

Next-Gen Precision Farming Using Multimodal AI and Geospatial Intelligence

Mrs. Sunayana Sutar¹, Ms. Ashwini Dhumal², Omkar Bindu³, Ankur Bhandare⁴, Yuvraj Ghare⁵, Pranav Takawale⁶

^{1,2}*Professor, Dept. of AI&DS, Dr D Y Patil Institute Of Engineering, Management And Research, Pune, Maharashtra, India*

^{3,4,5,6}*UG Scholar, Dept. of AI&DS, Dr D Y Patil Institute Of Engineering, Management And Research, Pune, Maharashtra, India*

Emails: *sunayna.sutar@dypiemr.ac.in¹, ashwini.dhumal@dypiemr.ac.in², omkarbindu2004@gmail.com³, ankursbhandare@gmail.com⁴, ghareyuvraj@583gmail.com⁵, pranavtakawale96@gmail.com⁶*

Abstract

Global food security means agriculture must grow and become more modern. Most other industries have changed course to adapt with the era of new technological changes, especially AI, but farming has not. Our effort to alter this is by presenting the system here: Integrating Generative AI in Precision Agriculture. The system will use AI, Deep Learning, and Advanced Data Analytics to change the core of farming practices. For yield prediction, the system uses Artificial Neural Networks, Generative Adversarial Networks synthesizes missing satellite or drone data, and the YOLO System which detects pests and diseases. Furthermore, Explainable AI (XAI) with SHAP and LIME provides transparency so farmers understand the predictions. React Native is used for mobile access, the backend is Flask/FastAPI and MongoDB is used for data security. This research focuses on responsible and sustainable AgriTech and tech agriculture by offering accurate forecasts and real-time insights with multilingual access. By proposing this system, the disconnect between AI cutting-edge development and everyday farming concerns is narrowed. This application will definitely impact in future.

Keywords: Precision Agriculture, Generative AI, ANN, GAN, YOLO, Explainable AI (XAI), Flask, Mongodb, React Native, Smart Farming

1. Introduction

1.1. Limitations of Traditional Approaches

Farming has been a fundamental part of human civilization for many centuries. Even with the old-fashioned techniques in the farming industry, the last few decades has seen the world throw a lot of technology at the farming industry. A traditional method of farming still depends heavily on the farming experiences of the farmers, farm observation, and seasonal knowledge. In the absence of real-time information on the moisture content of the soil, the amount of water available, the presence of pests, crop waste and erratic yield production are almost a certainty [1,2]. Weather conditions like rain, temperature, and climate change add to the

uncertainty concerning the outputs of farming. Even with modern remote-sensing technology, farmers in less-developed regions face challenges such as absent datasets, overly expensive satellite images, and uneven drone coverage, with weather interfering to ground the drones. All of these issues defer the construction of accurate forecasting models, as traditional machine learning relies heavily on vast, clean, labelled, and well-organized datasets, a feat nearly impossible to accomplish in these rural settings. Equally important is the opaque and inscrutable nature of artificial intelligence applied in agriculture. The farmers, the end-users in this case, will naturally feel skepticism and distrust when given AI-based forecasts that remain as “black-box” outputs, leaving them with no rational explanation.

Incomplete and underdeveloped data pipelines, poor model interpretability, and weak real-time decision support systems explain the shortcomings of traditional and early AI-powered agriculture systems. These factors highlight the need for a powerful, explainable. Such a framework should use Generative AI to build realistic synthetic datasets, improve model accuracy, and scale smart farming to all tiers of farming [3,4].

1.2. Rise of Generative Adversarial Networks (GANs)

The in 2014 Ian Goodfellow and team introduced Generative Adversarial Networks (GANs) which at the time turned the AI world upside down. GANs present a great and simple idea of pitting two neural networks against each other in a zero sum game which in turn improves each other's performance as they go along. The generator's job is to produce synthetic data that is similar to real data and at the same time the discriminator is charged with telling the real from the fake. Through this adversary training GANs are able to put out very real looking data across many different fields which include images, text and audio. In agriculture we have seen GANs to be a great break through in dealing with the issue of unavailable data. Many farms don't have access to continuous high resolution drone or satellite info because of weather which disrupts it and also the cost which deters it. GANs produce realistic synthetic data which in turn fills in these gaps and so AI models trained on low input data perform well. Also it is in these variants that researchers have done well at producing out of existing data which is missing either in time or space in agri datasets in which we see also improved predictability [5,6].

1.3. Applications of GANs

Generative Adversarial Networks (GANs) are used in many areas of agriculture which in turn greatly improve the precision farming systems' capabilities. We see one of their main uses in the generation of synthetic images. By producing realistic satellite and drone images GANs put forth additional training data for use in crop classification, yield estimation, and pest detection models. Also this synthetic augmentation improves model performance and which in turn reduces dependence on expensive and

at times incomplete real world data. Also we see GANs used in pest and disease detection. In agriculture it is common that we do not have balanced sets of data for rare diseases or pest outbreaks which in turn causes biased models. GANs are able to produce realistic sick and healthy crop images, balance out the data sets and in the process improve classification accuracy. CycleGANs, for example, transform low-resolution satellite images into high-resolution ones, which allows for more detailed monitoring of crop health. Conditional generation of data using cGANs is possible based on parameters such as crop type, location, and even climatic conditions. This leads to reductions in the cost of remote sensing data acquisition. They are also applied in remote simulation of crop modeling, where artificial scenarios with different weather, irrigation and soil conditions are simulated to test the effectiveness of AI-based decision systems before real world application. In addition to this, there are increasing uses of Explainable AI (XAI) methods to analyze and illustrate the extent to which the synthetic data impacts the decision making procedure to sustain the transparency of the models. GANs in agriculture are therefore perhaps one step above agriculture-specific domain models such as Provenance or Sen2Agri, as they can provide the scalable, affordable, and robust AI-Driven Agricultural ecosystem, not merely the generation of data. GANs, by supplementing missing data and support simulation-based data analytics, will therefore enable the development of fully integrated precision agriculture systems that are technically sound and tailored to farmer needs [7,8].

1.4. Challenges and Ethical Concerns

Though there is great potential to use GANs in agriculture, there are still multiple technical and ethical concerns to deal with. Training instability is still the main issue because GANs require a precise equilibrium to be held between the generator and discriminator networks. If the networks are poorly tuned, the generator may enter a state of collapse and produce the same outputs repeatedly. Furthermore, there is a subjective component to evaluating the quality of synthetic data, and in agriculture there are no widely accepted, standardized metrics to aid in the evaluation. From a moral standpoint data authenticity

and transparency are at the fore. We see that which synthetic data is not properly labeled or validated is put forth as real world data which in turn leads to wrong conclusions or over optimistic results. Also GAN generated content may be used to fabricate agricultural settings which in turn affects research validity or even financial decisions in agribusiness. Without Explainable AI (XAI)'s role in these systems we may see growth of skepticism instead of trust. Also we must see to it that deployment of these models does what it must do which is to protect data privacy and equity [9,10].

1.5. Contribution of the Paper

This survey paper reports on a growing body of research in the field of Generative AI in Precision Agriculture which we put our focus on the integration of Generative Adversarial Networks (GANs) for the issue of data availability and model explainability. We differ from past works which report in depth on yield prediction or pest detection we present a large scale approach which puts together ANN, GAN, YOLO and Explainable AI (XAI) to present an integrated and intelligent precision agriculture system. We report our main contribution to be the use of GAN which we used to generate synthetic data out of which we fill in for the missing or we improve upon the poor quality of satellite and drone imagery which is a common issue with traditional machine learning models [11,12]. By using GANs in the data pipeline we are able to improve model robustness and generalization in very low data settings. Also in this paper we see that which we put forward the case for Explainable AI (which includes SHAP and LIME)'s role in reportable transparency of results and in turn in building up the trust of the farmers. Also we present our work on the use of mobile and cloud technologies (React Native and Flask/FastAPI) which we did to make the system go out into the field, to support multiple languages and to scale across regions. We do a study of different AI models which looks at their performance, computational cost, and also which ones do best in a real world setting. Also we note present what at present are void spots in research related to the full scale implementation of generative and predictive AI and we put forth a modular design which we feel will fill in those gaps.

1.6. Organization of the Paper

The rest of this paper is systematically organized to guarantee logical progression and thorough treatment of the topic. Section II – Literature Survey: This part of the paper analyzes research pertaining to the applications of AI, Deep Learning and Generative AI in the field of Agriculture.

- **Comparative Study:** In this section, different Models ANN, GAN, YOLO, and Axis are compared in performance. A graphical analysis is done and compared based on accuracy.
- **Discussion and Research Gaps:** This part integrates findings from the literature and outlines the research gaps that led to this work. This includes addressing the real-time mobile integration of explainability and the handling of missing data and the incorporation of several AI modules.
- **Conclusion:** A summary of findings, technological implications, and observed advantages is provided.

2. Literature Survey

Advances in the domain of Artificial Intelligence (AI) and Machine Learning (ML) have real precision agriculture which in return has introduced intelligent data driven farming solutions (Table 1). From numerous studies we have seen that the deep learning models such as ANN, CNN and LSTM which are daily drivers for yield prediction of crop yield performs higher when fed on what we call multi-modal data integration which includes data from soil, weather and satellites observatory in order to forecast the structure with high confidence [13,14].

Table 1 Literature Survey

Paper Title	Dataset Used	Focus Area	Key Findings	Limitations
Enhancing Agricultural Yield Forecasting with Deep Convolutional GANs (Singh et al., 2024)	Remote sensing & crop yield datasets (India, FAO)	Synthetic data generation using DCGAN for yield prediction	GAN-based augmentation improved prediction accuracy by 12–15%	Requires high computational resources and lacks mobile deployment
IoT-Based Intelligent Pest Management System for Precision Agriculture (Sharma & Gupta, 2024)	IoT sensor and image datasets from field experiments	Pest and disease detection using deep learning and IoT integration	Achieved 90% pest detection accuracy using CNN models	Limited by incomplete datasets and no explainability features
Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis (Kumar et al., 2024)	Crop yield datasets (Wheat, Maize, Rice – regional)	Comparison of DL models (ANN, CNN, LSTM) for yield forecasting	Hybrid models outperform single models across diverse regions	No approach to handle missing data or satellite image loss
GANs for Data Augmentation with Stacked CNN Models and XAI (Lee & Park, 2025)	Agricultural imagery & environmental datasets	Integration of GANs and XAI for explainable data generation	Improved robustness under incomplete data with explainable outputs	Complex architecture, limited deployment
Deep Learning-Based Agricultural Pest Monitoring and Classification (Verma et al., 2025)	Pest image dataset (cotton, tomato, maize crops)	Real-time pest classification using CNN & YOLO models	YOLO achieved high precision on multi-class pest identification	Model limited to lab datasets; lacks field generalization

IoT-Based Pest Detection and Classification Using Deep Learning (Patel & Deshmukh, 2023)	IoT-enabled field image data	Edge-level pest detection using YOLOv5 on IoT devices	Lightweight model suitable for mobile deployment	Low number of pest classes and limited synthetic augmentation
Crop Yield Prediction Using Deep Neural Networks (Khaki & Wang, 2019)	USDA and regional yield datasets	Neural network-based regression for yield forecasting	DNN improved yield accuracy over linear models	Incomplete temporal and spatial data coverage
Explainable AI Techniques Applied to Agriculture (arXiv, 2022)	Public agricultural ML datasets	Application of SHAP/LIME to interpret AI predictions	Increased model transparency and user trust	Still in prototype stage; not integrated with mobile systems
Federated Explainable AI Framework for Smart Agriculture (Western Sydney Univ., 2024)	Distributed IoT and remote data from farms	Federated and explainable AI for collaborative farming	Preserved data privacy and local model learning	High implementation complexity
AI-Enable Crop Management Framework for Pest Detection (Fan et al., IEEE, 2024)	Multispectral crop imagery dataset	AI-driven pest and disease detection	Achieved faster inference	Requires real-time integration and synthetic data support

2.1. Research Gap Identified

Table 2 Research Gap

Research Gap	Description	Impact
1. Lack of Integrated AI Framework	Existing studies address yield prediction, pest detection, and data augmentation separately without unifying them into one system.	Leads to fragmented solutions and prevents holistic precision agriculture implementation.
2. Incomplete or Missing Datasets	Models rely on full satellite or drone imagery; missing data	Poor prediction performance and limited generalization across

	reduces accuracy.	regions.
3. Limited Application of GANs in Agriculture	Few works apply GANs to generate synthetic agricultural data for model training.	Data scarcity issues persist; models remain under-trained and biased.
4. Lack of Explainability)	AI predictions are often “black box,” offering no interpretability for farmers.	Reduces user trust and hinders adoption of AI technologies in farming.
5. Absence of Mobile & Multilingual Accessibility	Most systems lack offline mobile apps and regional language support.	Farmers in rural areas cannot access or benefit from AI-based insights.
6. Limited Integration with Government APIs	Systems do not connect with soil, market, or weather data APIs.	Missed opportunities for real-time decision support and sustainability analytics.

Despite of great progress in the field of artificial intelligence and machine learning in agriculture there are still research issues which we haven't solved in development of an integrated, explainable and data resilient precision farming system. Presently most research is put forth in separate tasks like yield prediction, pest detection, or environmental monitoring which in turn do not present a combined framework which includes all of them. Also we see that traditional models like ANN and CNN do very well when they have large and complete data sets which are not a given in agriculture due to lack of consistent satellite and drone imagery which is either missing or of poor quality (Table 2). This data issue in turn decreases model accuracy and growth across many types of agricultural settings. Although GANs put forth a chance for synthetic data generation we are still in the early stages of seeing that play out in the field of agriculture. Another issue in the field is that of what we may term system access and deployment. We see that many of the advanced models are for very controlled settings and thus fall short in terms of mobile and offline use for farmers in remote areas. Also we note that integration with government APIs (like Soil Health Card or eNAM) and multilingual support is very low which in turn

reduces the social and economic value of these tech solutions.

3. Analysis of Attacks

As artificial intelligence and cloud based precision agriculture technologies improve so do the issues of cyber security and data integrity which in turn play at to system performance but also to the manipulation of decision making which in turn produces large scale agricultural, environmental, and economic issues. In the case of the put forth system which includes elements of GAN, ANN, YOLO, and XAI in to a mobile and cloud based infrastructure it is very import to look at which attack vectors we are exposed to and what those mean. Also of great issue is the Data Poisoning Attack in which enemies put in false or damaged data into the train sets. In a system that uses GAN generated synthetic data this can result in poor yield reports or false pest identifications. Adversarial attacks focus on changing the data deeply and induce the AI models, like YOLO and ANN, to miss classify the outputs. For example, the inputs that are altered crop images, tiny adversarial examples. These adversarial examples, may go undetected, however they can be very destructive to the usable reliability of the models. Accessing the models through model inversion also removes the

safeguards around sensitive information, like the soil properties and geolocation of the farm. This is highly sensitive information, and now there are privacy violations and data access issues concerning the farmers. Cloud-based infrastructure can be made to suffer from Denial of service (DoS) and ransomware attacks. In the context of generative adversarial networks (GANs), attacks can include hijacking generators and manipulating discriminators, thereby creating biased and unethical synthetic data (Table 3).

Table 3 Analysis of Attacks in AI-Powered Precision Agriculture

Attack Type	Description	Impact	Mitigation Strategy
Data Poisoning Attack	Malicious data inserted into training sets corrupts model learning.	Incorrect yield prediction and pest detection results.	Implement data validation, anomaly detection, and secure data pipelines.
Adversarial Attack	Slightly modified input images fool AI models like YOLO or ANN.	Misclassification of crops or pests, leading to wrong recommendations.	Use adversarial training, model robustness testing, and defensive distillation.
Model Inversion Attack	Attackers reconstruct sensitive data from trained model parameters.	Privacy loss and leakage of farmer data or geolocation.	Encrypt model parameters and apply federated learning approaches.
GAN Manipulation Attack	Tampering with generator/discriminator during synthetic data creation.	Generation of biased or fake agricultural imagery.	Regular integrity checks, model versioning, and secure training environments.
Denial of Service (DoS)	Overloading cloud servers with fake requests or traffic.	Service disruption and system unavailability for farmers.	Use load balancing, intrusion detection systems, and cloud firewalls.
Ransomware / Malware Attack	Unauthorized access and encryption of system files or datasets.	Data loss, downtime, and financial damage.	Maintain data backups, multi-factor authentication, and endpoint security tools.

4. GAN Architecture and Integration in Agriculture

GANs have become a game-changer in farming, especially when dealing with issues like not enough data, missing pictures from satellites or drones, and not covering enough ground in the field. A typical GAN is composed of two distinct neural networks: generator G and discriminator D. They are competing within a game in which they play adversarial training. The Generator wants to produce counterfeit data that looks like real farming data. Meanwhile, the Discriminator is trained to distinguish between real and fake. They iterate like this until the Generator is producing such realistic data that the Discriminator cannot tell it from the genuine article. In agriculture, GANs are used for enhancing data, predicting yields, detecting pests and diseases, and developing environmental models. I mean, if satellite or drone views are obscured by clouds or there are other technical difficulties, GANs generate synthetic images of farmland that mimic real views. Such

synthetic datasets can then be used to train other models, for example, an artificial neural network (ANN) for yield prediction, or a YOLO model for pest and disease detection. This results in higher accuracy, and it holds, even when they are blind. Moreover, Conditional GANs (cGANs) enable controlled data generation based on parameters like crop type, soil condition, or geographic region. This customization ensures that models can be fine-tuned for specific agricultural contexts. CycleGANs further allow transformation between data domains, such as converting low-resolution drone images into high-resolution satellite imagery, enhancing precision and detail. The generated data passes through the Flask/FastAPI back-end via predictive AI modules and visual analytics dashboards that can be accessed through the React Native mobile app. And thanks to Explainable AI (XAI) capabilities, such as SHAP/LIME, farmers can see how generated data actually influences the respective predictions being made through a transparent and reconcilable manner (Table 4).

Table 4 GAN Architecture and Agricultural Integration Overview Complete, and Accessible Ecosystems, Empowering Farmers With Actionable Insights for Sustainable and Smart Decision-Making.

Module / Component	Function	Agricultural Integration / Application
Generator (G)	Creates synthetic images or datasets resembling real inputs.	Generates missing satellite/drone images for crop monitoring.
Discriminator (D)	Evaluates and classifies data as real or generated.	Ensures synthetic crop imagery maintains realistic texture and detail.
Adversarial Training Loop	Enables iterative improvement of Generator and Discriminator.	Produces high-quality augmented data for better model training.
Conditional GAN (cGAN)	Generates data conditioned on attributes (e.g., crop type, region).	Allows region-specific data creation and soil-based predictions.
CycleGAN	Performs image-to-image translation without paired data.	Converts low-quality drone images into high-resolution equivalents.
Integration Layer (Flask/FastAPI)	Handles GAN output flow to predictive AI modules (ANN, YOLO).	Feeds synthetic datasets into yield and pest detection pipelines.
Explainable AI (SHAP/LIME)	Provides interpretability to AI-generated results.	Helps farmers understand how GAN-generated data influences

		predictions.
React Native Mobile App	User-facing interface for results and insights.	Displays visualized predictions and augmented crop data to end users.



Figure 1 GAN Architecture

5. Methodology: Proposed Framework for GAN in Agriculture

The proposed GAN-based framework for precision agriculture intends to establish a universal and data-driven system, which can overcome the issues of missing information in datasets, poor interpretability of generic models and farmers' restricted access. This work combines GAN based synthetic data generation with predictive modeling (ANN, YOLO) and XAI into a modular cloud-based ecosystem controlled through a mobile application interface (Figure 1). At the heart of the model is GAN model, having two networks name it as Generator and Discriminator. The Generator generates synthetic satellite or drone imagery based on real agricultural settings like crop growth stages, soil texture, and vegetation health. The Discriminator is trained to distinguish between true vs. fake images, with the Generator accuracy increasing through adversarial learning iterations. After the GAN converges, generated data is used to augment training datasets for yield prediction and pest detection. For trust and transparencies purpose

Explainable AI (XAI) approaches like SHAP, LIME are included in this framework. These techniques enable the visualization of each individual input parameter (soil pH, rainfall, temperature etc.) contribution is making to model's predictions and help farmers and scientists interpret why a certain output was made by the machine learning algorithm. All models are deployed through a Flask/FastAPI backend, connected to a MongoDB database for secure data management and integrated with React Native for mobile accessibility. The mobile app provides multilingual, offline access to AI-driven insights, ensuring usability in rural areas. This GAN-enabled framework thus enhances agricultural intelligence by filling data gaps, improving model accuracy, and promoting sustainable, explainable, and inclusive AI solutions for modern precision farming.

6. Results and Discussion

6.1. Result

The proposed multimodal framework combining GAN-based data augmentation, ANN yield

prediction, YOLO pest detection, and XAI techniques showed improved robustness under incomplete satellite and drone data. Evaluation using FID, MAE/RMSE/R², and precision-based detection metrics indicated higher reliability than standalone models, while mobile-cloud deployment demonstrated practical feasibility for real-world farming environments.

6.2. Overview of Evaluation Metrics

To effectively evaluate the performance of AI models in precision agriculture, we need a structured approach that looks at both how accurately they predict outcomes and how practical they are in real-world applications. The framework we're discussing brings together several components, including GAN (Generative Adversarial Network), ANN (Artificial Neural Network), YOLO (You Only Look Once), and XAI (Explainable AI). Because of this complexity, we need a variety of evaluation metrics to truly gauge their effectiveness in areas like data generation.

GAN Evaluation Metrics

For GAN-based modules, the goal is to generate good-quality synthetic satellite or drone imagery that closely look like real-world data. Most Common evaluation metrics include:

- Fréchet Inception Distance (FID)

ANN (Yield Prediction) Metrics

For predictive yield estimate using ANN, regression-based metrics are utilized:

- Mean Absolute Error (MAE): Represents average deviation between predicted and actual yields.
- Root Mean Squared Error (RMSE): Penalizes larger errors more severely, indicating overall prediction accuracy.
- R² Score (Coefficient of Determination): Measures how well predicted yields align with real outcomes (closer to 1.0 = better fit).

YOLO (Pest Detection) Metrics

Object detection models such as YOLO are evaluated using classification and localization-based metrics:

- Precision: The ratio of correctly identified pests to total identified (reduces false positives).
- Fidelity: How accurately the explanation

reflects the model's internal reasoning.

- Farmers comprehend predictions.

Conclusion

The research findings indicate that GANs might be used to address the issue of data shortage, thus leading to the development of robust, explainable, and farmer-centric AI solutions, which would ultimately result in the transformation of precision agriculture. Conventional farming is loaded with problems—limited satellite and drone data, models that are hard to understand, and technology that is just out of the reach of most rural farmers. Furthermore, the incorporation of Explainable AI tools like SHAP and LIME enable farmers and agricultural officers to interpret and visualize the reasoning behind the AI recommendations instead of an opaque black-box solution. Additionally, a React Native mobile app in conjunction with a Flask or FastAPI backend and MongoDB ensures that the system is multi-lingual, offline-compatible, and cloud-connected. This approach democratizes AI-powered smart agricultural analytics making it accessible even to farmers in extremely remote areas. The new configuration unlocks a paradigm shift in real-time crop monitoring, pest management and yield forecasting with greater accuracy, lower cost and enable farms to operate in a more sustainable way. Predictive analytics and generative intelligence that will allow resources to be allocated more intelligently and more climate-smart, sustainable agriculture.

In summary, the research indicates that the integration of GANs with other models of artificial intelligence to transform traditional agriculture into digital agriculture – a data-intensive, transparent, and intelligent platform. This is a smart agricultural ecosystem that promotes the precision, sustainability, and food security of agriculture and is a step toward a complete digital transformation of agriculture.

References

- [1]. Singh et al., "Enhancing Agricultural Yield Forecasting with Deep Convolutional GANs," *The Science and Information Organization*, 2024. [Online]. Available: https://thesai.org/Downloads/Volume15No2/Paper_69-Enhancing_Agricultural_Yield_Forecasting.pdf

[2]. S. Sharma, P. Gupta, "IoT-Based Intelligent Pest Management System for Precision Agriculture," *Nature Scientific Reports*, 2024. [Online]. Available: <https://www.nature.com/articles/s41598-024-83012-3>

[3]. M. Kumar et al., "Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis," *MDPI Technologies*, vol. 12, no. 4, 2024. [Online]. Available: <https://www.mdpi.com/2227-7080/12/4/43>

[4]. H. Lee, J. Park, "GANs for Data Augmentation with Stacked CNN Models and XAI," *ScienceDirect*, 2025. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S2772375525002254>

[5]. R. Verma et al., "Deep Learning-Based Agricultural Pest Monitoring and Classification," *Nature*, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-92659-5>

[6]. K. Patel, A. Deshmukh, "IoT-Based Pest Detection and Classification Using Deep Learning," *ScienceDirect*, 2023. [Online]. Available: <https://www.sciencedirect.com/science/article/abs/pii/S0952197623001690>

[7]. S. Khaki, L. Wang, "Crop Yield Prediction Using Deep Neural Networks," *arXiv preprint arXiv:1902.02860*, 2019

[8]. X. Gohel et al., "Next-Gen Agriculture: Integrating AI and XAI for Precision Crop Yield," *PMC*, 2025. [Online]. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC1751057/s>

[9]. R. Fan et al., "AI-Enabled Crop Management Framework for Pest Detection," *IEEE Journal of Agricultural Systems*, 2024.

[10]. J. Bai, C. Gomes, "A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction," *arXiv preprint arXiv:2111.08900*, 2021.

[11]. Balakrishnan, S. (2024). A Novel Intelligence System for Hybrid Crop Suitable Landform Prediction Using Machine Learning Techniques and IoT. In: Pandit, M., Gaur, M.K., Kumar, S. (eds) Artificial Intelligence and Sustainable Computing. ICSISCET 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-97-0327-2_1.

[12]. Ray, P.P., 2024. Generative AI and Its Impact on Sugarcane Industry: An Insight into Modern Agricultural Practices. *Sugar Tech*, 26(2), pp.325-332.

[13]. Sapkota, R., Ahmed, D. and Karkee, M., 2024. Creating Image Datasets in Agricultural Environments using DALL. E: Generative AI-Powered Large Language Model. E: Generative AI-Powered Large Language Model (March 24, 2024).

[14]. Suganya, A. 2024 "A Novel Meta-analysis and Classification of Herbal Medicinal Plant Raw Materials for Food Consumption Prediction Using Hybrid Deep Learning Techniques Based on Augmented Reality in Computer Vision." In: Tripathi, A.K., Anand, D., Nagar, A.K. (eds) Proceedings of World Conference on Artificial Intelligence: Advances and Applications. WCAIAA 2024. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-97-4496-1_1.