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Abstract

Global food security means agriculture must grow and become more modern. Most other industries have
changed course to adapt with the era of new technological changes, especially Al, but farming has not. Our
effort to alter this is by presenting the system here: Integrating Generative Al in Precision Agriculture. The
system will use Al, Deep Learning, and Advanced Data Analytics to change the core of farming practices. For
yield prediction, the system uses Artificial Neural Networks, Generative Adversarial Networks synthesizes
missing satellite or drone data, and the YOLO System which detects pests and diseases. Furthermore,
Explainable Al (XAI) with SHAP and LIME provides transparency so farmers understand the predictions.
React Native is used for mobile access, the backend is Flask/FastAP1 and MongoDB is used for data security.
This research focuses on responsible and sustainable AgriTech and tech agriculture by offering accurate
forecasts and real-time insights with multilingual access. By proposing this system, the disconnect between Al
cutting-edge development and everyday farming concerns is narrowed. This application will definitely impact
in future.

Keywords: Precision Agriculture, Generative Al, ANN, GAN, YOLO, Explainable Al (XAl), Flask, Mongodb,
React Native, Smart Farming

uncertainty concerning the outputs of farming. Even
with modern remote-sensing technology, farmers in
less-developed regions face challenges such as absent
datasets, overly expensive satellite images, and
uneven drone coverage, with weather interfering to

1. Introduction

1.1. Limitations of Traditional Approaches
Farming has been a fundamental part of human
civilization for many centuries. Even with the old-

fashioned techniques in the farming industry, the last
few decades has seen the world throw a lot of
technology at the farming industry. A traditional
method of farming still depends heavily on the
farming experiences of the farmers, farm
observation, and seasonal knowledge. In the absence
of real-time information on the moisture content of
the soil, the amount of water available, the presence
of pests, crop waste and erratic yield production are
almost a certainty [1,2]. Weather conditions like rain,
temperature, and climate change add to the
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ground the drones. All of these issues defer the
construction of accurate forecasting models, as
traditional machine learning relies heavily on vast,
clean, labelled, and well-organized datasets, a feat
nearly impossible to accomplish in these rural
settings. Equally important is the opaque and
inscrutable nature of artificial intelligence applied in
agriculture. The farmers, the end-users in this case,
will naturally feel skepticism and distrust when given
Al-based forecasts that remain as “black-box”
outputs, leaving them with no rational explanation.
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Incomplete and underdeveloped data pipelines, poor
model interpretability, and weak real-time decision
support systems explain the shortcomings of
traditional and early Al-powered agriculture systems.
These factors highlight the need for a powerful,
explainable. Such a framework should use
Generative Al to build realistic synthetic datasets,
improve model accuracy, and scale smart farming to
all tiers of farming [3,4].

1.2. Rise of Generative Adversarial Networks
(GANSs)
The in 2014 lan Goodfellow and team introduced
Generative Adversarial Networks (GANSs) which at
the time turned the Al world upside down. GANs
present a great and simple idea of pitting two neural
networks against each other in a zero sum game
which in turn improves each other’s performance as
they go along. The generator’s job is to produce
synthetic data that is similar to real data and at the
same time the discriminator is charged with telling
the real from the fake. Through this adversary
training GANSs are able to put out very real looking
data across many different fields which include
images, text and audio. In agriculture we have seen
GAN:S to be a great break through in dealing with the
issue of unavailable data. Many farms don’t have
access to continuous high resolution drone or satellite
info because of weather which disrupts it and also the
cost which deters it. GANSs produce realistic synthetic
data which in turn fills in these gaps and so Al models
trained on low input data perform well. Also it is in
these variants that researchers have done well at
producing out of existing data which is missing
either in time or space in agri datasets in which we
see also improved predictability [5,6].
1.3. Applications of GANs
Generative Adversarial Networks (GANSs) are used
in many areas of agriculture which in turn greatly
improve the precision farming systems’ capabilities.
We see one of their main uses in the generation of
synthetic images. By producing realistic satellite and
drone images GANs put forth additional training
data for use in crop classification, yield estimation,
and pest detection models. Also this synthetic
augmentation improves model performance and
which in turn reduces dependence on expensive and
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at times incomplete real world data. Also we see
GANs used in pest and disease detection. In
agriculture it is common that we do not have
balanced sets of data for rare diseases or pest out
breaks which in turn causes biased models. GANs
are able to produce realistic sick and healthy crop
images, balance out the data sets and in the process
improve classification accuracy. CycleGANSs, for
example, transform low-resolution satellite images
into high-resolution ones, which allows for more
detailed monitoring of crop health. Conditional
generation of data using cGANSs is possible based on
parameters such as crop type, location, and even
climatic conditions. This leads to reductions in the
cost of remote sensing data acquisition. They are
also applied in remote simulation of crop modeling,
where artificial scenarios with different weather,
irrigation and soil conditions are simulated to test the
effectiveness of Al-based decision systems before
real world application. In addition to this, there are
increasing uses of Explainable Al (XAI) methods to
analyze and illustrate the extent to which the
synthetic data impacts the decision making
procedure to sustain the transparency of the models.
GAN:S in agriculture are therefore perhaps one step
above agriculture-specific domain models such as
Provenance or Sen2Agri, as they can provide the
scalable, affordable, and robust Al-Driven
Agricultural ecosystem, not merely the generation of
data. GANs, by supplementing missing data and
support simulation-based data analytics, will
therefore enable the development of fully integrated
precision agriculture systems that are technically
sound and tailored to farmer needs [7,8].
1.4. Challenges and Ethical Concerns

Though there is great potential to use GANS in
agriculture, there are still multiple technical and
ethical concerns to deal with. Training instability is
still the main issue because GANS require a precise
equilibrium to be held between the generator and
discriminator networks. If the networks are poorly
tuned, the generator may enter a state of collapse and
produce the same outputs repeatedly. Furthermore,
there is a subjective component to evaluating the
quality of synthetic data, and in agriculture there are
no widely accepted, standardized metrics to aid in the
evaluation. From a moral standpoint data authenticity
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and transparency are at the fore We see that which
synthetic data is not properly labeled or validated is
put forth as real world data which in turn leads to
wrong conclusions or over optimistic results. Also
GAN generated content may be used to fabricate
agricultural settings which in turn affects research
validity or even financial decisions in agribusiness.
Without Explainable Al (XAl)'s role in these systems
we may see growth of skepticism instead of trust.
Also we must see to it that deployment of these
models does what it must do which is to protect data
privacy and equity [9,10].
1.5. Contribution of the Paper

This survey paper reports on a growing body of

research in the field of Generative Al in Precision

Agriculture which we put our focus on the integration

of Generative Adversarial Networks (GANSs) for the

issue of data availability and model explainability.

We differ from past works which report in depth on

yield prediction or pest detection we present a large

scale approach which puts together ANN, GAN,

YOLO and Explainable Al (XAIl) to present an

integrated and intelligent precision agriculture

system. We report our main contribution to be the use
of GAN which we used to generate synthetic data out
of which we fill in for the missing or we improve

upon the poor quality of satellite and drone imagery
which is a common issue with traditional machine

learning models [11,12]. By using GANS in the data
pipeline we are able to improve model robustness and

generalization in very low data settings. Also in this
paper we see that which we put forward the case for
Explainable Al (which includes SHAP and LIME)’s

role in reportable transparency of results and in turn

in building up the trust of the farmers. Also we

present our work on the use of mobile and cloud

technologies (React Native and Flask/FastAPI)

which we did to make the system go out into the field,

to support multiple languages and to scale across

regions. We do a study of different Al models which

looks at their performance, computational cost, and

also which ones do best in a real world setting. Also

we note present what at present are void spots in

research related to the full scale implementation of
generative and predictive Al and we put forth a
modular design which we feel will fill in those gaps.
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1.6. Organization of the Paper
The rest of this paper is systematically organized to
guarantee logical progression and thorough
treatment of the topic. Section Il — Literature Survey:
This part of the paper analyzes research pertaining
to the applications of Al, Deep Learning and
Generative Al in the field of Agriculture.

e Comparative Study: In this section,
different Models ANN, GAN, YOLO, and
Axis are compared in performance. A
graphical analysis is done and compared
based on accuracy.

e Discussion and Research Gaps: This part
integrates findings from the literature and
outlines the research gaps that led to this
work. This includes addressing the real-time
mobile integration of explainability and the
handling of missing data and the
incorporation of several Al modules.

e Conclusion: A summary of findings,
technological implications, and observed
advantages is provided.

2. Literature Survey

Advances in the domain of Artificial Intelligence
(Al) and Machine Learning (ML) have real precision
agriculture which in return has introduced intelligent
data driven farming solutions (Table 1). From
numerous studies we have seen that the deep learning
models such as ANN, CNN and LSTM which are
daily drivers for vyield prediction of crop yield
performs higher when fed on what we call multi-
modal data integration which includes data from soil,
weather and satellites observatory in order to
forecast the structure with high confidence [13,14].
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Table 1 Literature Survey
Paper Title Dataset Focus Area Key Limitations
Used Findings
Enhancing ) Requires high
Agricultural Yield Remote Synthetic data GAN-based computational
Forecasting with | S€Nsing &crop | generation using augmentation resources and
Deep ylelq datasets DCGAN. fqr yield |mpr_ov_ed lacks mobile
Convolutional (India, FAO) prediction prediction deployment
GANS (Singh et accuracy by
al., 2024) 12-15%
In t';}'};iiifjest _IoT sensorand | Pest ar]d dise_ase Achieved 9.0% . Limited by
Management image da_tasets detection using pest detectl_on incomplete (_jatas_e_ts
System for from_ field deep learning accuracy using | and no explainability
Precision experiments _ and Io_T CNN models features
. integration
Agriculture
(Sharma & Gupta,
2024)
Appl_led Deep Crop yield Comparison of Hybrid models No approach to
Learnmg-_Based datasets DL models outperform handle missing data
Crop Yield (Wheat, Maize, | (ANN, CNN, single models | or satellite image loss
Prediction: A Rice — LSTM) for across diverse
Systematic regional) yield forecasting regions
Analysis (Kumar
etal., 2024)
iﬁglrzggtra?igtna Agricultural Integration of Improved Co_mplex
with Stacked ir?\gcgr Ug‘: GANs and XAl robustness under | architecture,
CNN Models and nagery for explainable incomplete data limited
environmental | a4 generation with explainable |  deployment
XAl (Lee & Park, datasets outputs
2025)
DeepBLea(rjnmg- Pest image Real-time pest YOLO Model limited to lab
Agricuﬁieral Pest dataset (cott_on, clgssification achieye_zd high datasets; |E_lck§ field
Monitoring and tomato, maize using CNN & precision on generalization
crops) YOLO models multi-class pest

Classification
(Vermaetal.,
2025)

identification
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loT-Based Pest

Detection and loT-enabled Edge-level pest Lightweight Low number of pest
Classification field image detection using model suitable classes and limited
Using Deep data YOLOvV5 on loT for mobile synthetic
Learning (Patel & devices deployment augmentation
Deshmukh, 2023)
preiggg o\glﬂgi N USDA and Neural network- DNN improved Incomplete temporal
Deen Neural 9 regional yield based regression yield accuracy and spatial data
Netw o?k s (Khaki datasets for yield over linear coverage
forecasting models
& Wang, 2019)
E).(I.Fggr']?]?blljeefl Public Application of Increased Still in prototype
A Iie?j 0 agricultural SHAP/LIME to model stage; not integrated
A g rFi)cuI ture ML datasets interpret Al transparency with mobile systems
(arXiv, 2022) predictions and user trust
Federated o L .
Explainable Al Distributed loT Federated and Preserved data High implementation
Framework for and remote explainable Al privacy and complexity
Smart Agriculture data from for collaborative local model
(Western Sydney farms farming learning
Univ., 2024)
Al-Enable C . . . . .
Magsgefne;?p Multispectral Al-driven pest Achieved faster Requires real-time
Eramework for crop imagery and dis_ease inference integrati_on and
Pest Detection (Fan dataset detection synthetic ilata
et al., IEEE, 2024) suppor
2.1. Research Gap ldentified
Table 2 Research Gap
Research Gap Description Impact
1. Lack of Existing studies address yield Leads to fragmented solutions and
Integrated Al prediction, pest detection, and prevents holistic precision
Framework data augmentation separately agriculture implementation.

system.

without unifying them into one

2. Incomplete or
Missing Datasets

Models rely on full satellite or
drone imagery; missing data

Poor prediction performance and
limited generalization across
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reduces accuracy. regions.
3. Limited Few works apply GANSs to Data scarcity issues persist;
Application of generate synthetic agricultural models remain under-
GANs in data for model training. trained and biased.
Agriculture
4. Lack of Al predictions are often “black Reduces user trust and hinders

Explainability)
for farmers.

box,” offering no interpretability

adoption of Al technologies in
farming.

5. Absence of

Most systems lack offline mobile

Farmers in rural areas cannot

Integration with
Government APIs

Mobile & apps and regional language access or benefit from Al-based
Multilingual support. insights.

Accessibility

6. Limited Systems do not connect with soil, | Missed opportunities for real-time

market, or weather data APIs.

decision support and sustainability
analytics.

Despite of great progress in the field of artificial
intelligence and machine learning in agriculture there
are still research issues which we haven’t solved in
development of an integrated, explainable and data
resilient precision farming system. Presently most
research is put forth in separate tasks like vyield
prediction, pest detection, or environmental monitoring
which in turn do not present a combined framework
which includes all of them. Also we see that traditional
models like ANN and CNN do very well when they
have large and complete data sets which are not a given
in agriculture due to lack of consistent satellite and
drone imagery which is either missing or of poor quality
(Table 2). This data issue in turn decreases model
accuracy and growth across many types of agricultural
settings. Although GANs put forth a chance for
synthetic data generation we are still in the early stages
of seeing that play out in the field of agriculture.
Another issue in the field is that of what we may term
system access and deployment. We see that many of the
advanced models are for very controlled settings and
thus fall short in terms of mobile and offline use for
farmers in remote areas. Also we note that integration
with government APIs (like Soil Health Card or eNAM)
and multilingual support is very low which in turn
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reduces the social and economic value of these tech
solutions.

3. Analysis of Attacks

As artificial intelligence and cloud based precision
agriculture technologies improve so do the issues of
cyber security and data integrity which in turn play at to
system performance but also to the manipulation of
decision making which in turn produces large scale
agricultural, environmental, and economic issues. In the
case of the put forth system which includes elements of
GAN, ANN, YOLO, and XAl in to a mobile and cloud
based infrastructure it is very import to look at which
attack vectors we are exposed to and what those mean.
Also of great issue is the Data Poisoning Attack in
which enemies put in false or damaged data into the
train sets. In a system that uses GAN generated
synthetic data this can result in poor yield reports or
false pest identifications. Adversarial attacks focus on
changing the data deeply and induce the Al models, like
YOLO and ANN, to miss classify the outputs. For
example, the inputs that are altered crop images, tiny
adversarial examples. These adversarial examples, may
go undetected, however they can be very destructive to
the usable reliability of the models. Accessing the
models through model inversion also removes the
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safeguards around sensitive information, like the soil
properties and geolocation of the farm. This is highly
sensitive information, and now there are privacy
violations and data access issues concerning the
farmers. Cloud-based infrastructure can be made to
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suffer from Denial of service (DoS) and ransomware
attacks. In the context of generative adversarial
networks (GANS), attacks can include hijacking
generators and manipulating discriminators, thereby
creating biased and unethical synthetic data (Table 3).

Table 3 Analysis of Attacks in Al-Powered Precision Agriculture

Attack Type Description Impact Mitigation Strategy
Malicious data . Implement data
Data . : - Incorrect yield -
S inserted into training S validation, anomaly
Poisonin prediction and pest .
sets corrupts model . detection, and secure data
g Attack . detection results. -
learning. pipelines.
Slightly modified Mlg;:cl)as;sgfrlcaeté?sn of Use adversarial training,
Adversarial input images fool Al lea diFr)1 to?/vror; model robustness testing,
Attack models like YOLO or g ong and defensive distillation.
ANN. recommendations.
Model Attack«_ars reconstruct Privacy loss and Encrypt model
) sensitive data from parameters and apply
Inversion . leakage of farmer )
trained model . federated learning
Attack data or geolocation.
parameters. approaches.
Zﬁgﬁfg'ﬁgggﬁ% ) ) Regular integrity checks,
GAN ger _ Generation of biased model versioning, and
Manipulatio inator during or fake agricultural secure training
. Overloading cloud Service disruption and L_Jse Io_ad balanc!ng,
Denial of . A intrusion detection
: servers with fake system unavailability
Service (DoS) . systems, and cloud
requests or traffic. for farmers. .
firewalls.
Ransom Unauthorized access : Maintain data backups,
. Data loss, downtime, multi-factor
ware / and encryption of P ial t-1d
Malware system files or anc financia authentication, and
Attack datasets. damage. endpoint security tools.
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4. GAN Architecture and Integration in
Agriculture

GANs have become a game-changer in farming,
especially when dealing with issues like not enough
data, missing pictures from satellites or drones, and
not covering enough ground in the field. A typical
GAN is composed two distinct neural networks:
generator G and discriminator D. They are competing
within a game in which they play adversarial
training. The Generator wants to produce counterfeit
data that looks like real farming data. Meanwhile,
the Discriminator is trained to distinguish between
real and fake. They iterate like this until the Generator
is producing such realistic data that the Discriminator
cannot tell it from the genuine article. In agriculture,
GAN are used for enhancing data, predicting yields,
detecting pests and diseases, and developing
environmental models. | mean, if satellite or drone
views are obscured by clouds or there are other
technical difficulties, GANs generate synthetic
images of farmland that mimic real views. Such
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synthetic datasets can then be used to train other
models, for example, an artificial neural network
(ANN) for yield prediction, or a YOLO model for
pest and disease detection. This results in higher
accuracy, and it holds, even when they are blind.
Moreover, Conditional GANs (cGANSs) enable
controlled data generation based on parameters like
crop type, soil condition, or geographic region. This
customization ensures that models can be fine-tuned
for specific agricultural contexts. CycleGANSs further
allow transformation between data domains, such as
converting low-resolution drone images into high-
resolution satellite imagery, enhancing precision and
detail. The generated data passes through the
Flask/FastAPI back-end via predictive Al modules
and visual analytics dashboards that can be accessed
through the React Native mobile app. And thanks to
Explainable Al (XAIl) capabilities, such as
SHAP/LIME, farmers can see how generated data
actually influences the respective predictions being
made through a transparent and reconcilable manner
(Table 4).

Table 4 GAN Architecture and Agricultural Integration Overview Complete, and Accessible
Ecosystems, Empowering Farmers With Actionable Insights for Sustainable and Smart Decision-

Making.
Module / = . Agricultural Integration /
unction L
Component Application
Generator (G) Creates synthetic images or Generates missing satellite/drone

datasets resembling real inputs.

images for crop monitoring.

Discriminator (D)

Evaluates and classifies data as
real or generated.

Ensures synthetic crop imagery
maintains realistic texture and
detail.

Adversarial Training

Enables iterative improvement

Produces high-quality augmented

(SHAP/LIME)

Loop of Generator and Discriminator. data for better model training.
Conditional GAN Generatfes data conditioned AIIows_ reglon-spgcmc data
on attributes (e.g., crop type, creation and soil-based
(cGAN) ) .
region). predictions.
Performs image-to-image Converts low-quality  drone
CycleGAN . . ge-t g images into high-resolution
translation without paired data. .
equivalents.
Integration  Layer Han_dlgs GAN output flow to Feeds synthetic datasets into yield
predictive Al modules (ANN, . o
(Flask/FastAPI) YOLO) and pest detection pipelines.
Explainable Al Provides interpretability to Helps farmers understand how

Al-generated results.

GAN-generated data influences
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predictions.

React Native Mobile

User-facing interface for results

Displays visualized predictions and

App and insights. augmented crop data to end users.
Rsmlium Generater
Noiza
l = Real
Discriminator
T Fke
Real Data
Figure 1 GAN Architecture
5 Methodology: Proposed Framework for Explainable Al (XAl) approaches like SHAP, LIME

GAN in Agriculture

The proposed GAN-based framework for precision
agriculture intends to establish a universal and data-
driven system, which can overcome the issues of
missing information in datasets, poor interpretability
of generic models and farmers’ restricted access. This
work combines GAN based synthetic data generation
with predictive modeling (ANN, YOLO) and XAl
into a modular cloud-based ecosystem controlled
through a mobile application interface (Figure 1). At
the heart of the model is GAN model, having two
networks name it as Generator and Discriminator.
The Generator generates synthetic satellite or drone
imagery based on real agricultural settings like crop
growth stages, soil texture, and vegetation health.
The Discriminator is trained to distinguish between
true vs. fake images, with the Generator accuracy
increasing through adversarial learning iterations.
After the GAN converges, generated data is used to
augment training datasets for yield prediction and
pest detection. For trust and transparencies purpose

International Research Journal on Advanced Engineering Hub (IRJAEH)

are included in this framework. These techniques
enable the visualization of each individual input
parameter (soil pH, rainfall, temperature etc.)
contribution is making to model’s predictions and
help farmers and scientists interpret why a certain
output was made by the machine learning algorithm.
All models are deployed through a Flask/FastAPI
backend, connected to a MongoDB database for
secure data management and integrated with React
Native for mobile accessibility. The mobile app
provides multilingual, offline access to Al-driven
insights, ensuring usability in rural areas. This GAN-
enabled framework thus enhances agricultural
intelligence by filling data gaps, improving model
accuracy, and promoting sustainable, explainable,
and inclusive Al solutions for modern precision
farming.

6. Results and Discussion

6.1. Result

The proposed multimodal framework combining
GAN-based data augmentation, ANN yield
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prediction, YOLO pest detection, and XAl
techniques showed improved robustness under

incomplete satellite and drone data. Evaluation using
FID, MAE/RMSE/R?, and precision-based detection
metrics indicated higher reliability than standalone
models, while mobile—cloud deployment
demonstrated practical feasibility for real-world
farming environments.

6.2. Overview of Evaluation Metrics

To effectively evaluate the performance of Al
models in precision agriculture, we need a structured
approach that looks at both how accurately they
predict outcomes and how practical they are in real-
world applications. The framework we’re discussing
brings together several components, including GAN
(Generative Adversarial Network), ANN (Artificial
Neural Network), YOLO (You Only Look Once),
and XAl (Explainable Al). Because of this
complexity, we need a variety of evaluation metrics
to truly gauge their effectiveness in areas like data
generation.
GAN Evaluation Metrics
For GAN-based modules, the goal is to generate
good-quality synthetic satellite or drone imagery that
closely look like real-world data. Most Common
evaluation metrics include:

e Fréchet Inception Distance (FID)

ANN (Yield Prediction) Metrics
For predictive yield estimate using ANN, regression-
based metrics are utilized:

e Mean Absolute Error (MAE): Represents
average deviation between predicted and actual
yields.

e Root Mean Squared Error (RMSE): Penalizes
larger errors more severely, indicating overall
prediction accuracy.

e R2 Score (Coefficient of Determination):
Measures how well predicted yields align with
real outcomes (closer to 1.0 = better fit).

YOLO (Pest Detection) Metrics
Object detection models such as YOLO are evaluated
using classification and localization-based metrics:

e Precision: The ratio of correctly identified
pests to total identified (reduces false
positives).

e Fidelity: How accurately the explanation
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reflects the model’s internal reasoning.
e Farmers comprehend predictions.
Conclusion
The research findings indicate that GANs might be
used to address the issue of data shortage, thus
leading to the development of robust, explainable,
and farmer-centric Al solutions, which would
ultimately result in the transformation of precision
agriculture. Conventional farming is loaded with
problems—Ilimited satellite and drone data, models
that are hard to understand, and technology that is just
out of the reach of most rural farmers. Furthermore,
the incorporation of Explainable Al tools like SHAP
and LIME enable farmers and agricultural officers to
interpret and visualize the reasoning behind the Al
recommendations instead of an opaque black-box
solution. Additionally, a React Native mobile app in
conjunction with a Flask or FastAPI backend and
MongoDB ensures that the system is multi-lingual,
offline-compatible, and cloud-connected. This
approach ~ democratizes  Al-powered  smart
agricultural analytics making it accessible even to
farmers in extremely remote areas. The new
configuration unlocks a paradigm shift in real-time
crop monitoring, pest management and vyield
forecasting with greater accuracy, lower cost and
enable farms to operate in a more sustainable way.
Predictive analytics and generative intelligence that
will allow resources to be allocated more intelligently
and more climate-smart, sustainable agriculture.
In summary, the research indicates that the
integration of GANs with other models of artificial
intelligence to transform traditional agriculture into
digital agriculture — a data-intensive, transparent, and
intelligent platform. This is a smart agricultural
ecosystem that promotes the precision, sustainability,
and food security of agriculture and is a step toward
a complete digital transformation of agriculture.
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