International Research Journal on Advanced Engineering Hub (IRJIAEH)
e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 338-343

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0046

IRJAEH

Al Agent With Browser Automation

Abdul Mateen®, Priyanka K R?, Chethana BM?, Leela C*, Sujith Kumar S°

12345Department of Information Science and Engineering, AMC Engineering College, Bengaluru,
Karnataka, India.

Emails: 1am22is002@amceducation.in?, priyanka.ramarao@amceducation.in?,
1am22is024@amceducation.in®, 1am22is051@amceducation.in?, 1am23is410@amceducation.in®

Abstract

This project presents the design and implementation of an intelligent Al agent capable of performing
automated actions within a web browser environment. The proposed system integrates natural-language
understanding, task decomposition, and browser-level automation to execute user- defined goals such as data
extraction, form submission, website navigation, report generation, and repetitive workflow operations. The
agent combines machine learning models with rule-based logic to accurately interpret user instructions,
convert them into executable steps, and interact with web elements in real time. To ensure robustness, a
lightweight automation framework is incorporated to manage element detection, handle dynamic page layouts,
and recover from unexpected interface changes or errors. The system is further enhanced with decision-
making capabilities that allow the agent to adapt its actions based on webpage behavior, user constraints,
and context awareness. Experimental evaluation demonstrates that the Al agent significantly reduces manual
effort, improves operational accuracy, and accelerates digital processes when compared to conventional
browser automation tools or static scripts. Overall, this work highlights the growing potential of Al- driven
autonomous agents in modern web environments and establishes a practical foundation for future
advancements in self-guided, multi-step browser task execution across various domains.

Keywords: Al Agents, Browser Automation, Natural Language Processing (NLP), Web Task Automation,
Intelligent Decision-Making Systems, Large Language Models (LLMs)

1. Introduction

Artificial Intelligence (Al) has become a critical
driver of automation in digital environments,
enabling systems to perform tasks that traditionally
require human judgment, interpretation, and
interaction. As organizations increasingly rely on
web-based applications for data management,
communication, and process execution, the need for
intelligent solutions that can autonomously handle
browser- driven tasks has grown substantially.
Traditional automation tools, such as rule-based
scripts or macro recorders, often lack adaptability and
fail when facing dynamic webpage structures,
unexpected Ul changes, or complex multi-step
operations. This limitation has created a demand for
Al-powered agents capable of understanding user
intent and executing tasks with greater flexibility and
reliability. An Al agent integrated with browser
automation represents a significant advancement in
this space. Unlike conventional automation

International Research Journal on Advanced Engineering Hub (IRJAEH)

frameworks, an Al agent can interpret natural
language commands, reason through sequences of
actions, and respond dynamically to changing web
interfaces. Through machine learning, decision-
making algorithms, and real-time environment
feedback, such an agent can navigate websites,
extract relevant information, fill forms, interact with
page elements, and complete repetitive operations
with minimal human supervision [1], [2].

2. Literature Review

Castel Franchi (1998) presented a foundational
approach to modeling social action in Al agents [3].
His work emphasized the importance of cognitive
structures like goal delegation, adoption, and
commitment in enabling collaborative behavior
among agents. While the framework provided a deep
understanding of individual agent reasoning, it lacked
focus on real-time interaction or browser-based
dynamic environments, which limits its applicability

338


https://irjaeh.com/

IRJAEH

in modern, web- integrated systems. Patil et al.
(2024) introduced Go Ex, a runtime environment
designed for executing actions generated by large
language models (LLMs). The key innovation in their
work is the concept of post-facto validation, allowing
users to validate actions after execution using
mechanisms like "undo" and "damage confinement."”
This approach addresses the challenge of
unpredictable LLM  behavior in real-world
applications. However, its reliance on these recovery
mechanisms may not fully mitigate risks in critical
tasks where actions must be validated beforehand.
Wu et al. (2023) developed Auto Gen, a flexible
framework enabling multi-agent conversations using
LLMs. Their system allows agents to communicate,
delegate tasks, and integrate tools or human inputs to
solve complex problems. Auto Gen showcases

powerful applications across domains such as
mathematics, question answering, and coding.
Despite its  versatility, the framework is

computationally intensive and requires deliberate
design to avoid agent coordination issues or
redundancy [4], [5].
3. Methodology
The development of the Al Agent with Browser
Automation follows a multi-layered methodology
that integrates frontend technologies, backend
services, artificial intelligence components, and an
automation execution environment. The
methodology is designed to ensure scalability,
maintainability, and seamless interaction between the
user interface and the intelligent automation engine.
The following subsections describe each layer of the
system architecture and the technologies used [6],
[7].
3.1. System Architecture
Web Technologies and Frontend Layer
The frontend of the system is developed using
HTML5, CSS3, JavaScript, and TypeScript, enabling
the creation of a responsive, interactive, and user-
friendly interface.
e HTMLS5 provides the structural foundation
for the Ul components.
e (CSS3 and responsive design principles ensure
a clean, modern layout across different screen
sizes.
e JavaScript and TypeScript support dynamic

International Research Journal on Advanced Engineering Hub (IRJAEH)

International Research Journal on Advanced Engineering Hub (IRJIAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 338-343

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0046

behavior, type- safety, and modular
development, improving maintainability and
reducing runtime errors.
This layer allows users to input commands, monitor
automation progress, and interact with the Al agent
in real time.
Backend Framework
The backend is implemented using Node.js along
with the Express.js framework.

e Node.js provides a non-blocking, event-
driven environment suitable for real-time
automation tasks.

e Express.js handles routing, APl requests,
middleware operations, and communication
with the automation layer.

The backend processes user instructions, manages
sessions, logs operations, and coordinates data flow
between the frontend and Al components.

UI/UX Framework

To ensure consistent design and optimal user
experience, the interface incorporates Tailwind CSS
along with custom CSS utilities.

e Tailwind CSS provides utility-first styling for
faster development.

e Custom CSS is applied for branding, layout
adjustments, and fine-tuned visual control.

This combination ensures both professional
aesthetics and Ul adaptability (Figure 1).

\Web Technologies and Frontend Layer
* HTML5, CSS3, JavaScript and TypeScript
v

Backend Framework

« Node.js, Express.js, nndrpomoming opons, AP requests

v
UI/UX Framework
« Tailwind CSS, Custom CSS, consistent and pofessional styling

v

Integration Layer

« Electron.js, packaging browser into a desktop application

v

Automation & Al Layer
« Python-based scripts and ML APIs for intelligwosing automation

| Version Control & Deployment ¢ GitHub, Vercel, Render, Localhost
Figure 1 System Architecture

339


https://irjaeh.com/

IRJAEH

Integration Layer

The application integrates Electron.js to package the
system as a cross-platform desktop application.
Electron bundles the frontend, backend, and
automation components into a single executable
environment, offering:

Access to system resources,

Isolated browser windows,

Improved sandboxing and security,

Native application behavior across Windows,
macOS, and Linux.

This makes the Al agent accessible as a standalone
desktop software solution.

Automation and Al Layer

The core functionality of intelligent browser
automation is implemented using a combination of
Python scripts, automation libraries, and machine
learning APls.

e Python-based modules handle tasks such as
DOM interaction, automated clicking, form
filling, and data extraction.

e ML APIs are integrated to enhance decision-
making, natural language understanding, and
predictive interaction with web elements.

This layer allows the Al agent to interpret user
commands, adapt to webpage changes, and execute
complex multi-step actions autonomously [8].
Version Control and Deployment

The entire codebase is version-controlled using
GitHub, enabling collaboration, change tracking, and
continuous improvement.

For deployment and testing:

e Verel or Render is used for
frontend/backend components
development.

e The desktop application version can be
executed via localhost or packaged using
Electron for offline operation.

This ensures flexible development workflows and
reproducible builds [9].

3.2. Flow of System
User Interaction
The system begins when the user enters a command
through the application interface.
Examples:

e “Open Gmail and check unread mails.”

hosting
during

International Research Journal on Advanced Engineering Hub (IRJAEH)

International Research Journal on Advanced Engineering Hub (IRJIAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 338-343

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0046

e “Scrape product prices from this website.”

e “Fill this web form automatically.”
The frontend collects this input and forwards it to the
backend.

Command Processing

Once the command is received, the backend passes it
to the Al Agent for interpretation.

What happens here:

e The Al model analyzes the natural-language
instruction.

e It identifies the task type (navigation,
scraping, form-filling, clicking, etc.).

e It breaks the instruction into step-by-step
executable actions. This step ensures the
system understands what the user wants [10]-
[12].

Task Execution (Automation Layer)
The interpreted steps are passed to the Automation
Engine, which may use:

e Python scripts

e Browser automation tools

e Machine learning models The automation
layer performs:

o Opening a browser window.
o Navigating to URLSs.
o Detecting and interacting with DOM
elements.
o Filling forms, clicking buttons,
scrolling, capturing data, etc.
This is the core of browser automation (Figure 2).

340


https://irjaeh.com/

IRJAEH

User enters
instruction

l

Interpret
instruction

l

Generate
actions

| Handle error I [ Update J

A

Provide
feedback

Figure 2 Flow Chart

After each action is executed, the system checks:
Was the action successful?
If yes, it moves to the next step.
If no, the system attempts:
Retrying the action,
Using alternative element detection,
Error handling workflows.
This ensures reliability on dynamic or
unpredictable webpages.
Status Update
When all steps are completed successfully, the
backend updates the system state.
It records:
Completed actions
Extracted data
Time taken
Any warnings or fallbacks used This
status is sent to the frontend.
User Acknowledgment
Finally, the system provides feedback to the user:
e Action completed
e Data extracted
e Task failed or partially completed
e Screenshots or logs (if applicable)
This closes the loop and informs the user about
the automation result.

International Research Journal on Advanced Engineering Hub (IRJAEH)

International Research Journal on Advanced Engineering Hub (IRJIAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 338-343

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0046

4. Advantages of the Proposed System

Increased Efficiency and Productivity
e The Al agent can perform repetitive
browser tasks much faster than humans.
e Automates data scraping, form filling,
monitoring, and decision-making
processes.
e Reduces manual workload and
operational time significantly.
Reduced Human Error
e Eliminates mistakes caused by fatigue or
oversight.
e Ensures consistent execution of tasks
such as data entry, rule-based decisions,
and navigation.

Scalability
e Can run multiple browser sessions in
parallel.

e Suitable for large-scale operations such
as bulk data extraction, massive form
submissions, or continuous monitoring.

Cost-Effective Solution

e Reduces manpower required for tedious
tasks.

e Saves costs associated with manual labor
and repeated corrections.

Autonomous Decision-Making

e Uses advanced LLM reasoning to decide
next actions dynamically.

e No need for hardcoded rules for every
scenario—agent adapts to new web
layouts or changes.

Real-Time Data Handling

e Automatically gathers, processes, and
analyzes data from online sources.

e Supports real-time dashboards, alerts,
and insights.

User-Friendly and Low-Code

e Requires minimal manual scripting due
to Al decision- making.

e Simplifies browser automation even for
non-technical users.

High Flexibility

e Can interact with any website regardless
of structure (forms, buttons, AJAX
content, tables, etc.).

341


https://irjaeh.com/

IRJAEH

e Supports multi-step workflows across
multiple platforms.
Continuous Operation
e Agent can run 24x7 to monitor websites,
track changes, submit forms, or trigger
alerts.
e Perfect for automation tasks needing
uninterrupted execution.
Integration-Friendly
e Can easily integrate with APIs,
databases, third-party tools, and cloud-
based systems.
e Supports workflow automation pipelines
and enterprise systems.
Improved Quality of Output
e High accuracy in data collection and
automated actions.
e Ensures structured and clean data for
further processing.
Adaptability to Different Use Cases
Web scraping
Automated testing
Social media automation
E-commerce automation
Job application automation
e Research data collection

5. Results

e The Al Agent with Browser Automation
successfully met the main objectives of
automating web-based tasks, reducing
manual  effort, and improving
consistency of browser interactions.

e High levels of functional correctness
(above 75%) and data extraction
accuracy (around 85%) were achieved.

e The system performed efficiently on
standard  hardware and  showed
reasonable robustness against minor
webpage and network variations.

e These results demonstrate that the
proposed system is practical and
effective  for real-world  browser
automation scenarios, especially for
repetitive and rule-based web activities
(Figures 3 and 4).

International Research Journal on Advanced Engineering Hub (IRJAEH)

XI ENDU KANDA KANAS™
B f w\ NDU Ki r\ \m
8 - 3 oS- 7}

International Research Journal on Advanced Engineering Hub (IRJIAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 338-343

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0046

ﬂ B [l [ooe® | v sinsg® [ oM [ ovemuscd| | votatiar] | ot Thoogutess®

TUM HI HO
Pet- lnendly

stays

| D [ soryotromun. @@

numu-

Flgure 4 Gmall Automation

Conclusion

The proposed Al Agent with Browser
Automation system demonstrates a powerful
integration of large language model (LLM)
intelligence with automated web interaction
capabilities. By combining  autonomous
decision-making, real- time data processing, and
precise browser control, the system effectively
reduces human effort and minimizes errors
associated with repetitive online tasks. The
agent’s ability to adapt to dynamic webpage
structures, perform multi-step workflows, and
execute tasks with consistency highlights its
potential for diverse applications such as data
extraction, automated form submission, market

342


https://irjaeh.com/

IRJAEH

monitoring, and enterprise process automation.
Overall, the Al-driven browser automation
framework enhances productivity, scalability,
and operational efficiency while offering a
flexible and cost-effective  solution  for
individuals and organizations. As Al agents
continue to evolve, this system lays the
foundation for more intelligent, fully
autonomous digital workers capable of handling
increasingly complex tasks and transforming the
way automation is approached in real-world
environments.
Acknowledgement
At the very onset, we would like to place our
gratitude on all those people who helped us in
making this project work a successful
one.Coming up, this project to be a success was
not easy. Apart from the sheer effort, the
enlightenment of our very experienced teachers
also plays a paramount role because it is they
who guide us in the right direction.First of all, we
would like to thank the Management of AMC
Engineering College for providing such a healthy
environment for the successful completion of
project work.In this regard, we express our
sincere gratitude to the Chairman Dr. K
Paramahamsa and the  Principal Dr.
Yuvaraju.B.N , for providing us all the facilities
in this college.We are extremely grateful to our
Professor and Head of the Department of
Information Science and Engineering, Dr.
Rashmi R Deshpande, for having accepted to
patronize us in the right direction with all her
wisdom. We place our heartfelt thanks to
Priyanka KR, Asst.professor, Department of
Information Science and Engineering for having
guided us for the project, and all the staff
members of our department for helping us out at
all times.
References
[1]. S. G. Patil et al, “GOEX:
Perspectives and Designs Towards a
Run-Time for Autonomous LLM
Applications,” 2024.
[2]. Q. Wu et al., “AutoGen: Enabling
Next-Gen LLM Applications via

International Research Journal on Advanced Engineering Hub (IRJAEH)

3].
[4].

[5].

[6].

[7].

[8].

[9].

[10].

[11].

[12].

International Research Journal on Advanced Engineering Hub (IRJIAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 338-343

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0046

Multi-Agent Conversation,” 2023.

C. Castelfranchi, Modelling Social
Action for Al Agents. Springer, 1998.
J. Ruan et al., “TPTU: Task Planning
and Tool Usage of Large Language
Model-based Al Agents,” 2024.

M. A. Ferrag, N. Tihanyi, and M.
Debbah, “From LLM Reasoning to
Autonomous Al Agents: A
Comprehensive Review,” 2025.

N. Krishnan, “Al Agents: Evolution,
Architecture, and Real-World
Applications,” 2024.

S. Russell and P. Norvig, Artificial
Intelligence: A Modern Approach, 4th
ed. Pearson, 2021.

M. Wooldridge, An Introduction to
MultiAgent Systems, 2nd ed. Wiley,
2009.

B. Settles, “Active Learning
Literature ~ Survey,” University of
Wisconsin-Madison, Tech. Rep.
1648, 2010.

A. Karpathy, “Trends in Large
Language Models and Autonomous
Agents,” arXiv preprint
arXiv:2308.00000, 2023.

OpenAl, “GPT-4 Technical Report,”
arXiv  preprint  rXiv:2303.08774,
2023.

S. Thrun, M. Montemerlo, “The
GraphSLAM Algorithm With
Applications to Autonomous
Mapping,” Int. J. Robotics Research,
vol. 25, no. 5-6, pp. 403-429, 2006.

343


https://irjaeh.com/

