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Abstract
The increasing sophistication of cyber attacks has made traditional intrusion detection systems (IDS)

inadequate, particularly in identifying zero-day attacks that do not follow known patterns. Signature-based
and purely supervised machine learning approaches perform well on previously seen attacks but fail to
generalize to novel and unseen threats. To address this limitation, this paper proposes a Dual-Phase Learning
Approach for effective intrusion detection with a specific focus on zero-day attack identification using the
NSL-KDD dataset. In the first phase, an unsupervised anomaly detection model is trained exclusively on
normal network traffic to learn baseline behavior. Techniques such as K-Means clustering or Autoencoders
are employed to detect statistical outliers based on distance metrics or reconstruction error, which are treated
as potential zero-day attacks. In the second phase, a supervised classification model, such as a Random Forest
classifier, is used to categorize non-anomalous traffic into known attack classes including DoS, Probe, R2L,
and U2R. Experimental results demonstrate that the proposed hybrid framework achieves high accuracy in
detecting known attacks while significantly improving the identification of anomalous and previously unseen
traffic patterns. By combining anomaly detection and misuse detection in a structured two-phase pipeline, the
proposed system enhances the robustness and reliability of intrusion detection systems in modern network
environments.

Keywords: Dual-Phase Learning, Zero-Day Detection, Intrusion Detection System, NSL-KDD, Anomaly
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1. Introduction

Network security has become a major concern due to
the rapid increase in cyber attacks targeting modern
information systems. Organizations face significant
risks from both known attack types and zero-day
attacks that exploit previously undiscovered
vulnerabilities [1], [2]. According to the IBM Cost of
a Data Breach Report 2023, the global average cost
of a data breach has reached 4.45 million USD,
highlighting the severe impact of security incidents.
Traditional intrusion detection systems primarily
depend on predefined signatures and rules, making
them ineffective against zero-day attacks. Machine
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learning-based intrusion detection systems have
shown improved performance by learning patterns
from historical data; however, supervised learning
approaches require labeled data and are limited in
detecting novel attack behaviors [3], [4]. To
overcome these challenges, this work proposes a
dual-phase intrusion detection framework that
combines unsupervised anomaly detection and
supervised classification. By leveraging both
approaches, the proposed system aims to improve
detection accuracy for known attacks while ensuring
effective identification of zero-day threats.
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1.1. Project Objectives and Scope
The objectives of this project are as follows:

e To develop a hybrid intrusion detection
system capable of detecting both known and
zero-day attacks.

e To employ unsupervised learning techniques
for modeling normal network behavior and
identifying anomalies.

e« To utilize supervised machine learning
models for accurate classification of known
attack types.

o To evaluate the effectiveness of the proposed
framework using the NSL-KDD benchmark
dataset.

The scope of this work is limited to offline analysis
using the NSL-KDD dataset and focuses on
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improving detection performance through a dual-
phase learning approach [5], [6].
2. Methodology

2.1. Data Preprocessing
The NSL-KDD dataset is a refined and widely used
benchmark dataset for intrusion detection research. It
contains 41 features describing network traffic
connections, including both  numerical and
categorical attributes. Categorical features such as
protocol type, service, and TCP flag are converted
into numerical form using one-hot encoding (Figure
1). Numerical features are normalized using min—
max scaling to ensure uniform feature ranges. Attack
labels are grouped into five major categories:
Normal, DoS, Probe, R2L, and U2R [7], [8].
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(NSL-KDD Test Set)
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Figure 1 Confusion Matrix of the Proposed Dual-Phase Intrusion Detection System Evaluated on the
NSL-KDD Test Dataset
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2.2. Dual-Phase Model Architecture
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Figure 2 shows the Receiver Operating Characteristic (ROC) Curves for Multi-Class Intrusion Attack

Detection System.

ROC Curves for Multi-Class Attack Detection
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Figure 2 Receiver Operating Characteristic (ROC) Curves for Multi-Class Intrusion Attack Detection
System

The proposed intrusion detection system consists of
two sequential detection phases.

Phase 1: Unsupervised Anomaly Detection

In the first phase, an unsupervised learning model
based on K-Means clustering is trained using only
normal network traffic data. The model learns the
baseline behavior of normal connections. During
detection, traffic instances that exhibit large distances
from cluster centroids are identified as anomalies and

Detection Performance by Attack Type

100

considered potential zero-day attacks.

Phase 2: Supervised Misuse Detection

In the second phase, a supervised Random Forest
classifier is trained using labeled data to classify
network traffic into known attack categories (Figure
3). This phase provides detailed classification and
improves explainability by identifying specific attack
types [9], [10].
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Figure 3 Comparative Analysis of Intrusion Detection Performance by Attack Type and Against
Existing Methods
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3. Results and Discussion

3.1. Results
The proposed dual-phase intrusion detection system
was evaluated using the NSL-KDD dataset. The
Random Forest classifier achieved an overall
classification accuracy of 99.54% for known attack
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categories (Table 1). The anomaly detection phase
successfully identified anomalous traffic patterns,
achieving approximately 89% detection accuracy for
zero-day-like samples [11]-[13].

Table 1 Performance Evaluation Metrics
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Figure 4 Silhouette Score Analysis and Cluster Visualization with Outlier Detection

3.2. Discussion
The results indicate that supervised learning models
perform exceptionally well in classifying known
attacks but are insufficient for detecting unseen
threats. The unsupervised anomaly detection phase
plays a critical role in identifying deviations from
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normal behavior, thereby enabling zero-day attack
detection (Figures 4 and 5). The dual-phase
framework effectively combines the strengths of both
approaches, enhancing the reliability and robustness
of intrusion detection systems [14]-[16].
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Figure 5 Autoencoder Training Convergence and Random Forest Feature Importance Analysis

Conclusion

This paper presented a dual-phase learning

framework for intrusion detection that integrates

unsupervised anomaly detection with supervised

classification to address the challenge of zero-day

attacks [17], [18]. Experimental evaluation on the

NSL-KDD dataset demonstrated high accuracy in

detecting known attacks while effectively identifying

anomalous traffic patterns. The proposed approach

provides a practical and reliable solution for modern

network security environments.
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