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Abstract 

Accurate indoor positioning using ultra-wideband (UWB) technology is essential for location-based services 

in personal devices, yet its performance degrades significantly under non-line-of-sight (NLoS) conditions 

commonly encountered in indoor environments. Factors such as human body shadowing, device orientation, 

and surrounding obstacles introduce biased ranging measurements, leading to poor localization accuracy. To 

address this challenge, this paper proposes an LSTM-based UWB indoor positioning framework that exploits 

the temporal characteristics of channel impulse response (CIR) signals. An LSTM network is employed to 

estimate the probability of NLoS propagation from raw CIR sequences. This probability is then integrated into 

a weighted adaptive Kalman filter to dynamically correct unreliable distance measurements. The corrected 

distances are subsequently used in a trilateration-based positioning algorithm to estimate the device location. 

Experimental evaluation using a publicly available UWB CIR dataset demonstrates that the proposed 

approach consistently outperforms conventional trilateration and standard Kalman filter methods. 

Specifically, the proposed framework improves positioning accuracy by approximately 17% at a ±25 cm error 

tolerance and 16% at a ±50 cm tolerance, while achieving nearly 99% accuracy within a ±100 cm error 

bound. These results validate the effectiveness of combining temporal deep learning with adaptive filtering for 

robust indoor UWB localization.  

Keywords: Ultra-wideband (UWB), Indoor positioning, Channel impulse response (CIR), Long short-term 

memory (LSTM), Non-line-of-sight (NLoS) mitigation, Adaptive Kalman filter, Trilateration, Ranging error 

correction. 

 

1. Introduction 

enabler for a wide range of emerging applications, 

including smart buildings, asset tracking, indoor 

navigation, robotics, and context-aware services for 

personal devices. Unlike outdoor environments 

where Global Navigation Satellite Systems (GNSS) 

provide reliable localization, indoor environments 

present significant challenges due to signal 

attenuation, multipath propagation, and non-line-of-

sight (NLoS) conditions [1], [2]. As a result, 

achieving centimeter-level positioning accuracy 

indoors remains an open research problem. Among 

existing wireless technologies, ultra-wideband 

(UWB) has gained considerable attention for indoor 

localization owing to its large bandwidth, fine 

temporal resolution, and robustness against multipath 

interference. UWB-based positioning primarily relies 

on precise time-of-flight (ToF) measurements 

obtained through two-way ranging (TWR) or time-

difference-of-arrival (TDoA) techniques. Compared 

to RSSI-based solutions such as WiFi and Bluetooth 

Low Energy (BLE), UWB can achieve sub-meter 

accuracy and has recently been integrated into 

consumer-grade devices such as smartphones and 

wearables. This has accelerated research interest in 

UWB-based indoor positioning for personal devices. 

Despite its advantages, UWB positioning accuracy 

degrades significantly in practical indoor 

environments, particularly when devices are carried 

by users. Human body shadowing, device orientation 

changes, pockets or bags, and surrounding obstacles 

introduce NLoS propagation and multipath effects 

that cause biased ranging measurements. These 

effects result in systematic distance overestimation, 

which propagates into large positioning errors when 
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conventional trilateration algorithms are applied. 

Traditional mitigation approaches based on static 

error models or fixed Kalman filter parameters fail to 

adapt effectively to such dynamically changing 

conditions. In contrast, Long Short-Term Memory 

(LSTM) networks are specifically designed to model 

time-series data and capture long-range temporal 

dependencies [3]-[5]. Since UWB CIR signals are 

inherently sequential in nature, LSTM networks are 

well suited to learning the temporal structure of 

multipath components and delay variations caused by 

NLoS propagation. By exploiting these temporal 

characteristics, LSTM-based models can provide 

more robust and reliable estimation of propagation 

conditions compared to static deep learning 

architectures. In this paper, we propose an LSTM-

assisted UWB indoor positioning framework for 

personal devices operating in dynamic indoor 

environments. The proposed system uses an LSTM 

network to analyze raw UWB CIR sequences and 

estimate the probability of NLoS conditions in real 

time. These probabilities are then incorporated into a 

weighted adaptive Kalman filter, which dynamically 

adjusts the measurement noise covariance to 

compensate for unreliable ranging measurements. 

The corrected distance estimates are finally used in a 

trilateration-based positioning algorithm to compute 

the device’s location. 

2. Related Work 

Indoor positioning has been an active research area 

for more than two decades, driven by the increasing 

demand for accurate localization in environments 

where satellite-based systems such as GNSS are 

ineffective. Existing indoor localization approaches 

can broadly be categorized into wireless signal–based 

methods, sensor-based methods, and hybrid 

techniques. Among these, UWB-based localization 

has emerged as one of the most promising solutions 

due to its high temporal resolution and robustness 

against multipath effects. 

2.1. UWB-Based Indoor Positioning 

Ultra-wideband positioning systems primarily 

estimate distances using time-of-flight (ToF) 

measurements obtained through two-way ranging 

(TWR) or one-way ranging (OWR) techniques. 

Based on these distance estimates, positioning is 

commonly performed using trilateration, 

multilateration, or angle-of-arrival (AoA) algorithms. 

Compared to RSSI-based approaches such as WiFi 

and BLE, UWB achieves significantly higher 

accuracy because its large bandwidth enables precise 

detection of the first path component [6]-[8]. 

However, even UWB systems are not immune to 

ranging errors. In indoor environments, multipath 

propagation and NLoS conditions introduce positive 

biases in ToF measurements, leading to distance 

overestimation. These errors become more severe in 

personal device scenarios, where human body 

shadowing, device orientation, and motion 

dynamically alter the propagation channel. As a 

result, conventional trilateration-based positioning 

suffers from degraded accuracy under realistic indoor 

conditions. 

2.2. Ranging Error Mitigation and Kalman 

Filtering 

To mitigate UWB ranging errors, several filtering and 

estimation techniques have been proposed. Kalman 

filters (KFs) and their variants, such as extended 

Kalman filters (EKFs) and particle filters, have been 

widely adopted to smooth noisy distance 

measurements and track target motion. These 

approaches model the system dynamics and 

measurement uncertainty probabilistically, enabling 

recursive estimation of the target position [9]. 

Despite their effectiveness, traditional Kalman filter–

based methods rely on fixed process and 

measurement noise covariance matrices. Such static 

noise models fail to reflect rapidly changing channel 

conditions in indoor environments, particularly when 

transitions between line-of-sight (LoS) and NLoS 

occur. Consequently, filters may either over-trust 

unreliable measurements or excessively smooth the 

state estimate, resulting in suboptimal positioning 

performance [10]. To address this limitation, 

adaptive Kalman filtering techniques have been 

introduced, where noise covariance parameters are 

adjusted based on heuristic rules or statistical 

properties of the measurements. While these methods 

improve robustness to some extent, they still lack the 

ability to accurately infer the underlying propagation 

conditions causing the ranging errors. 

2.3. Machine Learning and Deep Learning 

for UWB Localization 

In recent years, machine learning and deep learning 
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techniques have been increasingly applied to UWB 

localization problems, particularly for NLoS 

identification and ranging error compensation. 

Channel impulse response (CIR) data has been 

extensively used as an input feature due to its strong 

correlation with propagation conditions [11]-[13]. 

Statistical features such as mean excess delay, 

kurtosis, skewness, and signal energy have been 

extracted from CIR to train classifiers that distinguish 

between LoS and NLoS conditions. Early learning-

based approaches employed support vector machines 

(SVMs), decision trees, and regression models to 

estimate ranging errors or classify propagation 

environments. While these methods demonstrated 

improvements over purely model-based approaches, 

their performance was limited by handcrafted feature 

selection and insufficient modeling of complex 

channel behavior. More recent studies have adopted 

deep learning models, including deep neural 

networks (DNNs) and convolutional neural networks 

(CNNs), to directly learn features from raw CIR data. 

These models have shown high classification 

accuracy and have been successfully integrated with 

Kalman filters to adaptively adjust measurement 

weights based on estimated LoS/NLoS probabilities 

[14, [15]. However, most of these architectures treat 

CIR samples as independent inputs and ignore the 

inherent temporal dependency of CIR signals. 

3. Proposed LSTM-Based UWB Indoor 

Positioning Framework 

3.1. System Overview 

The proposed system consists of four main 

processing stages: 

 UWB ranging and CIR acquisition 

 LSTM-based LoS/NLoS probability 

estimation 

 Weighted adaptive Kalman filter (WAKF) 

for distance correction 

 Trilateration-based position estimation 
UWB anchors perform two-way ranging (TWR) with 

a mobile tag, simultaneously acquiring distance 

measurements and channel impulse response (CIR) 

samples. The CIR time series is fed into an LSTM 

network to estimate the probability of NLoS 

propagation. This probability is then used to 

adaptively adjust the measurement noise covariance 

of a Kalman filter, thereby mitigating ranging errors. 

The corrected distances from multiple anchors are 

finally used to compute the tag position via 

trilateration. 

3.2. UWB Channel Impulse Response Model 

The received UWB signal can be expressed as 

𝑟(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡) 
where 𝑠(𝑡) is the transmitted UWB pulse, ℎ(𝑡) is the 

channel impulse response, ∗ denotes convolution, and 

𝑛(𝑡) represents additive noise. 

The discrete-time CIR is obtained by sampling the 

received signal and can be represented as 

𝐜 = [𝑐1, 𝑐2, … , 𝑐𝑇] 
where 𝑇 denotes the number of CIR samples. In 

NLoS conditions, the first path component is 

attenuated or delayed, while multipath components 

dominate the CIR sequence. These temporal 

variations motivate the use of recurrent neural 

networks for CIR modeling. 

3.3. LSTM-Based LoS/NLoS Classification 

3.3.1. LSTM Architecture 

Long Short-Term Memory (LSTM) networks are 

designed to model sequential data by maintaining 

internal memory states. For a CIR sequence 𝐜, the 

LSTM processes one CIR sample per time step. 

At time step 𝑡, the LSTM cell updates its states as 

follows: 

𝐟𝑡 = 𝜎(𝐖𝑓[𝐡𝑡−1, 𝑐𝑡] + 𝐛𝑓)

𝐢𝑡 = 𝜎(𝐖𝑖[𝐡𝑡−1, 𝑐𝑡] + 𝐛𝑖)

𝐂̃𝑡 = tanh(𝐖𝑐[𝐡𝑡−1, 𝑐𝑡] + 𝐛𝑐)

𝐂𝑡 = 𝐟𝑡 ⊙𝐂𝑡−1 + 𝐢𝑡 ⊙ 𝐂̃𝑡
𝐨𝑡 = 𝜎(𝐖𝑜[𝐡𝑡−1, 𝑐𝑡] + 𝐛𝑜)

𝐡𝑡 = 𝐨𝑡 ⊙ tanh(𝐂𝑡)

 

where 𝐟𝑡, 𝐢𝑡, 𝐨𝑡 are the forget, input, and output gates, 

respectively, 𝐂𝑡 is the cell state, and 𝐡𝑡 is the hidden 

state. 

3.3.2. Probability Estimation 

After processing the full CIR sequence, the final 

hidden state 𝐡𝑇 is passed through a softmax layer to 

estimate propagation condition probabilities: 

𝐩 = softmax(𝐖𝑠𝐡𝑇 + 𝐛𝑠) 
Where, 

𝐩 = [𝑝LoS, 𝑝NLoS], 𝑝LoS + 𝑝NLoS = 1 

The value 𝑝NLoS is used as a reliability indicator for 

the corresponding UWB distance measurement. 

https://irjaeh.com/
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3.4. Weighted Adaptive Kalman Filter for 

Distance Correction 

3.4.1. State Space Model 

The distance between the UWB tag and an anchor is 

modeled using a constant-velocity state vector: 

𝐱𝑘 = [
𝑑𝑘
𝑑̇𝑘
] 

The state transition model is given by 

𝐱𝑘 = 𝐀𝐱𝑘−1 +𝐰𝑘 with 𝐀 = [
1 𝛥𝑡
0 1

] 

where 𝐰𝑘 ∼ 𝒩(0,𝐐) represents process noise. 

The measurement model is 

𝑧𝑘 = 𝐇𝐱𝑘 + 𝑣𝑘 with 𝐇 = [1  0] 
where 𝑧𝑘 is the measured UWB distance and 𝑣𝑘 ∼
𝒩(0, 𝑅𝑘). 

3.4.2. LSTM-Driven Noise Adaptation 

Unlike conventional Kalman filters with fixed noise 

covariance, the proposed method adapts the 

measurement noise based on the LSTM output: 

𝑅𝑘 = 𝑅0 ⋅ (1 + 𝛼 𝑝NLoS) 
where 𝑅0 is the baseline measurement noise variance 

and 𝛼 is a tuning parameter. 

A higher 𝑝NLoS increases 𝑅𝑘, reducing the Kalman 

gain and preventing unreliable measurements from 

dominating the state update. 

3.4.3. Kalman Filter Update Equations 

The prediction step is given by 

𝐱̂𝑘
− = 𝐀𝐱̂𝑘−1 𝐏𝑘

− = 𝐀𝐏𝑘−1𝐀
𝑇 + 𝐐 

The update step is 

𝐊𝑘 = 𝐏𝑘
−𝐇𝑇(𝐇𝐏𝑘

−𝐇𝑇 + 𝑅𝑘)
−1 𝐱̂𝑘 = 𝐱̂𝑘

− + 𝐊𝑘(𝑧𝑘 −
𝐇𝐱̂𝑘

−) 𝐏𝑘 = (𝐈 − 𝐊𝑘𝐇)𝐏𝑘
− 

The corrected distance estimate is extracted as 𝑑̂𝑘. 

3.5. Trilateration-Based Position Estimation 

Given corrected distances 𝑑̂𝑖 from at least three 

anchors located at (𝑥𝑖, 𝑦𝑖), the 2D position (𝑥, 𝑦) is 

obtained by solving 

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 = 𝑑̂𝑖
2 

Subtracting the first equation from the others yields a 

linear system: 

𝐀 [
𝑥
𝑦] = 𝐛 

which is solved using least squares: 

[
𝑥
𝑦] = (𝐀𝑇𝐀)−1𝐀𝑇𝐛 

This provides the final position estimate of the UWB 

tag. 

 

3.6. Computational Complexity and Real-

Time Feasibility 

The LSTM inference is performed only once per 

ranging update and requires 𝒪(𝑇 ⋅ 𝐻) operations, 

where 𝑇 is the CIR length and 𝐻 is the number of 

hidden units. The Kalman filter and trilateration 

computations are lightweight and suitable for real-

time execution on embedded or edge computing 

platforms. 

4. Experimental Setup and Results 

4.1. Experimental Dataset and Preprocessing 

To ensure reproducibility and fair comparison, 

experiments were conducted using a publicly 

available UWB Channel Impulse Response (CIR) 

dataset collected in realistic indoor environments. 

The dataset contains UWB ranging measurements, 

corresponding CIR amplitude samples, and ground-

truth LoS/NLoS labels recorded at multiple locations 

and distances. Each CIR sample consists of 1016 

time-domain amplitude values acquired during a 

single UWB two-way ranging (TWR) operation. The 

dataset includes both LoS and NLoS scenarios caused 

by obstructions such as walls, human body 

shadowing, and indoor furniture. The data 

distribution is approximately balanced between LoS 

and NLoS conditions to avoid classification bias 

(Figure 1). 

 

 
Figure 1 Representative UWB Channel Impulse 

Response (CIR) Amplitude Sequences Under 

Line-of-Sight (LoS) and Non-Line-of-Sight 

(NLoS) Conditions. NLoS CIR Exhibits Delayed 

First-Path Arrival and Increased Multipath 

Dispersion 
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Prior to training, the CIR sequences were normalized 

to reduce amplitude variations caused by hardware-

dependent effects. The dataset was then randomly 

split into training (80%), validation (10%), and test 

(10%) subsets, ensuring that samples from different 

environments were represented across all splits. 

4.2. LSTM Model Training Configuration 

The LSTM-based propagation condition classifier 

was trained using the normalized CIR sequences as 

input and LoS/NLoS labels as targets. The input to 

the network was reshaped into a time-series format of 

length 1016 with a single feature per time step. 

The LSTM network consisted of one hidden LSTM 

layer followed by a fully connected softmax output 

layer. The model was trained using the Adam 

optimizer with categorical cross-entropy loss. Early 

stopping was applied based on validation loss to 

prevent overfitting (Figure 2). 

 

 
Figure 2 Training and Validation Accuracy of 

the LSTM-Based Propagation Condition 

Classifier, Demonstrating Stable Convergence 

and High Classification Performance 
 

After training, the LSTM model achieved stable 

convergence, demonstrating high classification 

performance on the test dataset. The trained model 

was subsequently used during positioning 

experiments to infer the NLoS probability for each 

incoming CIR measurement in real time. 

4.3. Positioning Scenario and Anchor 

Configuration 

A two-dimensional indoor positioning scenario was 

considered, where a mobile UWB tag communicates 

with multiple fixed anchors deployed at known 

locations. At least four anchors were assumed to 

ensure geometric robustness and redundancy. 

For each ranging update, the tag performs UWB 

TWR with all anchors, producing raw distance 

measurements and corresponding CIR data. The 

LSTM classifier processes the CIR data 

independently for each anchor–tag link to estimate 

the NLoS probability. These probabilities are then 

fed into the weighted adaptive Kalman filter (WAKF) 

to correct the distance estimates before trilateration 

(Figure 3). 

 

 
Figure 3 Training and Validation Loss of the 

LSTM Model, Indicating Effective Learning and 

Good Generalization Without Overfitting 

 

4.4. Baseline Methods for Comparison 

To evaluate the effectiveness of the proposed 

approach, the following methods were compared: 

 Trilateration Only: 
Position estimation using raw UWB distance 

measurements without any filtering or 

learning-based correction. 

https://irjaeh.com/
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 Standard Kalman Filter (KF): 
Distance measurements are smoothed using a 

conventional Kalman filter with fixed process 

and measurement noise covariance matrices, 

followed by trilateration. 

 Proposed LSTM + WAKF: 
The proposed method combining LSTM-

based NLoS probability estimation with a 

weighted adaptive Kalman filter and 

trilateration. 

All methods use identical anchor configurations and 

distance measurements to ensure fair comparison. 

4.5. Evaluation Metrics 

Positioning performance was evaluated using 

absolute position error relative to ground truth. For 

each estimated position 𝐩̂ = (𝑥̂, 𝑦̂) and ground truth 

position 𝐩 = (𝑥, 𝑦), the positioning error is defined 

as 

𝑒 = √(𝑥̂ − 𝑥)2 + (𝑦̂ − 𝑦)2 

To align with practical indoor localization 

requirements, accuracy was reported as the 

percentage of position estimates falling within 

predefined error tolerances: 

 ±25 cm 

 ±50 cm 

 ±100 cm 

These thresholds reflect typical performance 

benchmarks used in high-precision indoor 

positioning systems. 

4.6. Results and Performance Analysis 

4.6.1. LSTM Classification Performance 

The trained LSTM model achieved high 

classification accuracy on the test dataset, 

demonstrating its effectiveness in distinguishing LoS 

and NLoS propagation conditions based on CIR time-

series data. The temporal modeling capability of the 

LSTM enabled robust identification of multipath-

induced distortions that are difficult to capture using 

static feature-based models. 

4.6.2. Positioning Accuracy Comparison 

Table 1 shows the Positioning Accuracy Comparison 

The results show that the proposed LSTM-based 

approach consistently outperforms both baseline 

methods, particularly under strict error tolerances. At 

±25 cm and ±50 cm thresholds, the proposed method 

achieves substantial accuracy gains, highlighting its 

effectiveness in mitigating NLoS-induced ranging 

errors. Under ±100 cm tolerance, all methods exhibit 

high accuracy, indicating that most large errors are 

already bounded within this range. However, the 

proposed method maintains near-perfect 

performance, demonstrating improved robustness 

even in challenging NLoS scenarios. 
 

Table 1 Positioning Accuracy Comparison 

Error 

Tolerance 

Trilateration 

Only 

Standard 

KF 

Proposed 

LSTM + 

WAKF 

±25 cm Low Moderate Highest 

±50 cm Moderate Moderate Improved 

±100 cm High High Near-

Perfect 

 

4.7. Experimental Setup and Results  

4.7.1. LSTM Classification Performance 

Table 2 shows the LoS / NLoS Classification 

Performance of LSTM Model. 

 

Table 2 LoS / NLoS Classification Performance 

of LSTM Model** 

Metric Value 

Accuracy 98.6 % 

Precision (NLoS) 98.1 % 

Recall (NLoS) 99.0 % 

F1-Score (NLoS) 98.5 % 

Validation Loss 0.041 
 

The LSTM classifier achieves high accuracy and 

balanced precision–recall, confirming its ability to 

reliably model temporal CIR characteristics under 

both LoS and NLoS conditions. 

4.7.2. Positioning Accuracy Results 

Table 3 shows the Positioning Accuracy Under 

Different Error Tolerances. 

 

The proposed method improves accuracy by: 

 +17.1% at ±25 cm 

 +16.2% at ±50 cm 

 +9.3% at ±100 cm 

over trilateration (Table 4). 
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Table 3 Positioning Accuracy Under Different 

Error Tolerances** 

Error 

Toleranc

e 

Trilateratio

n Only 

Standar

d 

Kalman 

Filter 

Propose

d LSTM 

+ 

WAKF 

±25 cm 35.8 % 41.2 % 52.9 % 

±50 cm 58.4 % 63.7 % 74.6 % 

±100 cm 89.6 % 92.1 % 98.9 % 

 

Table 4 Average Positioning Error (RMSE)** 

Method RMSE (cm) 

Trilateration Only 78.4 

Standard Kalman 

Filter 
62.9 

Proposed LSTM + 

WAKF 
41.7 

 

The proposed LSTM-based approach reduces 

RMSE by 46.8% compared to trilateration and 

33.7% compared to standard Kalman filtering 

(Figure 4). 

 

 
Figure 4 Comparison of Estimated Trajectories 

Using (a) Trilateration Only, (b) Standard 

Kalman Filter, and (c) Proposed LSTM + 

Weighted Adaptive Kalman Filter (WAKF). The 

Proposed Approach Closely Follows the Ground-

Truth Path 
 

Table 5 Performance Under Different 

Propagation Conditions 

Scenario 
Trilateration 

(cm) 
KF (cm) 

LSTM + 

WAKF 

(cm) 

LoS 31.5 28.7 26.1 

NLoS 

(Human 

body) 

92.4 71.3 46.8 

NLoS 

(Obstructed) 
118.6 89.2 57.4 

 

Largest gains occur in NLoS scenarios, validating 

the effectiveness of LSTM-driven adaptive filtering 

(Figure 5). 

 

 
Figure 5 Cumulative Distribution Function 

(CDF) of Positioning Error for Trilateration, 

Kalman Filter, and the Proposed LSTM + 

WAKF Method. The Proposed Approach 

Achieves Consistently Lower Positioning Error 

 

Conclusion 

This paper presented an LSTM-assisted UWB indoor 

positioning framework designed to improve 

localization accuracy for personal devices operating 

in dynamic indoor environments [16]-[18]. By 

leveraging the temporal characteristics of UWB 

channel impulse response (CIR) signals, the proposed 
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LSTM model effectively estimates the probability of 

non-line-of-sight (NLoS) propagation conditions, 

which are a major source of ranging errors in 

practical UWB systems. These probabilistic 

estimates were integrated into a weighted adaptive 

Kalman filter to dynamically adjust measurement 

trust and mitigate biased distance measurements prior 

to trilateration-based position estimation. 

Experimental evaluation using a publicly available 

UWB CIR dataset demonstrated that the proposed 

approach significantly outperforms conventional 

trilateration and standard Kalman filter–based 

methods [19], [20]. In particular, the proposed LSTM 

+ WAKF framework achieved substantial accuracy 

improvements under strict error tolerances of ±25 cm 

and ±50 cm, while maintaining near-perfect 

performance under a ±100 cm tolerance. The results 

confirm that explicitly modeling the temporal 

structure of CIR data and coupling it with adaptive 

filtering is highly effective for mitigating NLoS-

induced ranging errors. 
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