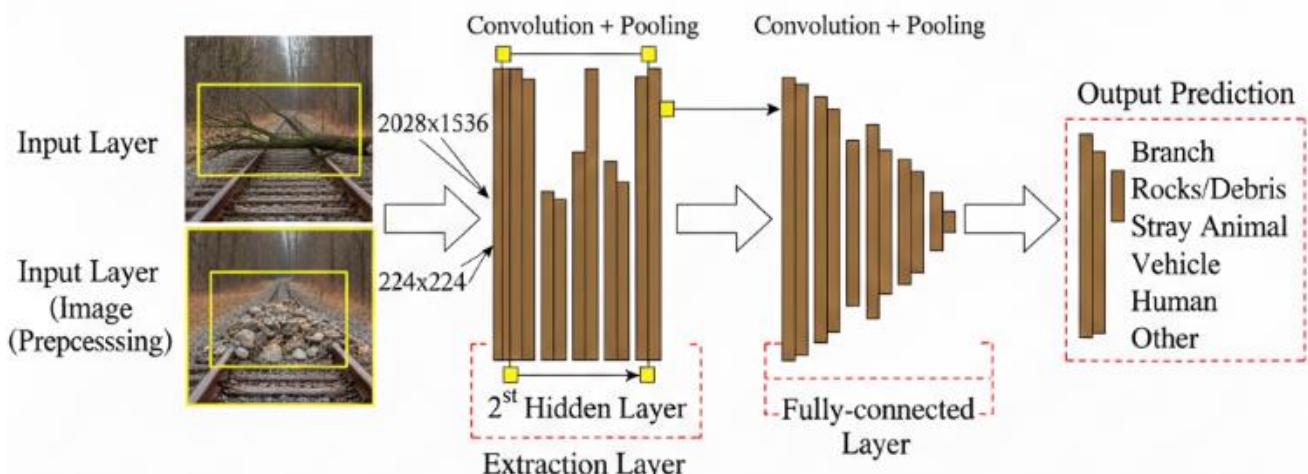


Figure 2 System Architecture of an IoT-Based Sensor Monitoring and Alert Communication Framework

The proposed system follows a sequential flow for real-time monitoring, alert generation, and remote communication using IoT technology. The process begins with IR and ultrasonic sensors, which continuously monitor the surrounding environment. These sensors detect the presence of obstacles or abnormal conditions and generate corresponding signals. The sensor outputs are fed into a microcontroller (Arduino/ESP), which acts as the core processing unit. The microcontroller analyzes the received data and determines whether the sensed values exceed predefined threshold limits. When an abnormal condition is detected, the alert unit, consisting of an LED and buzzer, is activated to provide immediate visual and audible warnings at the

local level. Simultaneously, the processed data and alert information are transmitted through the communication module. Depending on system requirements, GSM, Wi-Fi, or LoRa is used to enable long-range or internet-based communication. Finally, the transmitted data is received by a cloud or control dashboard, where it is stored, monitored, and visualized in real time. This enables remote supervision, data logging, and timely decision-making. Overall, the flowchart represents a simple and efficient IoT-based architecture that ensures accurate detection, instant alerting, and reliable remote monitoring.

2.2. Railway Track Classification

Figure 3 Convolutional Neural Network (CNN) Architecture for Image-Based Object Classification

Railway track fault identification is like a special detective for train tracks. Its job is to look closely at the tracks and find any problems or faults, like cracks, loose parts, or things that shouldn't be there, such as debris obstacles (Figure 3). When it finds something wrong, it sends a message to the people in charge so they can fix it. This way, the train tracks stay safe and in good shape for the trains to run on smoothly. This module identifies the areas of an image that are probably inhabited by people. A railway track image is fed into the feature extraction module to identify the primary features that will be used for

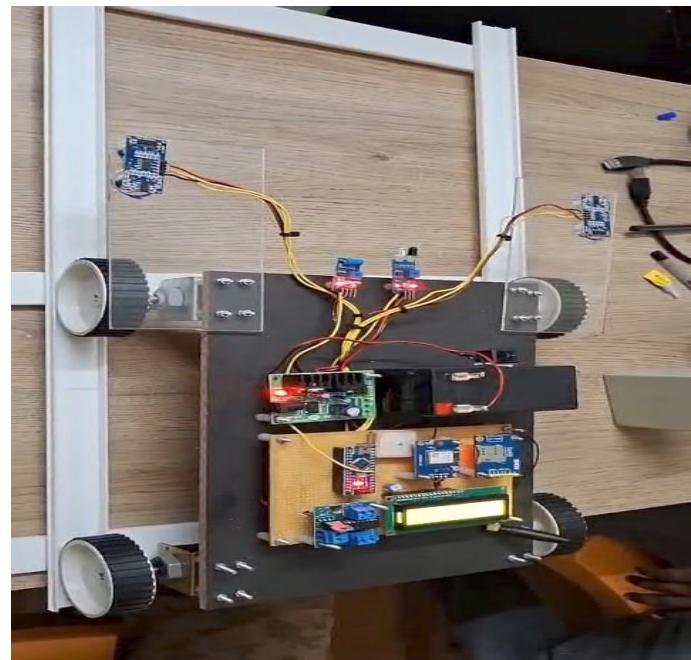
classification following the track fault detection process utilizing the Region Proposal Network (RPN).

2.3. Result

The results obtained can be interpreted in two ways, the first one evaluates the impact of the optimization algorithm on the classification of the railway track fault, but also the performance evaluated on datasets whose size is reduced, thus joins the standard problems to which data scientists use different data's. That said, the contribution is crucial to enhancing the circumstances for identifying faults in railroad tracks

and optimizing the detector, which is built on a better IoT and DL basis for the CNN model—Mobile Net. In this way, the model predictor's parameter count has a significant applicability in mobile terminals, which is ideal for this use case. In addition, the integration of new CNN optimization techniques will serve to improve the performance but also the sensitivity of the model with a view to integrating new classes and predictors and thereby allowing tools for more efficient and evolving in different context of railway maintenance.

2.4. Performance Analysis


In this module we able to find the performance of our system using Sensitivity, Specificity and Accuracy of Data in the datasets are divided into two classes; not railway fault (the negative class) and rail track fault type (the positive class). Sensitivity, specificity, and accuracy are calculated using the True positive (TP), true negative (TN), false negative (FN), and false positive (FP). The quantity of positive cases that are labeled as positive is known as TP. The fraction of negative situations that are categorized as positive is known as FP. The quantity of negative cases categorized as such is denoted by TN, while the quantity of positive cases classified as negative is shown by FN.

2.5. Discussion

The implementation of the **IoT Based Railway Track Clearance Alert System** demonstrates the effectiveness of integrating modern technologies for enhancing railway safety. The use of sensors such as IR and ultrasonic modules allowed the system to detect obstacles and track irregularities accurately, while visual and audio alerts provided immediate on-site warnings. Wireless communication ensured that the control room and train operators received real-time information, reducing the risk of accidents caused by delayed human response.

Conclusion

The IoT Based Railway Track Clearance Alert System provides an effective and reliable solution for improving railway safety by continuously monitoring track conditions in real time. By using sensors, microcontrollers, and wireless communication, the system can quickly detect obstacles or unsafe situations on railway tracks and generate immediate alerts (Figure 4).

Figure 4 Prototype Implementation of a Microcontroller-Based Embedded Monitoring and Alert System

Acknowledgements

I would like to express my sincere gratitude to my project guide for their valuable guidance, continuous support, and encouragement throughout the completion of this project. I am also thankful to the Head of the Department and all faculty members for providing the necessary resources and technical knowledge required for this work. I extend my appreciation to my friends and classmates for their cooperation and support during the project. Finally, I am deeply grateful to my family for their constant motivation and encouragement, which made the successful completion of this project possible.

References

The references used for this project include a combination of authoritative journals, technical manuals, and official reports that provide both theoretical and practical insights into IoT-based railway safety systems. Foundational concepts of the Internet of Things were sourced and the literature review which helped establish the underlying IoT architecture and applications. Studies specifically focused on railway safety provided guidance on sensor-based track monitoring, real-time alert systems, and wireless communication integration.

Authoritative reports from the Ministry of Railways, Government of India. Additionally, IEEE publications on intelligent transportation and IoT applications informed the system design and validation approaches. Together, these references ensured a reliable, research-backed, and practical foundation for developing the IoT Based Railway Track Clearance Alert System.

Journal Reference Style

- [1]. Chandrappa, S., Lamani, D., Poojary, S. V., & Meghana, N. U. (2017). Automatic control of railway gates and destination notification system using internet of things (IoT). *International Journal of Education and Management Engineering*, 7(5), 45.
- [2]. Qu, J., Li, S., Li, Y., & Liu, L. (2023). Research on railway obstacle detection method based on developed Euclidean clustering. *Electronics*, 12(5), 1175.
- [3]. Chellaswamy, C., Geetha, T. S., Surya Bhupal Rao, M., & Vanathi, A. (2021). Optimized railway track condition monitoring and derailment prevention system supported by cloud technology. *Transportation research record*, 2675(4), 346-361.
- [4]. Kim, S., & Kim, D. (2023). Securing the cyber resilience of a blockchain-based railroad non-stop customs clearance system. *Sensors*, 23(6), 2914.
- [5]. Yadav, D., Pandey, A., Mishra, D., Bagchi, T., Mahapatra, A., Chandrasekhar, P., & Kumar, A. (2022). IoT enabled smart dustbin with messaging alert system. *International Journal of Information Technology*, 14(7), 3601-3609.
- [6]. Atanasov, I., Dimitrova, D., Pencheva, E., & Trifonov, V. (2025). Railway Cloud Resource Management as a Service. *Future Internet*, 17(5), 192.
- [7]. Unger, S., Heinrich, M., Scheuermann, D., Katzenbeisser, S., Schubert, M., Hagemann, L., & Iffländer, L. (2023). Securing the future railway system: Technology forecast, security measures, and research demands. *Vehicles*, 5(4), 1254-1274.
- [8]. Kuchar, K., Holasova, E., Pospisil, O., Ruotsalainen, H., Fujdiak, R., & Wagner, A. (2023). Hunting network anomalies in a railway axle counter system. *Sensors*, 23(6), 3122.
- [9]. Trembeath, O., Sun, Q., Wang, S., & Duckham, M. (2024). Spatial digital twin framework for overheight vehicle warning and re-routing system. *Urban Informatics*, 3(1), 23.
- [10]. Cao, X., Xiong, Y., Sun, J., Xie, X., Sun, Q., & Wang, Z. L. (2023). Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. *Nano-micro letters*, 15(1), 14.
- [11]. Zschiesche, K., & Reiterer, A. (2024). Optical Measurement System for Monitoring Railway Infrastructure—A Review. *Applied Sciences*, 14(19), 8801.
- [12]. Fischer, S., Németh, D., & Horváth, H. (2023). Investigation of the track gauge in curved sections, considering hungarian railway lines. *Infrastructures*, 8(4), 69.
- [13]. Ning, S., Ding, F., & Chen, B. (2024). Research on the method of foreign object detection for railway tracks based on deep learning. *Sensors*, 24(14), 4483.
- [14]. Shi, T., Guo, P., Wang, R., Ma, Z., Zhang, W., Li, W., ... & Hu, H. (2024). A survey on multi-sensor fusion perimeter intrusion detection in high-speed railways. *Sensors*, 24(17), 5463.
- [15]. Sahebdivani, S., Arefi, H., & Maboudi, M. (2020). Rail track detection and projection-based 3D modeling from UAV point cloud. *Sensors*, 20(18), 5220.