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Abstract

We examined the effectiveness of machine-learning-based electrical demand forecasting frameworks in
supporting short-term operational planning for power generation facilities. To this end, a forecasting workflow
was designed that integrates statistical learning methods with deep neural architectures to capture both
temporal demand dynamics and exogenous weather influences. Model performance was assessed under
controlled experimental conditions using multiple accuracy metrics, alongside sensitivity analyses to evaluate
the influence of engineered features on predictive stability. The system employed a coordinated multi-model
training approach, incorporating temporal decomposition, contextual feature construction, and climate-aware
inputs to improve robustness across varying load profiles. Component-level ablation experiments were
conducted to isolate the contribution of individual architectural and feature-engineering elements to overall
forecasting accuracy. Results indicate that precise short-term load estimation extends beyond historical
consumption modeling; it enables more efficient fuel scheduling, supports grid reliability, and enhances the
system’s capacity to respond to real-time demand fluctuations.
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1. Introduction

Despite rapid advances in digital technologies and the
global energy sector, short-term electricity demand
estimation in many thermal power plants continues to
rely on legacy practices. These often include manual
interpretation of historical load charts, operator
experience, or static statistical techniques that have
remained largely unchanged for decades. While such
approaches can offer baseline guidance, they lack the
responsiveness and adaptability required in modern
power systems [1], [2]. Recent developments in
intelligent sensing, real-time data acquisition, and
artificial intelligence now make it possible to
automate these forecasting tasks with substantially
higher precision and speed. Short-term load
forecasting represents a particularly demanding
application domain, as it requires not only rapid
computation but also a high degree of accuracy,
robustness, and operational reliability. Minor
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forecasting errors—such as misestimating peak
demand or failing to anticipate abrupt consumption
drops—can propagate into inefficient fuel dispatch,
excessive reserve activation, or even grid instability.
These risks are further amplified when forecasting
systems are poorly trained or biased, potentially
leading to persistent generation mismatches and an
elevated likelihood of service interruptions. This
study seeks to narrow the divide between advances in
artificial intelligence and the practical operational
challenges faced by thermal power plants [3], [4]. A
self-adaptive, real-time forecasting framework offers
the opportunity to enhance prediction quality while
supporting safer and more informed operational
decisions. Rather than treating forecasting as an
isolated analytical task, this research frames it as an
integral component of power plant management that
directly influences fuel efficiency, system stability,

494


https://irjaeh.com/

IRJAEH

and responsiveness to changing demand conditions.
Previous work in short-term load forecasting has
typically focused on individual aspects of the
problem, such as classical statistical modeling,
weather-driven demand variation, or standalone
machine-learning predictors. While these studies
have contributed valuable insights, most emphasize
improving numerical accuracy in isolation, without
explicitly accounting for broader operational
objectives. In practice, power system operators must
simultaneously  balance competing  priorities,
including reliability, efficiency, and stability under
diverse  operating  conditions.  Conventional
forecasting tools often optimize a single performance
metric, limiting their usefulness in real-world
decision-making environments. To address these
limitations, this study applies advanced time-series
modeling and deep learning techniques to examine
how multiple drivers—historical demand behavior,
meteorological factors, calendar effects, and plant-
specific operational characteristics—interact to shape
short-term electricity consumption. In parallel,
growing concerns regarding transparency and trust in
Al-based forecasting systems are explicitly
addressed. Many existing solutions function as
opaque “black boxes,” offering limited insight into
the reasoning behind their predictions. This lack of
interpretability can introduce operational risk,
particularly if subtle biases influence forecasts during
specific seasons or time intervals. As a result,
explainable artificial intelligence methods are treated
as a core design requirement rather than an optional
enhancement. Improving either predictive accuracy
or interpretability in isolation is insufficient to
resolve the complex nature of short-term load
forecasting [5], [6]. A highly accurate model may still
perform poorly under sudden weather-induced
disturbances, while another may successfully detect
structural changes yet fail to distinguish transient
anomalies from long-term behavioral shifts.
Meaningful operational value emerges only when
accuracy, robustness, and contextual awareness are
balanced effectively. Accordingly, this research
adopts a hybrid, multi-objective modeling strategy
that integrates classical machine-learning methods,
deep neural architectures, and carefully engineered
temporal features. The framework explicitly
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evaluates trade-offs between competing objectives—
for instance, identifying configurations that maintain
acceptable accuracy while minimizing sensitivity to
noise. Although such trade-offs are routinely
managed by experienced human operators,
reproducing them algorithmically remains a
significant  challenge.  Controlled  simulation
environments play a critical role in validating
forecasting systems, as deploying untested models
directly into live generation settings carries
unacceptable risk. This research therefore leverages
historical operational data, weather-driven simulation
inputs, and established benchmark datasets such as
PJM and GEFCom to recreate realistic demand
scenarios. These include prolonged peak periods,
abrupt load spikes, equipment outages, and
consumption shifts driven by industrial activity [7],
[8]. The use of synthetic and open datasets enables
systematic stress testing, allowing observation of
model behavior under uncertainty, missing data, and
extreme  operating conditions. Only after
demonstrating stability and consistency in simulation
is the framework considered suitable for limited pilot
deployment within operational plants. The selection
of deep learning architectures—including recurrent
neural networks and Transformer-based sequence
models—reflects the inherently nonlinear and
evolving nature of electricity demand. Traditional
time-series approaches, such as ARIMA, rely on
linear assumptions and fixed structures that struggle
to capture complex temporal dependencies. In
contrast, neural sequence models are capable of
learning long-range relationships and adapting to
changing consumption patterns across regions and
seasons. As demand behavior evolves, these models
tend to maintain performance more effectively than
static supervised techniques, which often degrade
over time. The application of Al within power
systems also raises important ethical and security
considerations. Load data can reveal sensitive
information related to industrial activity, operational
schedules, or regional consumption behavior.
Without appropriate safeguards, forecasting systems
may expose Vvulnerabilities or introduce unfair
outcomes for regions with limited historical data.
Consequently, this study emphasizes secure data
handling, fairness evaluation, transparency in model
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behavior, and responsible system governance.
Technical sophistication alone is insufficient if
deployed systems fail to account for these broader
implications. Scalability represents an additional
challenge, as forecasting requirements vary widely
between individual plants and large interconnected
grids. While some facilities generate relatively
modest data volumes, regional systems may produce
millions of observations daily [9], [10]. The proposed
framework is designed to scale efficiently across
different operational contexts, forecasting horizons,
and data resolutions. Scalability testing is therefore
incorporated as a core evaluation criterion to ensure
that predictive performance and computational
latency remain stable as data volume and complexity
increase. In summary, existing load forecasting
solutions commonly struggle to address accuracy,
reliability, and adaptability simultaneously. Many
approaches succeed in optimizing one or two of these
dimensions while leaving critical gaps. The Al-
driven, multi-model framework presented in this
study demonstrates strong potential to meet all three
objectives in an integrated manner. Future research
will focus on large-scale deployment, tighter
integration with plant automation systems, and the
development of best-practice guidelines to support
transparent and  operator-centered  adoption.
Continued investigation into  multi-objective
forecasting is essential, as real-world energy
management decisions inherently involve trade-offs
that intelligent systems must be designed to support
in a manner aligned with human operational
reasoning.
1.1. Methods of Load Forecasting
This section describes the methodological framework
adopted for short-term electricity load forecasting in
thermal power plants. The approach integrates
sequential deep learning, anomaly detection, and
simulation-based validation to ensure predictive
accuracy, robustness, and operational applicability
[11].
1.2. Problem Formulation

Short-term load forecasting is formulated as a
sequential learning problem in which the model
processes time-ordered input data and generates
continuous demand estimates. At each time step, the
system evaluates current and historical load
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information alongside exogenous variables to
determine whether demand behavior remains within
expected operational bounds or exhibits abnormal
patterns requiring attention. This formulation
accounts for the cumulative impact of forecast
decisions on fuel scheduling, unit commitment, and
grid stability, making temporal dependency modeling
essential [12].

1.3. System Inputs and State Definition
The forecasting state is defined by a collection of
real-time and derived variables representing grid
conditions. These include electricity demand
measurements, weather parameters, and time-based
indicators. In addition, historical lag values and
statistically derived features are incorporated to
capture evolving consumption behavior. Together,
these inputs provide a comprehensive description of
short-term system dynamics [13].

1.4. Forecast Outputs and Actions
At each prediction interval, the system produces three
outputs:

e a numerical estimate of future electricity

demand,

e a deviation or anomaly score indicating the

likelihood of abnormal behavior, and

e an operational alert when predicted demand

exceeds predefined safety thresholds.

e This structure enables early intervention and

supports proactive operational planning.

1.5. Learning Feedback and Optimization

Strategy

Model training is guided by a composite feedback
signal designed to balance multiple operational
objectives. The optimization process rewards
accurate forecasts while penalizing instability during
volatile conditions and excessive error during peak
demand periods. This multi-objective strategy
prevents the model from focusing solely on
numerical accuracy at the expense of reliability or
safety [14].

1.6. Algorithm Selection and Justification
Sequential neural network architectures are
employed to capture temporal dependencies in
electricity demand. Long Short-Term Memory
networks are selected for their ability to learn
nonlinear relationships and long-range temporal
patterns. Convolutional layers are incorporated to

496


https://irjaeh.com/

IRJAEH

extract localized trends from load and weather
sequences. Classical time-series models are not used
as primary predictors due to their limited ability to
handle abrupt demand changes, holiday effects, and
weather-driven variability [15].

1.7. Anomaly Detection Mechanism
An Autoencoder-based reconstruction model is
integrated to identify deviations from normal load
behavior. By learning typical consumption patterns,
the Autoencoder assigns higher reconstruction errors
to unusual events such as unexpected industrial
surges or off-hour demand spikes. This mechanism
enhances situational awareness without relying on
predefined rule-based thresholds.

1.8. Data  Preparation

Environment Design

Because operational power-plant data are often
restricted, the system is trained using publicly
available benchmark datasets and a synthetic load-
generation environment. The simulated environment
reproduces realistic consumption patterns, including
seasonal cycles, weekday—weekend variations,
industrial demand profiles, and weather sensitivity.
Randomly generated abnormal events are introduced
to improve model robustness while avoiding
exposure of sensitive operational information.

1.9. Feature Engineering Process
For each forecasting interval, a structured feature set
is constructed to represent short-term demand
behavior. The features include lagged load values,
seasonal indicators, interaction terms between
weather and demand, and statistical measures of
variability. All features are normalized to ensure
stable and efficient neural-network training.

1.10. Model Architecture and Training

Procedure

The forecasting network consists of multiple stacked
LSTM layers followed by fully connected output
layers. Training is conducted over extended
simulated operational periods that reflect diverse
seasonal and demand conditions. Model convergence
is evaluated using validation error trends and
prediction stability during high-load intervals.

1.11. Objective Function Design
The learning objective combines accuracy, stability,
and peak-period performance into a single weighted
function. This formulation penalizes large deviations

and  Synthetic
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during critical demand windows and discourages
excessive sensitivity to noise. The resulting
optimization process reflects real-world operational
trade-offs encountered by system operators.

1.12. Deployment and Simulation-Based

Testing

The trained model is deployed within a simulated
operational framework that incorporates realistic
constraints such as sensor noise, missing data,
weather-reporting  delays, and computational
limitations. Evaluation scenarios include normal load
cycles, seasonal transitions, equipment outages, and
extreme weather events to assess system reliability.

1.13. Performance Evaluation and

Baseline Comparison

Model performance is assessed using established
forecasting and  anomaly-detection  metrics.
Comparative analysis is performed against traditional
statistical forecasting approaches and classical
machine-learning models to quantify improvements
in accuracy, robustness, and peak-hour performance
(Table 1).

1.14. Ablation and Control Experiments
Ablation studies are conducted by systematically
removing key model components and feature groups
to evaluate their contribution to overall performance.
Control experiments using simpler predictive models
demonstrate reduced reliability under volatile
conditions, confirming the necessity of deep
sequential  architectures for short-term load
forecasting (Figure 1).

Table 1 Current Load & Demand (Recent Peak

Values)
Metric Latest Description
Value
Trend
Peak demand ~242,493 Highest peak load
met (recent) MW met on grid
recently in June
2025.
Daily energy ~5,000+ Daily energy
supplied MU per day | dispatched during
high load periods.
Seasonal peaks | ~236 GW in | Demand rose again
winter 2025 in cold months.
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Figure 1 System Architecture

2. Results and Discussion
2.1. Results

The experimental results demonstrate that the

proposed Al-enabled load forecasting system
significantly improved operational performance
within  the simulated thermal power plant

environment. As training progressed, the model
exhibited steady gains in both prediction accuracy
and anomaly-detection capability. After several
thousand training iterations, forecast outputs became
stable and consistent, indicating that the system had
successfully  learned  meaningful  temporal
dependencies, seasonal demand structures, and
weather—load relationships rather than relying on
random or noise-driven behavior. A comparison with
conventional statistical and rule-based forecasting
methods revealed a clear performance advantage for
the proposed approach. Forecasts generated by the
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Al-driven system showed substantially reduced
volatility and fewer artificial spikes, reflecting
improved stability in predicted load trajectories.
These results suggest that the model effectively
captured plant-specific  baseline  consumption
patterns and responded accurately to subtle variations
in temperature, humidity, industrial activity cycles,
and time-of-day effects. In contrast, classical
methods such as ARIMA-based models struggled to
adapt to these nuanced and interdependent demand
drivers. The robustness of the forecasting framework
was further confirmed under extreme disturbance
scenarios. Sudden industrial load surges, rapid
weather changes, and unexpected nighttime demand
reductions were introduced to test system resilience.
In these conditions, the model maintained high
forecasting accuracy and reliable anomaly
identification. Evaluation results indicated that
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improved sensitivity to abnormal events did not come
at the cost of increased false alarms. Instead, the
system achieved a balanced response, detecting
genuine load anomalies and peak events without
generating excessive warnings that could disrupt
operational planning. Scalability testing highlighted
the suitability of the proposed framework for large-
scale power systems. As the number of simulated
consumer clusters and generating units increased, the
forecasting model continued to perform consistently.
Error metrics such as Mean Absolute Percentage
Error and peak-hour deviation remained stable even
when thousands of synthetic load profiles were
analyzed concurrently. This behavior demonstrates
that the architecture can scale effectively to complex
utility environments involving high data volumes and
diverse consumption patterns. Further analysis
showed that the system simultaneously optimized
multiple operational objectives, including prediction
accuracy, robustness to variability, and error
reduction during peak demand periods. These
findings indicate that the model functions as a
context-aware forecasting tool rather than a simple
numerical predictor, making it well suited for real-
world deployment in thermal power plant control
settings. Finally, the ablation study confirmed the
importance of the selected architecture and feature-
engineering strategy. Removing key components
such as temperature—load interaction features, lagged
demand values, rolling statistics, or Autoencoder-
based anomaly signals led to notable declines in
forecasting performance. These outcomes validate
the overall design of the Al-driven forecasting
framework and confirm that its individual
components are essential for achieving reliable,
early, and context-sensitive load predictions.
2.2. Discussion

The experimental outcomes of this research
demonstrate that short-term electric load forecasting
(STLF) in thermal power plants has evolved from a
purely statistical task into a complex, multi-objective
optimization problem. The superior performance of
the proposed LSTM-CNN hybrid architecture over
traditional ARIMA and shallow machine learning
models confirms that electricity demand is governed
by deep, non-linear temporal dependencies that static
and linear models are inherently unable to capture.
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These results highlight the necessity of deep learning
approaches for accurately modeling dynamic load
behavior in modern power systems.
2.2.1.Significance of  Temporal
Contextual Feature Fusion
A critical interpretation of the ablation studies reveals
that the model’s predictive capability is primarily
driven by the interaction between weather variables
and historical load patterns. The substantial
degradation in forecasting accuracy observed after
removing temperature—load interaction features
indicates that the system is not merely memorizing
historical cycles. Instead, it actively learns the
underlying physical and behavioral relationships
between environmental conditions and consumer
energy usage. This finding emphasizes that effective
forecasting frameworks must be context-aware,
treating weather parameters not as auxiliary inputs
but as dominant drivers of load volatility.
2.2.2.Balancing Precision with
Stability
The integration of an autoencoder-based anomaly
detection module addresses a significant limitation in
conventional forecasting research, which often
prioritizes aggregate error metrics alone. By
emphasizing peak error reduction and assigning
anomaly scores to abrupt demand fluctuations, the
proposed system shifts its focus from minimizing
Mean Absolute Percentage Error (MAPE) to
ensuring operational grid safety. ROC-style
performance evaluations confirm that the model
effectively balances sensitivity and false-alarm rates,
a trade-off that is critical for maintaining operator
trust and decision reliability in high-stakes power
system control environments.
2.2.3.0perational
Reliability
Scalability testing demonstrates that the proposed
architecture can seamlessly transition from individual
thermal power plant units to large-scale regional
utility grids without compromising latency or
predictive accuracy. This robustness, combined with
successful training and validation under synthetic
operational health scenarios, confirms that deep
learning models can be safely developed for critical
infrastructure  applications.  Importantly, this
approach enables reliable system validation even

and

Grid

Scalability and
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when access to real-world operational data is

constrained by security and confidentiality
requirements.
Conclusion
This study demonstrates that an artificial-

intelligence-driven load forecasting framework can
meaningfully improve both operational planning and
efficiency in thermal power plant environments. By
integrating deep learning techniques, the proposed
system supports adaptive learning and stable short-
term demand prediction while simultaneously
strengthening grid  reliability  through early
identification of abnormal consumption behavior and
emerging demand changes. The results indicate that
accurate, timely interpretation of load, weather, and
temporal information plays a critical role in
enhancing operator confidence, improving fuel
scheduling decisions, and enabling proactive grid
management. Experimental evaluations, including
feature ablation and scalability assessments, confirm
that the forecasting framework remains reliable and
resilient across varying plant capacities, seasonal
conditions, and heterogeneous demand patterns.
Although the experimental analysis was conducted
using synthetic and publicly available datasets, the
findings highlight the strong potential of Al-based
load forecasting solutions to reshape short-term
energy planning and operational decision-making in
thermal power plants. These results suggest that such
systems can serve as a practical foundation for more
intelligent, adaptive, and data-driven power plant
management in real-world deployments.
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