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Abstract 

Current cellular networks are based on autonomous cells, which often struggle to support large numbers of 

users due to uneven coverage. As the world becomes increasingly dependent on wireless communication, there 

is a growing need for cellular networks that offer higher spectral and energy efficiency through multiple 

wireless access points. Cell-free Massive Multiple-Input Multiple-Output (MIMO) networks successfully meet 

this demand. In addition to meeting modern wireless communication requirements, these networks can also 

mitigate many existing interference challenges. This study aims to lower the computational burden of cell-free 

Massive MIMO systems, enhancing their practicality for large-scale deployment and addressing one of their 

major operational challenges. We propose a novel access point selection algorithm that combines a machine 

learning approach for clustering, specifically the K-means++ algorithm and the AP-UE association. Based 

on simulation findings and evaluation metrics, the proposed algorithm consistently outperforms existing 

methods, demonstrating notable improvements in efficiency and performance.  
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1. Introduction

Massive MIMO has established itself as a 

foundational technology in modern wireless 

communication due to its ability to achieve 

substantial improvements in spectral efficiency and 

reliability through the use of large antenna arrays. 

Early contributions, such as those of Marzetta and 

others [1], [2], demonstrated how extensive antenna 

deployments can significantly increase capacity and 

provide uniform service. These findings motivated 

the evolution of network architectures toward more 

distributed and scalable designs. However, 

conventional cellular systems still exhibit critical 

limitations, including uneven coverage, severe inter-

cell interference, and restricted scalability. To 

address these challenges, the concept of cell-free 

massive MIMO (CF-mMIMO) emerged as an 

alternative paradigm in which numerous distributed 

APs jointly serve all users without predefined cell 

boundaries [3]–[5]. Comparative studies have shown 

that CF mMIMO offers superior service uniformity 

and more efficient interference suppression than 

small-cell architectures [5], making it an attractive 

solution for future wireless networks. A significant 

body of research has focused on improving the 

practical deployment of CF-mMIMO. Works such as 

[15] and [21] have explored efficient downlink 

training and ubiquitous distributed network 

architectures. Surveys and tutorials, including [16] 

and the comprehensive monograph in [18], provide a 

detailed understanding of the opportunities and 

challenges associated with user-centric CF-mMIMO 

designs. In addition, optimization techniques 

addressing precoding, power control, and energy 

efficiency have been widely studied in [17], [22], 

highlighting the need for scalable and 

computationally efficient methods. Despite its 
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advantages, CF-mMIMO introduces substantial 

computational and coordination overhead. Many 

studies have proposed antenna and AP selection 

techniques such as threshold-based, greedy, and 

algorithmic approaches to reduce complexity in 

large-scale networks [6]–[10]. However, these 

solutions often struggle to scale efficiently as the 

number of APs increases. To further improve system 

performance, more sophisticated AP-selection and 

user-association mechanisms based on effective 

channel gain have been proposed in [11], while pilot 

contamination mitigation strategies have been 

addressed in works such as [12] and [13]. To 

overcome scalability limitations, clustering-based 

methods have gained attention. The research in [19] 

proposes user association and clustering techniques 

customized for CF mMIMO, demonstrating reduced 

fronthaul load and improved performance. Machine 

learning and AI-driven approaches have also 

emerged, with studies such as [20] emphasizing 

intelligent clustering as a core component of future 

6G cell free architectures. Furthermore, CF-mMIMO 

adaptations for mmWave frequencies, as discussed in 

[24], highlight the value of distributed AP 

deployment in dealing with high-frequency 

propagation challenges. Overall, the literature 

demonstrates a steady shift from cell based 

architectures to highly distributed, user-centric, and 

intelligent wireless systems. While substantial 

progress has been achieved, the need for low-

complexity, scalable AP-selection and clustering 

algorithms remains a central research focus [23].     

Motivated by these gaps, this work proposes an 

approach that integrates K-means++ clustering with 

optimized AP–UE association to enhance spectral 

efficiency while significantly reducing coordination 

and computational overhead in cell-free massive 

MIMO networks. The rapid expansion of wireless 

connectivity necessitates innovative architectural 

solutions to deliver reliable, energy efficient, and 

high-capacity communication services. Massive 

Multiple-Input Multiple-Output (mMIMO) 

technology has emerged as a foundational approach 

to achieving substantial gains in spectral efficiency 

and uniform service quality by employing very large 

antenna arrays [1], [2]. Despite these advantages, 

conventional centralized mMIMO architectures 

encounter significant bottlenecks in terms of 

coverage, scalability, and computational complexity. 

To mitigate these limitations, Cell-Free Massive 

MIMO (CF-mMIMO) has been proposed as a 

transformative wireless architecture that removes 

traditional cell boundaries and deploys numerous 

distributed Access Points (APs) collaboratively 

serving all users [3], [8], [9]. This distributed 

topology enhances spectral efficiency, reduces inter-

cell interference, and ensures more consistent user 

experiences in dense or heterogeneous environments 

(Figure 1). 

 

 
Figure 1 Cell Free Massive MIMO Architecture 

 

However, CF-mMIMO systems still rely on 

centralized processing units for tasks such as pilot 

allocation, AP se lection, and resource coordination, 

which causes substantial computational burdens. 

Existing work has explored methods for efficient 

antenna or AP selection [5]–[7], [10], [11] and 

improved user association mechanisms [12], [14]. In 

addition, intelligent pilot allocation techniques have 

been proposed to reduce pilot contamination and 

enhance channel estimation accuracy [4], [13]. 

Motivated by these challenges, this paper introduces 

a low complexity heuristic based on the K-Means++ 

clustering al gorithm to optimize AP assignment in 

CF-mMIMO networks. Using unsupervised learning, 

the proposed method reduces computational 

overhead while maintaining effective user–AP 
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k 

associations, thus improving system performance 

with mini mal central coordination. This paper is 

organized as follows: Section I introduces the 

fundamental concepts and motivation of the work. 

Section II describes the system model used in the 

study. Section III presents the proposed algorithm in 

detail. Section IV discusses the simulation results and 

performance analysis. Finally, Section V provides the 

concluding remarks. 

2. System Model 

The system under consideration is a cell-free massive 

MIMO network operating in Time Division Duplex 

(TDD) mode. It comprises M Access Points (APs) 

and K User Equipments (UEs), where M << K. These 

APs are geographically distributed throughout the 

coverage area to ensure uniform service quality and 

eliminate traditional cell boundaries. Between AP m 

and UE k, the channel coefficient is given by 

      gₘₖ = √(βₘₖ hₘₖ)      (1) 

where  βₘₖ   denotes the large-scale fading coefficient, 

and the small-scale Rayleigh fading coefficient is 

modeled as 

hₘₖ ~ (0, 1)          (2) 

To incorporate distance-based propagation, βₘₖ is 

modeled using the log-distance path loss model with 

Gaussian shadowing: 

βₘₖ = 10^(-(PL₀ + 10n log₁₀(dₘₖ / d₀) + Xᵣ) / 10)  (3) 

where, 

PL0 is the path loss at the reference distance, 

n is the path loss exponent, 

dmk is the distance between AP m and UE k, 

Xσ ∼𝒩 (0, σ2) represents the log-normal shadowing 

component. 

 The received signal at UE k is given by: 

yₖ = ∑ 𝑔ₘₖ 𝑥ₘ +  𝑛ₖ𝑀
𝑚=1    (4) 

 

where: 

• 𝑥ₘ  is the signal transmitted by AP m , 

• 𝑛ₖ ∼ C 𝒩 (0, σ2) is AWGN. 

The achievable spectral efficiency for UE k is 

given by: 
Rₖ = log₂( 1 + ( |Σₘ∈𝓜ₖ √pₘ gₘₖ|² ) / ( Σⱼ≠ₖ |Σₘ∈𝓜ⱼ √pₘ  

gₘⱼ|² + σ² ) )     (5) 

where: 𝓜ₖ  is the set of APs serving UE k and pₘ  is the 

transmit power of AP m.  

In our work we aim to maximize the sum spectral effi 

ciency: 

max 𝓜ₖ  ∑ k = 1^k Rₖ  subject to | 𝓜ₖ | ≤ Nmax  

∑ 𝑃𝑚𝑘 ≤ 𝑃𝑚𝑎𝑥K
k=1 ,∀m,  

Also considers front haul and cluster constraints. 

3. Proposed Algorithm 

 We propose a two-stage algorithm 

combining K-Means++ clustering and optimized AP-

UE association. 

3.1. AP Selection Model 

 In a cell-free massive MIMO network, 

M distributed APs each equipped with N antennas 

jointly serve K UEs. The received uplink signal is 

given by: 

𝑦 =  ∑ √{𝑝𝑘}𝑔𝑘𝑠𝑘

{𝐾}

{𝑘=1}

+  𝒏              (6) 

Where 

 𝑝𝑘 is the transmit power of the UE k-th, 

 𝑔𝑘denotes the MN X 1 channel vector 

between all AP antennas and UE k 

 𝒏 represents AWGN with zero mean and 

variance σ2 

 The channel vector 𝑔𝑘  models both 

large-scale fading (path loss and shadowing) 

and small-scale Rayleigh fading: 
 

𝑔𝑘 = 𝐷
𝑘

1/2𝒉𝑘                                         (7) 

 Here,Dk is a diagonal matrix containing 

the large-scale fading coefficients, and h k a 

vector of small-scale fading coefficients with 

i.i.d. C 𝒩 (0, 1)   entries. 

 The main objective of AP selection is to choose the 

most suitable subset of access points (APs) to serve 

each user equipment (UE), aiming to enhance overall 

system performance while minimizing computational 

complexity and back haul signaling overhead. 

Traditional methods select APs based on fixed 

thresholds (e.g., channel gain, SNR), whereas the 

proposed method in this work employs K-means++ 

clustering to dynamically group APs according to 

user proximity and channel quality. Only the APs 

within the cluster of a given UE are selected to 

participate in its data transmission. 

3.2. K-Means++ Based AP-UE Association 
1. Input: Locations of APs {a1, a2,…..aM} and UEs 
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{u1, u2,…..uM} 
. 

2. Perform K-Means++ clustering to group APs 

based on proximity to UEs. 

3. For each cluster: 
a. Compute channel gain matrix G using 

the log- distance model. 
b. Assign each UE to the AP with 

maximum channel gain. 

4. Output: Optimized AP-UE associations {Mk} 

(Table 1). 

 

Table 1 Simulation System Parameters 

Parameter Value 

Area 100 m2 

APs 100 (random) 

UEs 50 (random) 

Bandwidth 20 MHz 

Noise Power -94 dBm 

Path Loss Exponent 3.7 

Shadowing Std. Dev. 8 dB 

Reference Path Loss 30 B at d0 = 1 m 

 

5. Simulation Results and Analysis 

 
Figure 2 Simulation Results W.R.T Max. SINR 

Per User 

 

The plot in Figure 2 shows a system with a high 

degree of user SINR variability, with many users 

having poor SINR and some reaching extremely high 

values. This implies uneven channel conditions and 

potential inefficiencies in resource allocation, AP 

selection, or interference management. 

 

 
Figure 3 Simulation Results W.R.T Spectral 

Efficiency Per User 

 

In Figure 3, the performance evaluation reveals a 

strong correlation between the SINR distribution and 

the corresponding spectral efficiency achieved by 

each user. The SINR results show a highly non-

uniform distribution, with values ranging from 

approximately –10 dB to over 40 dB, indicating 

significant variations in channel quality and 

interference levels across the network. These 

fluctuations directly translate into the spectral 

efficiency outcomes, where only a small subset of 

users attain high throughput levels (exceeding 10 

bps/Hz), while the majority operate below 3 bps/Hz. 

This disparity is attributed to the logarithmic 

dependence of SE on SINR, which compresses high 

SINR gains while severely penalizing low SINR 

conditions. Consequently, users experiencing weak 

coverage or strong interference exhibit near-zero 

spectral efficiency, revealing a pronounced fairness 

issue. Overall, the comparative behavior of SINR and 

SE confirms that the system is predominantly 

interference-limited and that improving the SINR of 

low-performing users would yield substantial gains in 

both average spectral efficiency and user experience. 

Spectral Efficiency Matrix Shape: (100, 50) Average 

Spectral Efficiency (bps/Hz): 0.03845265388707225 

Average Inter-cell Interference: 

https://irjaeh.com/
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2.71532600514085e-09 Average Channel 

Interference: 1.648573442168753e-1 (Figure 4). 

 

 
Figure 4 Clustering of Aps Using K-Means++ 

Algorithm 

 

Prior studies have explored heuristic and greedy 

algorithms for AP-UE association. While these 

methods offer performance gains, they often lack 

scalability and suffer from high computational 

complexity. Recent clustering based techniques have 

shown promise in managing large scale network 

deployments. K-means ++ clustering with its 

enhanced centroid initialization provides a 

computationally efficient way to partition APs and 

UEs into optimal clusters (Table 2). 

 

Table 2 Spectral Efficiency Comparison 

Method Avg. SE 

(bps/Hz) 

Sum Rate 

Random 

Assignment 
2.1 105 

Greedy 

Assignment 
3.5 175 

K-Means++ 

Proposed 

4.4 220 

 

 
Figure 5 Effect of MMSE Precoding on Per- 

User Spectral Efficiency and CDF Behavior 

 

In the Figure 5 the CDF plot comparing spectral       

efficiency before and after applying MMSE 

precoding is shown. It visually shows the gain in 

efficiency for most users, with the curve after 

precoding shifting rightward, indicating higher 

spectral efficiency. 

Conclusion  

The proposed integration of K-Means++ clustering 

with AP- UE assignment enhances spectral efficiency 

in CF-mMIMO networks. It effectively distributes 

network load, minimizes interference, and remains 

scalable. Future research will explore dynamic 

clustering under mobility conditions and adaptive 

learning-based optimization. 
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