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Abstract 

Global food security means agriculture must grow and become more modern. Most other industries have 

changed course to adapt with the era of new technological changes, especially AI, but farming has not. Our 

effort to alter this is by presenting the system here: Integrating Generative AI in Precision Agriculture. The 

system will use AI, Deep Learning, and Advanced Data Analytics to change the core of farming practices. For 

yield prediction, the system uses Artificial Neural Networks, Generative Adversarial Networks synthesizes 

missing satellite or drone data, and the YOLO System which detects pests and diseases. Furthermore, 

Explainable AI (XAI) with SHAP and LIME provides transparency so farmers understand the predictions. 

React Native is used for mobile access, the backend is Flask/FastAPI and MongoDB is used for data security. 

This research focuses on responsible and sustainable AgriTech and tech agriculture by offering accurate 

forecasts and real-time insights with multilingual access. By proposing this system, the disconnect between AI 

cutting-edge development and everyday farming concerns is narrowed. This application will definitely impact 

in future. 

Keywords: Precision Agriculture, Generative AI, ANN, GAN, YOLO, Explainable AI (XAI), Flask, Mongodb, 

React Native, Smart Farming 

 

1. Introduction 

1.1. Limitations of Traditional Approaches 

Farming has been a fundamental part of human 

civilization for many centuries. Even with the old-

fashioned techniques in the farming industry, the last 

few decades has seen the world throw a lot of 

technology at the farming industry. A traditional 

method of farming still depends heavily on the 

farming experiences of the farmers, farm 

observation, and seasonal knowledge. In the absence 

of real-time information on the moisture content of 

the soil, the amount of water available, the presence 

of pests, crop waste and erratic yield production are 

almost a certainty [1,2]. Weather conditions like rain, 

temperature, and climate change add to the 

uncertainty concerning the outputs of farming. Even 

with modern remote-sensing technology, farmers in 

less-developed regions face challenges such as absent 

datasets, overly expensive satellite images, and 

uneven drone coverage, with weather interfering to 

ground the drones. All of these issues defer the 

construction of accurate forecasting models, as 

traditional machine learning relies heavily on vast, 

clean, labelled, and well-organized datasets, a feat 

nearly impossible to accomplish in these rural 

settings. Equally important is the opaque and 

inscrutable nature of artificial intelligence applied in 

agriculture. The farmers, the end-users in this case, 

will naturally feel skepticism and distrust when given 

AI-based forecasts that remain as “black-box” 

outputs, leaving them with no rational explanation. 
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Incomplete and underdeveloped data pipelines, poor 

model interpretability, and weak real-time decision 

support systems explain the shortcomings of 

traditional and early AI-powered agriculture systems. 

These factors highlight the need for a powerful, 

explainable. Such a framework should use 

Generative AI to build realistic synthetic datasets, 

improve model accuracy, and scale smart farming to 

all tiers of farming [3,4]. 

1.2. Rise of Generative Adversarial Networks 

(GANs) 

The in 2014 Ian Goodfellow and team introduced 

Generative Adversarial Networks (GANs) which at 

the time turned the AI world upside down. GANs 

present a great and simple idea of pitting two neural 

networks against each other in a zero sum game 

which in turn improves each other’s performance as 

they go along. The generator’s job is to produce 

synthetic data that is similar to real data and at the 

same time the discriminator is charged with telling 

the real from the fake. Through this adversary 

training GANs are able to put out very real looking 

data across many different fields which include 

images, text and audio. In agriculture we have seen 

GANs to be a great break through in dealing with the 

issue of unavailable data. Many farms don’t have 

access to continuous high resolution drone or satellite 

info because of weather which disrupts it and also the 

cost which deters it. GANs produce realistic synthetic 

data which in turn fills in these gaps and so AI models 

trained on low input data perform well. Also it is in 

these variants that researchers have done well at 

producing out of existing data which is missing 

either in time or space in agri datasets in which we 

see also improved predictability [5,6]. 

1.3. Applications of GANs 

Generative Adversarial Networks (GANs) are used 

in many areas of agriculture which in turn greatly 

improve the precision farming systems’ capabilities. 

We see one of their main uses in the generation of 

synthetic images. By producing realistic satellite and 

drone images GANs put forth additional training 

data for use in crop classification, yield estimation, 

and pest detection models. Also this synthetic 

augmentation improves model performance and 

which in turn reduces dependence on expensive and 

at times incomplete real world data. Also we see 

GANs used in pest and disease detection. In 

agriculture it is common that we do not have 

balanced sets of data for rare diseases or pest out 

breaks which in turn causes biased models. GANs 

are able to produce realistic sick and healthy crop 

images, balance out the data sets and in the process 

improve classification accuracy.  CycleGANs, for 

example, transform low-resolution satellite images 

into high-resolution ones, which allows for more 

detailed monitoring of crop health. Conditional 

generation of data using cGANs is possible based on 

parameters such as crop type, location, and even 

climatic conditions. This leads to reductions in the 

cost of remote sensing data acquisition. They are 

also applied in remote simulation of crop modeling, 

where artificial scenarios with different weather, 

irrigation and soil conditions are simulated to test the 

effectiveness of AI-based decision systems before 

real world application. In addition to this, there are 

increasing uses of Explainable AI (XAI) methods to 

analyze and illustrate the extent to which the 

synthetic data impacts the decision making 

procedure to sustain the transparency of the models. 

GANs in agriculture are therefore perhaps one step 

above agriculture-specific domain models such as 

Provenance or Sen2Agri, as they can provide the 

scalable, affordable, and robust AI-Driven 

Agricultural ecosystem, not merely the generation of 

data. GANs, by supplementing missing data and 

support simulation-based data analytics, will 

therefore enable the development of fully integrated 

precision agriculture systems that are technically 

sound and tailored to farmer needs [7,8]. 

1.4. Challenges and Ethical Concerns 

Though there is great potential to use GANs in 

agriculture, there are still multiple technical and 

ethical concerns to deal with. Training instability is 

still the main issue because GANs require a precise 

equilibrium to be held between the generator and 

discriminator networks. If the networks are poorly 

tuned, the generator may enter a state of collapse and 

produce the same outputs repeatedly. Furthermore, 

there is a subjective component to evaluating the 

quality of synthetic data, and in agriculture there are 

no widely accepted, standardized metrics to aid in the 

evaluation. From a moral standpoint data authenticity 
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and transparency are at the fore We see that which 

synthetic data is not properly labeled or validated is 

put forth as real world data which in turn leads to 

wrong conclusions or over optimistic results. Also 

GAN generated content may be used to fabricate 

agricultural settings which in turn affects research 

validity or even     financial decisions in agribusiness. 

Without Explainable AI (XAI)'s role in these systems 

we may see growth of skepticism instead of trust. 

Also we must see to it that deployment of these 

models does what it must do which is to protect data 

privacy and equity [9,10]. 

1.5. Contribution of the Paper 

This survey paper reports on a growing body of 

research in the field of Generative AI in Precision 

Agriculture which we put our focus on the integration 

of Generative Adversarial Networks (GANs) for the 

issue of data availability and model explainability. 

We differ from past works which report in depth on 

yield prediction or pest detection we present a large 

scale approach which puts together ANN, GAN, 

YOLO and Explainable AI (XAI) to present an 

integrated and intelligent precision agriculture 

system. We report our main contribution to be the use 

of GAN which we used to generate synthetic data out 

of which we fill in for the missing or we improve 

upon the poor quality of satellite and drone imagery 

which is a common issue with traditional machine 

learning models [11,12]. By using GANs in the data 

pipeline we are able to improve model robustness and 

generalization in very low data settings. Also in this 

paper we see that which we put forward the case for 

Explainable AI (which includes SHAP and LIME)’s 

role in reportable transparency of results and in turn 

in building up the trust of the farmers. Also we 

present our work on the use of mobile and cloud 

technologies (React Native and Flask/FastAPI) 

which we did to make the system go out into the field, 

to support multiple languages and to scale across 

regions. We do a study of different AI models which 

looks at their performance, computational cost, and 

also which ones do best in a real world setting. Also 

we note present what at present are void spots in 

research related to the full scale implementation of 

generative and predictive AI and we put forth a 

modular design which we feel will fill in those gaps.  

1.6.  Organization of the Paper 

The rest of this paper is systematically organized to 

guarantee logical progression and thorough 

treatment of the topic. Section II – Literature Survey: 

This part of the paper analyzes research pertaining 

to the applications of AI, Deep Learning and 

Generative AI in the field of Agriculture. 

 Comparative Study: In this section, 

different Models ANN, GAN, YOLO, and 

Axis are compared in performance. A 

graphical analysis is done and compared 

based on accuracy. 

 Discussion and Research Gaps: This part 

integrates findings from the literature and 

outlines the research gaps that led to this 

work. This includes addressing the real-time 

mobile integration of explainability and the 

handling of missing data and the 

incorporation of several AI modules. 

 Conclusion: A summary of findings, 

technological implications, and observed 

advantages is provided.  

2. Literature Survey 

Advances in the domain of Artificial Intelligence 

(AI) and Machine Learning (ML) have real precision 

agriculture which in return has introduced intelligent 

data driven farming solutions (Table 1). From 

numerous studies we have seen that the deep learning 

models such as ANN, CNN and LSTM which are 

daily drivers for yield prediction of crop yield 

performs higher when fed on what we call multi-

modal data integration which includes data from soil, 

weather and satellites observatory in order to 

forecast the structure with high confidence [13,14].  
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Table 1 Literature Survey 

Paper Title Dataset 

Used 

Focus Area Key 

Findings 

Limitations 

Enhancing 

Agricultural Yield 

Forecasting with 

Deep 

Convolutional 

GANs (Singh et 

al., 2024) 

 

Remote 

sensing & crop 

yield datasets 

(India, FAO) 

 

Synthetic data 

generation using 

DCGAN for yield 

prediction 

 

GAN-based 

augmentation 

improved 

prediction 

accuracy by 

12–15% 

Requires high 

computational 

resources and 

lacks mobile 

deployment 

IoT-Based 

Intelligent Pest 

Management 

System for 

Precision 

Agriculture 

(Sharma & Gupta, 

2024) 

IoT sensor and 

image datasets 

from field 

experiments 

Pest and disease 

detection using 

deep learning 

and IoT 

integration 

Achieved 90% 

pest detection 

accuracy using 

CNN models 

Limited by 

incomplete datasets 

and no explainability 

features 

Applied Deep 

Learning-Based 

Crop Yield 

Prediction: A 

Systematic 

Analysis (Kumar 

et al., 2024) 

Crop yield 

datasets 

(Wheat, Maize, 

Rice – 

regional) 

Comparison of 

DL models 

(ANN, CNN, 

LSTM) for 

yield forecasting 

Hybrid models 

outperform 

single models 

across diverse 

regions 

No approach to 

handle missing data 

or satellite image loss 

GANs for Data 

Augmentation 

with Stacked 

CNN Models and 

XAI (Lee & Park, 

2025) 

 

Agricultural 

imagery & 

environmental 

datasets 

Integration of 

GANs and XAI 

for explainable 

data generation 

Improved 

robustness under 

incomplete data 

with explainable 

outputs 

Complex 

architecture, 

limited 

deployment 

Deep Learning-

Based 

Agricultural Pest 

Monitoring and 

Classification 

(Verma et al., 

2025) 

Pest image 

dataset (cotton, 

tomato, maize 

crops) 

Real-time pest 

classification 

using CNN & 

YOLO models 

YOLO 

achieved high 

precision on 

multi-class pest 

identification 

Model limited to lab 

datasets; lacks field 

generalization 
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IoT-Based Pest 

Detection and 

Classification 

Using Deep 

Learning (Patel & 

Deshmukh, 2023) 

IoT-enabled 

field image 

data 

Edge-level pest 

detection using 

YOLOv5 on IoT 

devices 

Lightweight 

model suitable 

for mobile 

deployment 

Low number of pest 

classes and limited 

synthetic 

augmentation 

Crop Yield 

Prediction Using 

Deep Neural 

Networks (Khaki 

& Wang, 2019) 

USDA and 

regional yield 

datasets 

Neural network-

based regression 

for yield 

forecasting 

DNN improved 

yield accuracy 

over linear 

models 

Incomplete temporal 

and spatial data 

coverage 

Explainable AI 

Techniques 

Applied to 

Agriculture 

(arXiv, 2022) 

Public 

agricultural 

ML datasets 

Application of 

SHAP/LIME to 

interpret AI 

predictions 

Increased 

model 

transparency 

and user trust 

Still in prototype 

stage; not integrated 

with mobile systems 

Federated 

Explainable AI 

Framework for 

Smart Agriculture 

(Western Sydney 

Univ., 2024) 

Distributed IoT 

and remote 

data from 

farms 

Federated and 

explainable AI 

for collaborative 

farming 

Preserved data 

privacy and 

local model 

learning 

High implementation 

complexity 

AI-Enable Crop 

Management 

Framework for 

Pest Detection (Fan 

et al., IEEE, 2024) 

Multispectral 

crop imagery 

dataset 

AI-driven pest 

and disease 

detection 

Achieved faster 

inference 

Requires real-time 

integration and 

synthetic data 

support 

 

2.1. Research Gap Identified 

 

Table 2 Research Gap 

Research Gap Description Impact 

1. Lack of 

Integrated AI 

Framework 

Existing studies address yield 

prediction, pest detection, and 

data augmentation separately 

without unifying them into one 

system. 

Leads to fragmented solutions and 

prevents holistic precision 

agriculture implementation. 

2. Incomplete or 

Missing Datasets 

Models rely on full satellite or 

drone imagery; missing data 

Poor prediction performance and 

limited generalization across 
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reduces accuracy. regions. 

3. Limited 

Application of 

GANs in 

Agriculture 

Few works apply GANs to 

generate synthetic agricultural 

data for model training. 

Data scarcity issues persist; 

models remain under-

trained and biased. 

4. Lack of 

Explainability) 

AI predictions are often “black 

box,” offering no interpretability 

for farmers. 

Reduces user trust and hinders 

adoption of AI technologies in 

farming. 

5. Absence of 

Mobile & 

Multilingual 

Accessibility 

Most systems lack offline mobile 

apps and regional language 

support. 

Farmers in rural areas cannot 

access or benefit from AI-based 

insights. 

6. Limited 

Integration with 

Government APIs 

Systems do not connect with soil, 

market, or weather data APIs. 

Missed opportunities for real-time 

decision support and sustainability 

analytics. 

 

Despite of great progress in the field of artificial 

intelligence and machine learning in agriculture there 

are still research issues which we haven’t solved in 

development of an integrated, explainable and data 

resilient precision farming system. Presently most 

research is put forth in separate tasks like yield 

prediction, pest detection, or environmental monitoring 

which in turn do not present a combined framework 

which includes all of them. Also we see that traditional 

models like ANN and CNN do very well when they 

have large and complete data sets which are not a given 

in agriculture due to lack of consistent satellite and 

drone imagery which is either missing or of poor quality 

(Table 2). This data issue in turn decreases model 

accuracy and growth across many types of agricultural 

settings. Although GANs put forth a chance for 

synthetic data generation we are still in the early stages 

of seeing that play out in the field of agriculture. 

Another issue in the field is that of what we may term 

system access and deployment. We see that many of the 

advanced models are for very controlled settings and 

thus fall short in terms of mobile and offline use for 

farmers in remote areas. Also we note that integration 

with government APIs (like Soil Health Card or eNAM) 

and multilingual support is very low which in turn 

reduces the social and economic value of these tech 

solutions. 

3. Analysis of Attacks 

As artificial intelligence and cloud based precision 

agriculture technologies improve so do the issues of 

cyber security and data integrity which in turn play at to 

system performance but also to the manipulation of 

decision making which in turn produces large scale 

agricultural, environmental, and economic issues. In the 

case of the put forth system which includes elements of 

GAN, ANN, YOLO, and XAI in to a mobile and cloud 

based infrastructure it is very import to look at which 

attack vectors we are exposed to and what those mean. 

Also of great issue is the Data Poisoning Attack in 

which enemies put in false or damaged data into the 

train sets. In a system that uses GAN generated 

synthetic data this can result in poor yield reports or 

false pest identifications. Adversarial attacks focus on 

changing the data deeply and induce the AI models, like 

YOLO and ANN, to miss classify the outputs. For 

example, the inputs that are altered crop images, tiny 

adversarial examples. These adversarial examples, may 

go undetected, however they can be very destructive to 

the usable reliability of the models. Accessing the 

models through model inversion also removes the 
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safeguards around sensitive information, like the soil 

properties and geolocation of the farm. This is highly 

sensitive information, and now there are privacy 

violations and data access issues concerning the 

farmers. Cloud-based infrastructure can be made to 

suffer from Denial of service (DoS) and ransomware 

attacks. In the context of generative adversarial 

networks (GANs), attacks can include hijacking 

generators and manipulating discriminators, thereby 

creating biased and unethical synthetic data (Table 3).

Table 3 Analysis of Attacks in AI-Powered Precision Agriculture 

Attack Type Description Impact Mitigation Strategy 

Data 

Poisonin

g Attack 

Malicious data 

inserted into training 

sets corrupts model 

learning. 

Incorrect yield 

prediction and pest 

detection results. 

Implement data 

validation, anomaly 

detection, and secure data 

pipelines. 

 

Adversarial 

Attack 

Slightly modified 

input images fool AI 

models like YOLO or 

ANN. 

Misclassification of 

crops or pests, 

leading to wrong 

recommendations. 

Use adversarial training, 

model robustness testing, 

and defensive distillation. 

Model 

Inversion 

Attack 

Attackers reconstruct 

sensitive data from 

trained model 

parameters. 

Privacy loss and 

leakage of farmer 

data or geolocation. 

Encrypt model 

parameters and apply 

federated learning 

approaches. 

GAN 

Manipulatio

n Attack 

Tampering with 

generator/discrim

inator during 

synthetic data 

creation. 

Generation of biased 

or fake agricultural 

imagery. 

Regular integrity checks, 

model versioning, and 

secure training 

environments. 

Denial of 

Service (DoS) 

Overloading cloud 

servers with fake 

requests or traffic. 

Service disruption and 

system unavailability 

for farmers. 

Use load balancing, 

intrusion detection 

systems, and cloud 

firewalls. 

Ransom

ware / 

Malware 

Attack 

Unauthorized access 

and encryption of 

system files or 

datasets. 

Data loss, downtime, 

and financial 

damage. 

Maintain data backups, 

multi-factor 

authentication, and 

endpoint security tools. 
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4. GAN Architecture and Integration in 

Agriculture 

GANs have become a game-changer in farming, 

especially when dealing with issues like not enough 

data, missing pictures from satellites or drones, and 

not covering enough ground in the field. A typical 

GAN is composed two distinct neural networks: 

generator G and discriminator D. They are competing 

within a game in which they play adversarial 

training. The Generator wants to produce counterfeit 

data that looks like real farming data. Meanwhile, 

the Discriminator is trained to distinguish between 

real and fake. They iterate like this until the Generator 

is producing such realistic data that the Discriminator 

cannot tell it from the genuine article. In agriculture, 

GAN are used for enhancing data, predicting yields, 

detecting pests and diseases, and developing 

environmental models. I mean, if satellite or drone 

views are obscured by clouds or there are other 

technical difficulties, GANs generate synthetic 

images of farmland that mimic real views. Such 

synthetic datasets can then be used to train other 

models, for example, an artificial neural network 

(ANN) for yield prediction, or a YOLO model for 

pest and disease detection. This results in higher 

accuracy, and it holds, even when they are blind. 

Moreover, Conditional GANs (cGANs) enable 

controlled data generation based on parameters like 

crop type, soil condition, or geographic region. This 

customization ensures that models can be fine-tuned 

for specific agricultural contexts. CycleGANs further 

allow transformation between data domains, such as 

converting low-resolution drone images into high-

resolution satellite imagery, enhancing precision and 

detail. The generated data passes through the 

Flask/FastAPI back-end via predictive AI modules 

and visual analytics dashboards that can be accessed 

through the React Native mobile app. And thanks to 

Explainable AI (XAI) capabilities, such as 

SHAP/LIME, farmers can see how generated data 

actually influences the respective predictions being 

made through a transparent and reconcilable manner 

(Table 4).  

 

Table 4 GAN Architecture and Agricultural Integration Overview Complete, and Accessible 

Ecosystems, Empowering Farmers With Actionable Insights for Sustainable and Smart Decision-

Making. 

Module / 

Component 
Function 

Agricultural Integration / 

Application 

Generator (G) 
Creates synthetic images or 

datasets resembling real inputs. 

Generates missing satellite/drone 

images for crop monitoring. 

Discriminator (D) 
Evaluates and classifies data as 

real or generated. 

Ensures synthetic crop imagery 

maintains realistic texture and 

detail. 

Adversarial Training 

Loop 

Enables iterative improvement 

of Generator and Discriminator. 

Produces high-quality augmented 

data for better model training. 

Conditional GAN 

(cGAN) 

Generates data conditioned 

on attributes (e.g., crop type, 

region). 

Allows region-specific data 

creation and soil-based 

predictions. 

CycleGAN 
Performs image-to-image 

translation without paired data. 

Converts low-quality drone

 images into high-resolution 

equivalents. 

Integration Layer 

(Flask/FastAPI) 

Handles GAN output flow to 

predictive AI modules (ANN, 

YOLO). 

Feeds synthetic datasets into yield 

and pest detection pipelines. 

Explainable AI 

(SHAP/LIME) 

Provides interpretability to 

AI-generated results. 

Helps farmers understand how 

GAN-generated data influences 

https://irjaeh.com/
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predictions. 

React Native Mobile 

App 

User-facing interface for results 

and insights. 

Displays visualized predictions and 

augmented crop data to end users. 

 

 

 
Figure 1 GAN Architecture 

5. Methodology: Proposed Framework for 

GAN in Agriculture 

The proposed GAN-based framework for precision 

agriculture intends to establish a universal and data-

driven system, which can overcome the issues of 

missing information in datasets, poor interpretability 

of generic models and farmers’ restricted access. This 

work combines GAN based synthetic data generation 

with predictive modeling (ANN, YOLO) and XAI 

into a modular cloud-based ecosystem controlled 

through a mobile application interface (Figure 1). At 

the heart of the model is GAN model, having two 

networks name it as Generator and Discriminator. 

The Generator generates synthetic satellite or drone 

imagery based on real agricultural settings like crop 

growth stages, soil texture, and vegetation health. 

The Discriminator is trained to distinguish between 

true vs. fake images, with the Generator accuracy 

increasing through adversarial learning iterations. 

After the GAN converges, generated data is used to 

augment training datasets for yield prediction and 

pest detection. For trust and transparencies purpose 

Explainable AI (XAI) approaches like SHAP, LIME 

are included in this framework. These techniques 

enable the visualization of each individual input 

parameter (soil pH, rainfall, temperature etc.) 

contribution is making to model’s predictions and 

help farmers and scientists interpret why a certain 

output was made by the machine learning algorithm. 

All models are deployed through a Flask/FastAPI 

backend, connected to a MongoDB database for 

secure data management and integrated with React 

Native for mobile accessibility. The mobile app 

provides multilingual, offline access to AI-driven 

insights, ensuring usability in rural areas. This GAN-

enabled framework thus enhances agricultural 

intelligence by filling data gaps, improving model 

accuracy, and promoting sustainable, explainable, 

and inclusive AI solutions for modern precision 

farming. 

6. Results and Discussion 

6.1. Result  

The proposed multimodal framework combining 

GAN-based data augmentation, ANN yield 
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prediction, YOLO pest detection, and XAI 

techniques showed improved robustness under 

incomplete satellite and drone data. Evaluation using 

FID, MAE/RMSE/R², and precision-based detection 

metrics indicated higher reliability than standalone 

models, while mobile–cloud deployment 

demonstrated practical feasibility for real-world 

farming environments. 

6.2. Overview of Evaluation Metrics 

       To effectively evaluate the performance of AI 

models in precision agriculture, we need a structured 

approach that looks at both how accurately they 

predict outcomes and how practical they are in real-

world applications. The framework we’re discussing 

brings together several components, including GAN 

(Generative Adversarial Network), ANN (Artificial 

Neural Network), YOLO (You Only Look Once), 

and XAI (Explainable AI). Because of this 

complexity, we need a variety of evaluation metrics 

to truly gauge their effectiveness in areas like data 

generation. 

GAN Evaluation Metrics 

For GAN-based modules, the goal is to generate 

good-quality synthetic satellite or drone imagery that 

closely look like real-world data. Most Common 

evaluation metrics include: 

 Fréchet Inception Distance (FID) 

ANN (Yield Prediction) Metrics 

For predictive yield estimate using ANN, regression-

based metrics are utilized: 

 Mean Absolute Error (MAE): Represents 

average deviation between predicted and actual 

yields. 

 Root Mean Squared Error (RMSE): Penalizes 

larger errors more severely, indicating overall 

prediction accuracy. 

 R² Score (Coefficient of Determination): 

Measures how well predicted yields align with 

real outcomes (closer to 1.0 = better fit). 

YOLO (Pest Detection) Metrics 

Object detection models such as YOLO are evaluated 

using classification and localization-based metrics: 

 Precision: The ratio of correctly identified 

pests to total identified (reduces false 

positives). 

 Fidelity: How accurately the explanation 

reflects the model’s internal reasoning. 

 Farmers comprehend predictions.     

Conclusion 

The research findings indicate that GANs might be 

used to address the issue of data shortage, thus 

leading to the development of robust, explainable, 

and farmer-centric AI solutions, which would 

ultimately result in the transformation of precision 

agriculture. Conventional farming is loaded with 

problems—limited satellite and drone data, models 

that are hard to understand, and technology that is just 

out of the reach of most rural farmers. Furthermore, 

the incorporation of Explainable AI tools like SHAP 

and LIME enable farmers and agricultural officers to 

interpret and visualize the reasoning behind the AI 

recommendations instead of an opaque black-box 

solution. Additionally, a React Native mobile app in 

conjunction with a Flask or FastAPI backend and 

MongoDB ensures that the system is multi-lingual, 

offline-compatible, and cloud-connected. This 

approach democratizes AI-powered smart 

agricultural analytics making it accessible even to 

farmers in extremely remote areas. The new 

configuration unlocks a paradigm shift in real-time 

crop monitoring, pest management and yield 

forecasting with greater accuracy, lower cost and 

enable farms to operate in a more sustainable way. 

Predictive analytics and generative intelligence that 

will allow resources to be allocated more intelligently 

and more climate-smart, sustainable agriculture. 

In summary, the research indicates that the 

integration of GANs with other models of artificial 

intelligence to transform traditional agriculture into 

digital agriculture – a data-intensive, transparent, and 

intelligent platform. This is a smart agricultural 

ecosystem that promotes the precision, sustainability, 

and food security of agriculture and is a step toward 

a complete digital transformation of agriculture. 
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