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Abstract

Current cellular networks are based on autonomous cells, which often struggle to support large numbers of
users due to uneven coverage. As the world becomes increasingly dependent on wireless communication, there
is a growing need for cellular networks that offer higher spectral and energy efficiency through multiple
wireless access points. Cell-free Massive Multiple-Input Multiple-Output (MIMO) networks successfully meet
this demand. In addition to meeting modern wireless communication requirements, these networks can also
mitigate many existing interference challenges. This study aims to lower the computational burden of cell-free
Massive MIMO systems, enhancing their practicality for large-scale deployment and addressing one of their
major operational challenges. We propose a novel access point selection algorithm that combines a machine
learning approach for clustering, specifically the K-means++ algorithm and the AP-UE association. Based
on simulation findings and evaluation metrics, the proposed algorithm consistently outperforms existing
methods, demonstrating notable improvements in efficiency and performance.
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1. Introduction

Massive MIMO has established itself as a
foundational technology in modern wireless
communication due to its ability to achieve
substantial improvements in spectral efficiency and
reliability through the use of large antenna arrays.

boundaries [3]-[5]. Comparative studies have shown
that CF mMIMO offers superior service uniformity
and more efficient interference suppression than
small-cell architectures [5], making it an attractive
solution for future wireless networks. A significant

Early contributions, such as those of Marzetta and
others [1], [2], demonstrated how extensive antenna
deployments can significantly increase capacity and
provide uniform service. These findings motivated
the evolution of network architectures toward more
distributed and scalable designs. However,
conventional cellular systems still exhibit critical
limitations, including uneven coverage, severe inter-
cell interference, and restricted scalability. To
address these challenges, the concept of cell-free
massive MIMO (CF-mMIMO) emerged as an
alternative paradigm in which numerous distributed
APs jointly serve all users without predefined cell
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body of research has focused on improving the
practical deployment of CF-mMIMO. Works such as
[15] and [21] have explored efficient downlink
training and ubiquitous distributed network
architectures. Surveys and tutorials, including [16]
and the comprehensive monograph in [18], provide a
detailed understanding of the opportunities and
challenges associated with user-centric CF-mMIMO
designs. In addition, optimization techniques
addressing precoding, power control, and energy
efficiency have been widely studied in [17], [22],
highlighting the need for scalable and
computationally efficient methods. Despite its
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advantages, CF-mMIMO introduces substantial
computational and coordination overhead. Many
studies have proposed antenna and AP selection
techniques such as threshold-based, greedy, and
algorithmic approaches to reduce complexity in
large-scale networks [6]-[10]. However, these
solutions often struggle to scale efficiently as the
number of APs increases. To further improve system
performance, more sophisticated AP-selection and
user-association mechanisms based on effective
channel gain have been proposed in [11], while pilot
contamination mitigation strategies have been
addressed in works such as [12] and [13]. To
overcome scalability limitations, clustering-based
methods have gained attention. The research in [19]
proposes user association and clustering techniques
customized for CF mMIMO, demonstrating reduced
fronthaul load and improved performance. Machine
learning and Al-driven approaches have also
emerged, with studies such as [20] emphasizing
intelligent clustering as a core component of future
6G cell free architectures. Furthermore, CF-mMIMO
adaptations for mmWave frequencies, as discussed in
[24], highlight the value of distributed AP
deployment in dealing with high-frequency
propagation challenges. Overall, the literature
demonstrates a steady shift from cell based
architectures to highly distributed, user-centric, and
intelligent wireless systems. While substantial
progress has been achieved, the need for low-
complexity, scalable AP-selection and clustering
algorithms remains a central research focus [23].
Motivated by these gaps, this work proposes an
approach that integrates K-means++ clustering with
optimized AP-UE association to enhance spectral
efficiency while significantly reducing coordination
and computational overhead in cell-free massive
MIMO networks. The rapid expansion of wireless
connectivity necessitates innovative architectural
solutions to deliver reliable, energy efficient, and
high-capacity communication services. Massive
Multiple-Input Multiple-Output (mMIMO)
technology has emerged as a foundational approach
to achieving substantial gains in spectral efficiency
and uniform service quality by employing very large
antenna arrays [1], [2]. Despite these advantages,
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conventional centralized mMIMO architectures
encounter significant bottlenecks in terms of
coverage, scalability, and computational complexity.
To mitigate these limitations, Cell-Free Massive
MIMO (CF-mMIMO) has been proposed as a
transformative wireless architecture that removes
traditional cell boundaries and deploys numerous
distributed Access Points (APs) collaboratively
serving all users [3], [8], [9]. This distributed
topology enhances spectral efficiency, reduces inter-
cell interference, and ensures more consistent user
experiences in dense or heterogeneous environments

(Figure 1).
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Figure 1 Cell Free Massive MIMO Architecture

However, CF-mMIMO systems still rely on
centralized processing units for tasks such as pilot
allocation, AP se lection, and resource coordination,
which causes substantial computational burdens.
Existing work has explored methods for efficient
antenna or AP selection [5]-[7], [10], [11] and
improved user association mechanisms [12], [14]. In
addition, intelligent pilot allocation techniques have
been proposed to reduce pilot contamination and
enhance channel estimation accuracy [4], [13].
Motivated by these challenges, this paper introduces
a low complexity heuristic based on the K-Means++
clustering al gorithm to optimize AP assignment in
CF-mMIMO networks. Using unsupervised learning,
the proposed method reduces computational
overhead while maintaining effective user—AP

362


https://irjaeh.com/

IRJAEH

associations, thus improving system performance
with mini mal central coordination. This paper is
organized as follows: Section | introduces the
fundamental concepts and motivation of the work.
Section Il describes the system model used in the
study. Section Il presents the proposed algorithm in
detail. Section IV discusses the simulation results and
performance analysis. Finally, Section V provides the
concluding remarks.
2. System Model
The system under consideration is a cell-free massive
MIMO network operating in Time Division Duplex
(TDD) mode. It comprises M Access Points (APs)
and K User Equipments (UEs), where M << K. These
APs are geographically distributed throughout the
coverage area to ensure uniform service quality and
eliminate traditional cell boundaries. Between AP m
and UE Kk, the channel coefficient is given by

ke = V(Bunk hink) 1)
where Bmc denotes the large-scale fading coefficient,
and the small-scale Rayleigh fading coefficient is
modeled as

hmk ~ (0, 1) (2)

To incorporate distance-based propagation, B« is
modeled using the log-distance path loss model with
Gaussian shadowing:
Pk = 10™(~(PLo + 10n logio(dy / do) + X,) / 10) (3)
where,
PLo is the path loss at the reference distance,
n is the path loss exponent,
dmk is the distance between AP m and UE K,
Xs~N (0, 6%) represents the log-normal shadowing
component.

The received signal at UE k is given by:

Vi = Y=t Jmk Xm + N (4)

where:
. Xm IS the signal transmitted by AP m,
. nx ~ CNV (0, ?) is AWGN.
The achievable spectral efficiency for UE k is

given by:
Ri = logz( 1 + (|Zn€M Vpm g2 ) 1 ( 2 [EmEM; Vpim
g + %)) ®)

where: My is the set of APs serving UE k and p,, is the
transmit power of AP m.
In our work we aim to maximize the sum spectral effi
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ciency:
max My Y k = 17k Ry
ZE=1Pmk < Pmax, v,
Also considers front haul and cluster constraints.
3. Proposed Algorithm

We propose a two-stage algorithm
combining K-Means++ clustering and optimized AP-
UE association.

3.1. AP Selection Model

In a cell-free massive MIMO network,
M distributed APs each equipped with N antennas
jointly serve K UEs. The received uplink signal is
given by:

subject to | M | < Nmax

{K}

y = {Pr}grsi + n (6)
{k=1)
Where

e py is the transmit power of the UE k-th,

e g,denotes the MN X 1 channel vector
between all AP antennas and UE k

e n represents AWGN with zero mean and
variance ¢®

The channel vector g, models both
large-scale fading (path loss and shadowing)
and small-scale Rayleigh fading:

Ik = Dkl/zhk (7)

Here,Dx is a diagonal matrix containing
the large-scale fading coefficients, and h « a
vector of small-scale fading coefficients with
i.i.d. CV (0, 1) entries.
The main objective of AP selection is to choose the
most suitable subset of access points (APs) to serve
each user equipment (UE), aiming to enhance overall
system performance while minimizing computational
complexity and back haul signaling overhead.
Traditional methods select APs based on fixed
thresholds (e.g., channel gain, SNR), whereas the
proposed method in this work employs K-means++
clustering to dynamically group APs according to
user proximity and channel quality. Only the APs
within the cluster of a given UE are selected to
participate in its data transmission.

3.2. K-Means++ Based AP-UE Association
1. Input: Locations of APs {a1,a>,....am} and UEs
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{ug, Uz, _um}

2. Perform K-Means++ clustering to group APs
based on proximity to UEs.
3. For each cluster:
a. Compute channel gain matrix G using
the log- distance model.
b. Assign each UE to the AP with
maximum channel gain.
4. Output: Optimized AP-UE associations {Mk}
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The plot in Figure 2 shows a system with a high
degree of user SINR variability, with many users
having poor SINR and some reaching extremely high
values. This implies uneven channel conditions and
potential inefficiencies in resource allocation, AP
selection, or interference management.

Spectral Efficiency per User

14 4

12 4

(Table 1), ;2
Table 1 Simulation System Parameters ft: :
Parameter Value g,
Area 100 m? g . |
APs 100 (random) P
UEs 50 (random)
Bandwidth 20 MHz
Noise Power -94 dBm
Path Loss Exponent 3.7
Shadowing Std. Dev. 8dB
Reference Path Loss 30 Batdo=1m interference

5. Simulation Results and Analysis
Max SINR per User
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Figure 2 Simulation Results W.R.T Max. SINR
Per User
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Figure 3 Simulation Results W.R.T Spectral
Efficiency Per User

In Figure 3, the performance evaluation reveals a
strong correlation between the SINR distribution and
the corresponding spectral efficiency achieved by
each user. The SINR results show a highly non-
uniform distribution, with values ranging from
approximately —10 dB to over 40 dB, indicating
significant variations in channel quality and
levels across the network. These
fluctuations directly translate into the spectral
efficiency outcomes, where only a small subset of
users attain high throughput levels (exceeding 10
bps/Hz), while the majority operate below 3 bps/Hz.
This disparity is attributed to the logarithmic
dependence of SE on SINR, which compresses high
SINR gains while severely penalizing low SINR
conditions. Consequently, users experiencing weak
coverage or strong interference exhibit near-zero
spectral efficiency, revealing a pronounced fairness
issue. Overall, the comparative behavior of SINR and
SE confirms that the system is predominantly
interference-limited and that improving the SINR of
low-performing users would yield substantial gains in
both average spectral efficiency and user experience.
Spectral Efficiency Matrix Shape: (100, 50) Average
Spectral Efficiency (bps/Hz): 0.03845265388707225
Average Inter-cell Interference:
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2.71532600514085e-09 Average Channel
Interference: 1.648573442168753e-1 (Figure 4).
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Figure 4 Clustering of Aps Using K-Means++
Algorithm

Prior studies have explored heuristic and greedy
algorithms for AP-UE association. While these
methods offer performance gains, they often lack
scalability and suffer from high computational
complexity. Recent clustering based techniques have
shown promise in managing large scale network
deployments. K-means ++ clustering with its
enhanced centroid initialization provides a
computationally efficient way to partition APs and
UEs into optimal clusters (Table 2).

Table 2 Spectral Efficiency Comparison

Method Avg. SE Sum Rate
(bps/Hz)

Random 2.1 105
Assignment

Greedy 35 175
Assignment
K-Means++ 4.4 220

Proposed
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Figure 5 Effect of MMSE Precoding on Per-
User Spectral Efficiency and CDF Behavior

In the Figure 5 the CDF plot comparing spectral

efficiency before and after applying MMSE

precoding is shown. It visually shows the gain in

efficiency for most users, with the curve after

precoding shifting rightward, indicating higher

spectral efficiency.

Conclusion

The proposed integration of K-Means++ clustering

with AP- UE assignment enhances spectral efficiency

in CF-mMIMO networks. It effectively distributes

network load, minimizes interference, and remains

scalable. Future research will explore dynamic

clustering under mobility conditions and adaptive

learning-based optimization.
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