

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0046

International Research Journal on Advanced Engineering Hub (IRJAEH)

338

AI Agent With Browser Automation
Abdul Mateen1, Priyanka K R2, Chethana BM3, Leela C4, Sujith Kumar S5

1,2,3,4,5Department of Information Science and Engineering, AMC Engineering College, Bengaluru,

Karnataka, India.

Emails: 1am22is002@amceducation.in1, priyanka.ramarao@amceducation.in2,

1am22is024@amceducation.in3, 1am22is051@amceducation.in4, 1am23is410@amceducation.in5

Abstract

This project presents the design and implementation of an intelligent AI agent capable of performing

automated actions within a web browser environment. The proposed system integrates natural-language

understanding, task decomposition, and browser-level automation to execute user- defined goals such as data

extraction, form submission, website navigation, report generation, and repetitive workflow operations. The

agent combines machine learning models with rule-based logic to accurately interpret user instructions,

convert them into executable steps, and interact with web elements in real time. To ensure robustness, a

lightweight automation framework is incorporated to manage element detection, handle dynamic page layouts,

and recover from unexpected interface changes or errors. The system is further enhanced with decision-

making capabilities that allow the agent to adapt its actions based on webpage behavior, user constraints,

and context awareness. Experimental evaluation demonstrates that the AI agent significantly reduces manual

effort, improves operational accuracy, and accelerates digital processes when compared to conventional

browser automation tools or static scripts. Overall, this work highlights the growing potential of AI- driven

autonomous agents in modern web environments and establishes a practical foundation for future

advancements in self-guided, multi-step browser task execution across various domains.

Keywords: AI Agents, Browser Automation, Natural Language Processing (NLP), Web Task Automation,

Intelligent Decision-Making Systems, Large Language Models (LLMs)

1. Introduction

Artificial Intelligence (AI) has become a critical

driver of automation in digital environments,

enabling systems to perform tasks that traditionally

require human judgment, interpretation, and

interaction. As organizations increasingly rely on

web-based applications for data management,

communication, and process execution, the need for

intelligent solutions that can autonomously handle

browser- driven tasks has grown substantially.

Traditional automation tools, such as rule-based

scripts or macro recorders, often lack adaptability and

fail when facing dynamic webpage structures,

unexpected UI changes, or complex multi-step

operations. This limitation has created a demand for

AI-powered agents capable of understanding user

intent and executing tasks with greater flexibility and

reliability. An AI agent integrated with browser

automation represents a significant advancement in

this space. Unlike conventional automation

frameworks, an AI agent can interpret natural

language commands, reason through sequences of

actions, and respond dynamically to changing web

interfaces. Through machine learning, decision-

making algorithms, and real-time environment

feedback, such an agent can navigate websites,

extract relevant information, fill forms, interact with

page elements, and complete repetitive operations

with minimal human supervision [1], [2].

2. Literature Review

Castel Franchi (1998) presented a foundational

approach to modeling social action in AI agents [3].

His work emphasized the importance of cognitive

structures like goal delegation, adoption, and

commitment in enabling collaborative behavior

among agents. While the framework provided a deep

understanding of individual agent reasoning, it lacked

focus on real-time interaction or browser-based

dynamic environments, which limits its applicability

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0046

International Research Journal on Advanced Engineering Hub (IRJAEH)

339

in modern, web- integrated systems. Patil et al.

(2024) introduced Go Ex, a runtime environment

designed for executing actions generated by large

language models (LLMs). The key innovation in their

work is the concept of post-facto validation, allowing

users to validate actions after execution using

mechanisms like "undo" and "damage confinement."

This approach addresses the challenge of

unpredictable LLM behavior in real-world

applications. However, its reliance on these recovery

mechanisms may not fully mitigate risks in critical

tasks where actions must be validated beforehand.

Wu et al. (2023) developed Auto Gen, a flexible

framework enabling multi-agent conversations using

LLMs. Their system allows agents to communicate,

delegate tasks, and integrate tools or human inputs to

solve complex problems. Auto Gen showcases

powerful applications across domains such as

mathematics, question answering, and coding.

Despite its versatility, the framework is

computationally intensive and requires deliberate

design to avoid agent coordination issues or

redundancy [4], [5].

3. Methodology

The development of the AI Agent with Browser

Automation follows a multi-layered methodology

that integrates frontend technologies, backend

services, artificial intelligence components, and an

automation execution environment. The

methodology is designed to ensure scalability,

maintainability, and seamless interaction between the

user interface and the intelligent automation engine.

The following subsections describe each layer of the

system architecture and the technologies used [6],

[7].

3.1. System Architecture

Web Technologies and Frontend Layer

The frontend of the system is developed using

HTML5, CSS3, JavaScript, and TypeScript, enabling

the creation of a responsive, interactive, and user-

friendly interface.

 HTML5 provides the structural foundation

for the UI components.

 CSS3 and responsive design principles ensure

a clean, modern layout across different screen

sizes.

 JavaScript and TypeScript support dynamic

behavior, type- safety, and modular

development, improving maintainability and

reducing runtime errors.

This layer allows users to input commands, monitor

automation progress, and interact with the AI agent

in real time.

Backend Framework

The backend is implemented using Node.js along

with the Express.js framework.

 Node.js provides a non-blocking, event-

driven environment suitable for real-time

automation tasks.

 Express.js handles routing, API requests,

middleware operations, and communication

with the automation layer.

The backend processes user instructions, manages

sessions, logs operations, and coordinates data flow

between the frontend and AI components.

UI/UX Framework

To ensure consistent design and optimal user

experience, the interface incorporates Tailwind CSS

along with custom CSS utilities.

 Tailwind CSS provides utility-first styling for

faster development.

 Custom CSS is applied for branding, layout

adjustments, and fine-tuned visual control.

This combination ensures both professional

aesthetics and UI adaptability (Figure 1).

Figure 1 System Architecture

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0046

International Research Journal on Advanced Engineering Hub (IRJAEH)

340

Integration Layer

The application integrates Electron.js to package the

system as a cross-platform desktop application.

Electron bundles the frontend, backend, and

automation components into a single executable

environment, offering:

 Access to system resources,

 Isolated browser windows,

 Improved sandboxing and security,

 Native application behavior across Windows,

macOS, and Linux.

This makes the AI agent accessible as a standalone

desktop software solution.

Automation and AI Layer

The core functionality of intelligent browser

automation is implemented using a combination of

Python scripts, automation libraries, and machine

learning APIs.

 Python-based modules handle tasks such as

DOM interaction, automated clicking, form

filling, and data extraction.

 ML APIs are integrated to enhance decision-

making, natural language understanding, and

predictive interaction with web elements.

This layer allows the AI agent to interpret user

commands, adapt to webpage changes, and execute

complex multi-step actions autonomously [8].

Version Control and Deployment

The entire codebase is version-controlled using

GitHub, enabling collaboration, change tracking, and

continuous improvement.

For deployment and testing:

 Verel or Render is used for hosting

frontend/backend components during

development.

 The desktop application version can be

executed via localhost or packaged using

Electron for offline operation.

This ensures flexible development workflows and

reproducible builds [9].

3.2. Flow of System

User Interaction

The system begins when the user enters a command

through the application interface.

Examples:

 “Open Gmail and check unread mails.”

 “Scrape product prices from this website.”

 “Fill this web form automatically.”

The frontend collects this input and forwards it to the

backend.

Command Processing

Once the command is received, the backend passes it

to the AI Agent for interpretation.

What happens here:

 The AI model analyzes the natural-language

instruction.

 It identifies the task type (navigation,

scraping, form-filling, clicking, etc.).

 It breaks the instruction into step-by-step

executable actions. This step ensures the

system understands what the user wants [10]-

[12].

Task Execution (Automation Layer)

The interpreted steps are passed to the Automation

Engine, which may use:

 Python scripts

 Browser automation tools

 Machine learning models The automation

layer performs:

o Opening a browser window.

o Navigating to URLs.

o Detecting and interacting with DOM

elements.

o Filling forms, clicking buttons,

scrolling, capturing data, etc.

This is the core of browser automation (Figure 2).

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0046

International Research Journal on Advanced Engineering Hub (IRJAEH)

341

Figure 2 Flow Chart

After each action is executed, the system checks:

 Was the action successful?

 If yes, it moves to the next step.

 If no, the system attempts:

 Retrying the action,

 Using alternative element detection,

 Error handling workflows.

This ensures reliability on dynamic or

unpredictable webpages.

Status Update

When all steps are completed successfully, the

backend updates the system state.

It records:

 Completed actions

 Extracted data

 Time taken

 Any warnings or fallbacks used This

status is sent to the frontend.

User Acknowledgment

Finally, the system provides feedback to the user:

 Action completed

 Data extracted

 Task failed or partially completed

 Screenshots or logs (if applicable)

This closes the loop and informs the user about

the automation result.

4. Advantages of the Proposed System

Increased Efficiency and Productivity

 The AI agent can perform repetitive

browser tasks much faster than humans.

 Automates data scraping, form filling,

monitoring, and decision-making

processes.

 Reduces manual workload and

operational time significantly.

Reduced Human Error

 Eliminates mistakes caused by fatigue or

oversight.

 Ensures consistent execution of tasks

such as data entry, rule-based decisions,

and navigation.

Scalability

 Can run multiple browser sessions in

parallel.

 Suitable for large-scale operations such

as bulk data extraction, massive form

submissions, or continuous monitoring.

Cost-Effective Solution

 Reduces manpower required for tedious

tasks.

 Saves costs associated with manual labor

and repeated corrections.

Autonomous Decision-Making

 Uses advanced LLM reasoning to decide

next actions dynamically.

 No need for hardcoded rules for every

scenario—agent adapts to new web

layouts or changes.

Real-Time Data Handling

 Automatically gathers, processes, and

analyzes data from online sources.

 Supports real-time dashboards, alerts,

and insights.

User-Friendly and Low-Code

 Requires minimal manual scripting due

to AI decision- making.

 Simplifies browser automation even for

non-technical users.

High Flexibility

 Can interact with any website regardless

of structure (forms, buttons, AJAX

content, tables, etc.).

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0046

International Research Journal on Advanced Engineering Hub (IRJAEH)

342

 Supports multi-step workflows across

multiple platforms.

Continuous Operation

 Agent can run 24×7 to monitor websites,

track changes, submit forms, or trigger

alerts.

 Perfect for automation tasks needing

uninterrupted execution.

Integration-Friendly

 Can easily integrate with APIs,

databases, third-party tools, and cloud-

based systems.

 Supports workflow automation pipelines

and enterprise systems.

Improved Quality of Output

 High accuracy in data collection and

automated actions.

 Ensures structured and clean data for

further processing.

Adaptability to Different Use Cases

 Web scraping

 Automated testing

 Social media automation

 E-commerce automation

 Job application automation

 Research data collection

5. Results

 The AI Agent with Browser Automation

successfully met the main objectives of

automating web-based tasks, reducing

manual effort, and improving

consistency of browser interactions.

 High levels of functional correctness

(above 75%) and data extraction

accuracy (around 85%) were achieved.

 The system performed efficiently on

standard hardware and showed

reasonable robustness against minor

webpage and network variations.

 These results demonstrate that the

proposed system is practical and

effective for real-world browser

automation scenarios, especially for

repetitive and rule-based web activities

(Figures 3 and 4).

Figure 3 YouTube Automation

Figure 4 Gmail Automation

Conclusion

The proposed AI Agent with Browser

Automation system demonstrates a powerful

integration of large language model (LLM)

intelligence with automated web interaction

capabilities. By combining autonomous

decision-making, real- time data processing, and

precise browser control, the system effectively

reduces human effort and minimizes errors

associated with repetitive online tasks. The

agent’s ability to adapt to dynamic webpage

structures, perform multi-step workflows, and

execute tasks with consistency highlights its

potential for diverse applications such as data

extraction, automated form submission, market

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0046

International Research Journal on Advanced Engineering Hub (IRJAEH)

343

monitoring, and enterprise process automation.

Overall, the AI-driven browser automation

framework enhances productivity, scalability,

and operational efficiency while offering a

flexible and cost-effective solution for

individuals and organizations. As AI agents

continue to evolve, this system lays the

foundation for more intelligent, fully

autonomous digital workers capable of handling

increasingly complex tasks and transforming the

way automation is approached in real-world

environments.

Acknowledgement

At the very onset, we would like to place our

gratitude on all those people who helped us in

making this project work a successful

one.Coming up, this project to be a success was

not easy. Apart from the sheer effort, the

enlightenment of our very experienced teachers

also plays a paramount role because it is they

who guide us in the right direction.First of all, we

would like to thank the Management of AMC

Engineering College for providing such a healthy

environment for the successful completion of

project work.In this regard, we express our

sincere gratitude to the Chairman Dr. K

Paramahamsa and the Principal Dr.

Yuvaraju.B.N , for providing us all the facilities

in this college.We are extremely grateful to our

Professor and Head of the Department of

Information Science and Engineering, Dr.

Rashmi R Deshpande, for having accepted to

patronize us in the right direction with all her

wisdom. We place our heartfelt thanks to

Priyanka KR, Asst.professor, Department of

Information Science and Engineering for having

guided us for the project, and all the staff

members of our department for helping us out at

all times.

References

[1]. S. G. Patil et al., “GOEX:

Perspectives and Designs Towards a

Run-Time for Autonomous LLM

Applications,” 2024.

[2]. Q. Wu et al., “AutoGen: Enabling

Next-Gen LLM Applications via

Multi-Agent Conversation,” 2023.

[3]. C. Castelfranchi, Modelling Social

Action for AI Agents. Springer, 1998.

[4]. J. Ruan et al., “TPTU: Task Planning

and Tool Usage of Large Language

Model-based AI Agents,” 2024.

[5]. M. A. Ferrag, N. Tihanyi, and M.

Debbah, “From LLM Reasoning to

Autonomous AI Agents: A

Comprehensive Review,” 2025.

[6]. N. Krishnan, “AI Agents: Evolution,

Architecture, and Real-World

Applications,” 2024.

[7]. S. Russell and P. Norvig, Artificial

Intelligence: A Modern Approach, 4th

ed. Pearson, 2021.

[8]. M. Wooldridge, An Introduction to

MultiAgent Systems, 2nd ed. Wiley,

2009.

[9]. B. Settles, “Active Learning

Literature Survey,” University of

Wisconsin-Madison, Tech. Rep.

1648, 2010.

[10]. A. Karpathy, “Trends in Large

Language Models and Autonomous

Agents,” arXiv preprint

arXiv:2308.00000, 2023.

[11]. OpenAI, “GPT-4 Technical Report,”

arXiv preprint rXiv:2303.08774,

2023.

[12]. S. Thrun, M. Montemerlo, “The

GraphSLAM Algorithm With

Applications to Autonomous

Mapping,” Int. J. Robotics Research,

vol. 25, no. 5–6, pp. 403–429, 2006.

https://irjaeh.com/

