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Abstract

Accurate indoor positioning using ultra-wideband (UWB) technology is essential for location-based services
in personal devices, yet its performance degrades significantly under non-line-of-sight (NLoS) conditions
commonly encountered in indoor environments. Factors such as human body shadowing, device orientation,
and surrounding obstacles introduce biased ranging measurements, leading to poor localization accuracy. To
address this challenge, this paper proposes an LSTM-based UWB indoor positioning framework that exploits
the temporal characteristics of channel impulse response (CIR) signals. An LSTM network is employed to
estimate the probability of NLoS propagation from raw CIR sequences. This probability is then integrated into
a weighted adaptive Kalman filter to dynamically correct unreliable distance measurements. The corrected
distances are subsequently used in a trilateration-based positioning algorithm to estimate the device location.
Experimental evaluation using a publicly available UWB CIR dataset demonstrates that the proposed
approach consistently outperforms conventional trilateration and standard Kalman filter methods.
Specifically, the proposed framework improves positioning accuracy by approximately 17% at a +25 cm error
tolerance and 16% at a +50 cm tolerance, while achieving nearly 99% accuracy within a £100 cm error
bound. These results validate the effectiveness of combining temporal deep learning with adaptive filtering for
robust indoor UWB localization.

Keywords: Ultra-wideband (UWB), Indoor positioning, Channel impulse response (CIR), Long short-term
memory (LSTM), Non-line-of-sight (NLoS) mitigation, Adaptive Kalman filter, Trilateration, Ranging error
correction.

1. Introduction

enabler for a wide range of emerging applications, obtained through two-way ranging (TWR) or time-

including smart buildings, asset tracking, indoor
navigation, robotics, and context-aware services for
personal devices. Unlike outdoor environments
where Global Navigation Satellite Systems (GNSS)
provide reliable localization, indoor environments
present significant challenges due to signal
attenuation, multipath propagation, and non-line-of-
sight (NLoS) conditions [1], [2]. As a result,
achieving centimeter-level positioning accuracy
indoors remains an open research problem. Among
existing wireless technologies, ultra-wideband
(UWB) has gained considerable attention for indoor
localization owing to its large bandwidth, fine
temporal resolution, and robustness against multipath
interference. UWB-based positioning primarily relies
on precise time-of-flight (ToF) measurements
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difference-of-arrival (TDoA) techniques. Compared
to RSSI-based solutions such as WiFi and Bluetooth
Low Energy (BLE), UWB can achieve sub-meter
accuracy and has recently been integrated into
consumer-grade devices such as smartphones and
wearables. This has accelerated research interest in
UWB-based indoor positioning for personal devices.
Despite its advantages, UWB positioning accuracy
degrades significantly in  practical indoor
environments, particularly when devices are carried
by users. Human body shadowing, device orientation
changes, pockets or bags, and surrounding obstacles
introduce NLoS propagation and multipath effects
that cause biased ranging measurements. These
effects result in systematic distance overestimation,
which propagates into large positioning errors when
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conventional trilateration algorithms are applied.
Traditional mitigation approaches based on static
error models or fixed Kalman filter parameters fail to
adapt effectively to such dynamically changing
conditions. In contrast, Long Short-Term Memory
(LSTM) networks are specifically designed to model
time-series data and capture long-range temporal
dependencies [3]-[5]. Since UWB CIR signals are
inherently sequential in nature, LSTM networks are
well suited to learning the temporal structure of
multipath components and delay variations caused by
NLoS propagation. By exploiting these temporal
characteristics, LSTM-based models can provide
more robust and reliable estimation of propagation
conditions compared to static deep learning
architectures. In this paper, we propose an LSTM-
assisted UWB indoor positioning framework for
personal devices operating in dynamic indoor
environments. The proposed system uses an LSTM
network to analyze raw UWB CIR sequences and
estimate the probability of NLoS conditions in real
time. These probabilities are then incorporated into a
weighted adaptive Kalman filter, which dynamically
adjusts the measurement noise covariance to
compensate for unreliable ranging measurements.
The corrected distance estimates are finally used in a
trilateration-based positioning algorithm to compute
the device’s location.

2. Related Work

Indoor positioning has been an active research area
for more than two decades, driven by the increasing
demand for accurate localization in environments
where satellite-based systems such as GNSS are
ineffective. Existing indoor localization approaches
can broadly be categorized into wireless signal-based
methods, sensor-based methods, and hybrid
techniques. Among these, UWB-based localization
has emerged as one of the most promising solutions
due to its high temporal resolution and robustness
against multipath effects.

2.1. UWB-Based Indoor Positioning
Ultra-wideband positioning systems primarily
estimate distances using time-of-flight (ToF)
measurements obtained through two-way ranging
(TWR) or one-way ranging (OWR) techniques.
Based on these distance estimates, positioning is
commonly performed using trilateration,
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multilateration, or angle-of-arrival (AoA) algorithms.
Compared to RSSI-based approaches such as WiFi
and BLE, UWB achieves significantly higher
accuracy because its large bandwidth enables precise
detection of the first path component [6]-[8].
However, even UWB systems are not immune to
ranging errors. In indoor environments, multipath
propagation and NLoS conditions introduce positive
biases in ToF measurements, leading to distance
overestimation. These errors become more severe in
personal device scenarios, where human body
shadowing, device orientation, and motion
dynamically alter the propagation channel. As a
result, conventional trilateration-based positioning
suffers from degraded accuracy under realistic indoor
conditions.
2.2. Ranging Error Mitigation and Kalman
Filtering
To mitigate UWB ranging errors, several filtering and
estimation techniques have been proposed. Kalman
filters (KFs) and their variants, such as extended
Kalman filters (EKFs) and particle filters, have been
widely adopted to smooth noisy distance
measurements and track target motion. These
approaches model the system dynamics and
measurement uncertainty probabilistically, enabling
recursive estimation of the target position [9].
Despite their effectiveness, traditional Kalman filter—
based methods rely on fixed process and
measurement noise covariance matrices. Such static
noise models fail to reflect rapidly changing channel
conditions in indoor environments, particularly when
transitions between line-of-sight (LoS) and NLoS
occur. Consequently, filters may either over-trust
unreliable measurements or excessively smooth the
state estimate, resulting in suboptimal positioning
performance [10]. To address this limitation,
adaptive Kalman filtering techniques have been
introduced, where noise covariance parameters are
adjusted based on heuristic rules or statistical
properties of the measurements. While these methods
improve robustness to some extent, they still lack the
ability to accurately infer the underlying propagation
conditions causing the ranging errors.
2.3. Machine Learning and Deep Learning
for UWB Localization
In recent years, machine learning and deep learning
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techniques have been increasingly applied to UWB
localization problems, particularly for NLoS
identification and ranging error compensation.
Channel impulse response (CIR) data has been
extensively used as an input feature due to its strong
correlation with propagation conditions [11]-[13].
Statistical features such as mean excess delay,
kurtosis, skewness, and signal energy have been
extracted from CIR to train classifiers that distinguish
between LoS and NLoS conditions. Early learning-
based approaches employed support vector machines
(SVMs), decision trees, and regression models to
estimate ranging errors or classify propagation
environments. While these methods demonstrated
improvements over purely model-based approaches,
their performance was limited by handcrafted feature
selection and insufficient modeling of complex
channel behavior. More recent studies have adopted
deep learning models, including deep neural
networks (DNNs) and convolutional neural networks
(CNNs), to directly learn features from raw CIR data.
These models have shown high classification
accuracy and have been successfully integrated with
Kalman filters to adaptively adjust measurement
weights based on estimated LoS/NLoS probabilities
[14, [15]. However, most of these architectures treat
CIR samples as independent inputs and ignore the
inherent temporal dependency of CIR signals.
3. Proposed LSTM-Based UWB Indoor

Positioning Framework

3.1. System Overview
The proposed system consists of four
processing stages:

e UWSB ranging and CIR acquisition

e LSTM-based LoS/NLoS  probability

estimation
e Weighted adaptive Kalman filter (WAKF)
for distance correction

e Trilateration-based position estimation
UWB anchors perform two-way ranging (TWR) with
a mobile tag, simultaneously acquiring distance
measurements and channel impulse response (CIR)
samples. The CIR time series is fed into an LSTM
network to estimate the probability of NLoS
propagation. This probability is then used to
adaptively adjust the measurement noise covariance

main
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of a Kalman filter, thereby mitigating ranging errors.
The corrected distances from multiple anchors are
finally used to compute the tag position via
trilateration.
3.2. UWB Channel Impulse Response Model
The received UWB signal can be expressed as
r(t) = s(t) = h(t) + n(t)
where s(t) is the transmitted UWB pulse, h(t) is the
channel impulse response, * denotes convolution, and
n(t) represents additive noise.
The discrete-time CIR is obtained by sampling the
received signal and can be represented as
c=[cy, ¢y e, Cp]
where T denotes the number of CIR samples. In
NLoS conditions, the first path component is
attenuated or delayed, while multipath components
dominate the CIR sequence. These temporal
variations motivate the use of recurrent neural
networks for CIR modeling.
3.3. LSTM-Based LoS/NLoS Classification
3.3.1.LSTM Architecture
Long Short-Term Memory (LSTM) networks are
designed to model sequential data by maintaining
internal memory states. For a CIR sequence c, the
LSTM processes one CIR sample per time step.
At time step t, the LSTM cell updates its states as
follows:
f, =o(Wslh_y,c] +by)
ir =oWlhq,c] +by)
C: =tanh(W.[h,_;,c.] +b,)
C:c =f,OC_;+i; OC
0 = O-(wo [ht—lrct] + bo)
h; = o; © tanh(C;)
where f,, i;, 0, are the forget, input, and output gates,
respectively, C; is the cell state, and h; is the hidden
state.
3.3.2.Probability Estimation
After processing the full CIR sequence, the final
hidden state h; is passed through a softmax layer to
estimate propagation condition probabilities:
p = softmax(Wsh; + by)
Where,
P = [Pros: PNLosl  Pros + Prios =1
The value pnios IS used as a reliability indicator for
the corresponding UWB distance measurement.
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3.4. Weighted Adaptive Kalman Filter for
Distance Correction
3.4.1.State Space Model
The distance between the UWB tag and an anchor is
modeled using a constant-velocity state vector:
dy
e = dk]
The state transition model is given by

Xk = Axk_l + W with A= I:é Alt]

where w;, ~ V' (0, Q) represents process noise.
The measurement model is

Zk = HXk + vy with H = [1 O]
where z;, is the measured UWB distance and v, ~
N(0, Ry).

3.4.2.LSTM-Driven Noise Adaptation
Unlike conventional Kalman filters with fixed noise
covariance, the proposed method adapts the
measurement noise based on the LSTM output:

Ry = Ry - (1 + apnios)

where R, is the baseline measurement noise variance
and « is a tuning parameter.
A higher pynios increases Ry, reducing the Kalman
gain and preventing unreliable measurements from
dominating the state update.

3.4.3.Kalman Filter Update Equations
The prediction step is given by
R, = AR,_, P, = AP,_;AT +Q
The update step is
Kk = Pk_HT(HPk_HT + Rk)_l )’Zk = )/Z,: + Kk(Zk -
HR;) P, = (1 - K H)P;
The corrected distance estimate is extracted as d.

3.5. Trilateration-Based Position Estimation
Given corrected distances d; from at least three
anchors located at (x;,y;), the 2D position (x,y) is
obtained by solving
(x—x)?+ @y —y)?=d}
Subtracting the first equation from the others yields a
linear system:
Al =b
y

which is solved using least squares:

X

[y] — (ATA)"1Ab
This provides the final position estimate of the UWB
tag.
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3.6. Computational Complexity and Real-
Time Feasibility

The LSTM inference is performed only once per
ranging update and requires O(T - H) operations,
where T is the CIR length and H is the number of
hidden units. The Kalman filter and trilateration
computations are lightweight and suitable for real-
time execution on embedded or edge computing
platforms.

4. Experimental Setup and Results

4.1. Experimental Dataset and Preprocessing

To ensure reproducibility and fair comparison,
experiments were conducted using a publicly
available UWB Channel Impulse Response (CIR)
dataset collected in realistic indoor environments.
The dataset contains UWB ranging measurements,
corresponding CIR amplitude samples, and ground-
truth LoS/NLoS labels recorded at multiple locations
and distances. Each CIR sample consists of 1016
time-domain amplitude values acquired during a
single UWB two-way ranging (TWR) operation. The
dataset includes both LoS and NLoS scenarios caused
by obstructions such as walls, human body
shadowing, and indoor furniture. The data
distribution is approximately balanced between LoS
and NLoS conditions to avoid classification bias
(Figure 1).
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Figure 1 Representative UWB Channel Impulse
Response (CIR) Amplitude Sequences Under
Line-of-Sight (LoS) and Non-Line-of-Sight
(NLoS) Conditions. NLoS CIR Exhibits Delayed
First-Path Arrival and Increased Multipath
Dispersion
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Prior to training, the CIR sequences were normalized
to reduce amplitude variations caused by hardware-
dependent effects. The dataset was then randomly
split into training (80%), validation (10%), and test
(10%) subsets, ensuring that samples from different
environments were represented across all splits.

4.2. LSTM Model Training Configuration

The LSTM-based propagation condition classifier
was trained using the normalized CIR sequences as
input and LoS/NLoS labels as targets. The input to
the network was reshaped into a time-series format of
length 1016 with a single feature per time step.
The LSTM network consisted of one hidden LSTM
layer followed by a fully connected softmax output
layer. The model was trained using the Adam
optimizer with categorical cross-entropy loss. Early
stopping was applied based on validation loss to
prevent overfitting (Figure 2).

LSTM Training Accuracy

1.00 1 — Training Accuracy
—— Validation Accuracy

Accuracy

|

0651 |

tl) 1|0 2|0 3|0 4ID 5|0
Epochs
Figure 2 Training and Validation Accuracy of
the LSTM-Based Propagation Condition
Classifier, Demonstrating Stable Convergence
and High Classification Performance

After training, the LSTM model achieved stable
convergence, demonstrating high classification
performance on the test dataset. The trained model
was subsequently used during positioning
experiments to infer the NLoS probability for each
incoming CIR measurement in real time.
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4.3. Positioning Scenario and Anchor
Configuration

A two-dimensional indoor positioning scenario was
considered, where a mobile UWB tag communicates
with multiple fixed anchors deployed at known
locations. At least four anchors were assumed to
ensure geometric robustness and redundancy.

For each ranging update, the tag performs UWB
TWR with all anchors, producing raw distance
measurements and corresponding CIR data. The
LSTM classifier processes the CIR data
independently for each anchor-tag link to estimate
the NLoS probability. These probabilities are then
fed into the weighted adaptive Kalman filter (WAKF)
to correct the distance estimates before trilateration
(Figure 3).

0

0.6

LSTM Training Loss

—— Training Loss
—— Validation Loss

0.2 1

0.0

Epochs

Figure 3 Training and Validation Loss of the
LSTM Model, Indicating Effective Learning and
Good Generalization Without Overfitting

4.4. Baseline Methods for Comparison
To evaluate the effectiveness of the proposed
approach, the following methods were compared:

e Trilateration Only:
Position estimation using raw UWB distance
measurements without any filtering or
learning-based correction.
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e Standard Kalman Filter (KF):
Distance measurements are smoothed using a
conventional Kalman filter with fixed process
and measurement noise covariance matrices,
followed by trilateration.

e Proposed LSTM + WAKEF:
The proposed method combining LSTM-
based NLoS probability estimation with a
weighted adaptive Kalman filter and
trilateration.

All methods use identical anchor configurations and
distance measurements to ensure fair comparison.

4.5. Evaluation Metrics

Positioning performance was evaluated using
absolute position error relative to ground truth. For
each estimated position p = (X, ) and ground truth
position p = (x,y), the positioning error is defined
as

e=\V@-02+ Q- y)?
To align with practical indoor localization
requirements, accuracy was reported as the
percentage of position estimates falling within
predefined error tolerances:

e +25cm

e *50cm

e +100cm
These thresholds reflect typical performance
benchmarks used in high-precision indoor

positioning systems.
4.6. Results and Performance Analysis

4.6.1.LSTM Classification Performance
The trained LSTM model achieved high
classification accuracy on the test dataset,
demonstrating its effectiveness in distinguishing LoS
and NLoS propagation conditions based on CIR time-
series data. The temporal modeling capability of the
LSTM enabled robust identification of multipath-
induced distortions that are difficult to capture using
static feature-based models.

4.6.2.Positioning Accuracy Comparison
Table 1 shows the Positioning Accuracy Comparison
The results show that the proposed LSTM-based
approach consistently outperforms both baseline
methods, particularly under strict error tolerances. At
+25 cm and £50 cm thresholds, the proposed method
achieves substantial accuracy gains, highlighting its
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effectiveness in mitigating NLoS-induced ranging
errors. Under £100 cm tolerance, all methods exhibit
high accuracy, indicating that most large errors are
already bounded within this range. However, the
proposed method maintains near-perfect
performance, demonstrating improved robustness
even in challenging NLoS scenarios.

Table 1 Positioning Accuracy Comparison

Error Trilateration | Standard | Proposed
Tolerance Only KF LSTM +
WAKF
+25cm Low Moderate | Highest
50 cm Moderate | Moderate | Improved
+100 cm High High Near-
Perfect

4.7. Experimental Setup and Results
4.7.1.LSTM Classification Performance
Table 2 shows the LoS / NLoS Classification
Performance of LSTM Model.

Table 2 LoS / NLoS Classification Performance
of LSTM Model**

Metric Value
Accuracy 98.6 %
Precision (NLoS) 98.1 %
Recall (NLoS) 99.0 %
F1-Score (NLo0S) 98.5 %
Validation Loss 0.041

The LSTM classifier achieves high accuracy and
balanced precision—recall, confirming its ability to
reliably model temporal CIR characteristics under
both LoS and NLoS conditions.

4.7.2.Positioning Accuracy Results
Table 3 shows the Positioning Accuracy Under
Different Error Tolerances.

The proposed method improves accuracy by:
e +17.1% at+25cm
e +16.2% at+50 cm
e +9.3% at
over trilateration (Table 4).

+100 cm
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Table 3 Positioning Accuracy Under Different
Error Tolerances**
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Table 5 Performance Under Different

Propagation Conditions

Error Standar | Propose
Trilateratio d dLSTM

Toleranc

o n Only Kalman +

Filter WAKF
+25cm 35.8 % 412% | 52.9%
+50 cm 58.4 % 63.7% | 74.6 %
+100 cm 89.6 % 92.1% | 98.9%

Table 4 Average Positioning Error (RMSE)**

Method RMSE (cm)
Trilateration Only 78.4
Standar_d Kalman 629

Filter
Proposed LSTM +
WAKE 41.7

The proposed LSTM-based approach reduces
RMSE by 46.8% compared to trilateration and
33.7% compared to standard Kalman filtering
(Figure 4).

Estimated Trajectories
— Ground Truth s ®
0d °* Trilateration R
+ Kalman Filter % '
o LSTM + WAKF S0 AN S

Y (m)

0 2 2 6 810
X (m)

Figure 4 Comparison of Estimated Trajectories
Using (a) Trilateration Only, (b) Standard
Kalman Filter, and (c) Proposed LSTM +

Weighted Adaptive Kalman Filter (WAKF). The
Proposed Approach Closely Follows the Ground-
Truth Path
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i ; LSTM +
Scenario Trilateration KF (cm) | WAKF
(cm) (cm)
LoS 315 28.7 26.1
NLoS
(Human 92.4 71.3 46.8
body)
NLoS
(Obstructed) 1186 89.2 57.4

Largest gains occur in NLoS scenarios, validating
the effectiveness of LSTM-driven adaptive filtering
(Figure 5).

CDF of Positioning Error

104

0.8 1

0.6

CDF

0.4

0.2 4
—— Trilateration
~—— Kalman Filter
—— LSTM + WAKF

0.0

0.'0 0.'5 1?0 1.l5 2‘.0
Position Error (m)

Figure 5 Cumulative Distribution Function
(CDF) of Positioning Error for Trilateration,
Kalman Filter, and the Proposed LSTM +
WAKF Method. The Proposed Approach
Achieves Consistently Lower Positioning Error

Conclusion

This paper presented an LSTM-assisted UWB indoor
positioning framework designed to improve
localization accuracy for personal devices operating
in dynamic indoor environments [16]-[18]. By
leveraging the temporal characteristics of UWB
channel impulse response (CIR) signals, the proposed
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LSTM model effectively estimates the probability of
non-line-of-sight (NLoS) propagation conditions,
which are a major source of ranging errors in
practical UWB systems. These probabilistic
estimates were integrated into a weighted adaptive
Kalman filter to dynamically adjust measurement
trust and mitigate biased distance measurements prior
to trilateration-based position estimation.
Experimental evaluation using a publicly available
UWB CIR dataset demonstrated that the proposed
approach significantly outperforms conventional
trilateration and standard Kalman filter—based
methods [19], [20]. In particular, the proposed LSTM
+ WAKF framework achieved substantial accuracy
improvements under strict error tolerances of £25 cm
and x50 cm, while maintaining near-perfect
performance under a +100 cm tolerance. The results
confirm that explicitly modeling the temporal
structure of CIR data and coupling it with adaptive
filtering is highly effective for mitigating NLo0S-
induced ranging errors.
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