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Abstract 

Crops deal with all sorts of stress as they grow—things like missing nutrients, not enough water, or pests 

showing up where you don’t want them. If you catch these problems and you save the harvest and keep food 

production steady. But the old way of checking crops by hand? It’s slow, subjective, and honestly, just not 

practical for big fields. In this study, we built an automated crop stress detection system powered by AI. It uses 

image processing and deep learning, specifically a Convolutional Neural Network (CNN) based on the 

MobileNetV2 architecture. We set this up in TensorFlow and used the ImageDataGenerator function to keep 

our training data fresh and varied. The backend runs on Python, taking care of image preprocessing and 

making predictions. On the front end, we used ReactJS, so users can upload crop photos and instantly see 

what the system finds. The results speak for themselves. Our model hits 93.2% accuracy, with a precision of 

91.5% and an F1-score of 92.3%. That’s solid proof this system works and can actually help farmers and 

researchers in real agricultural settings. 

Keywords: Convolutional Neural Network (CNN), Deep Learning, MobileNetV2, TensorFlow, Image 

Processing, Precision Agriculture, Smart Agriculture 

 

1. Introduction 

Agriculture remains a cornerstone of the global 

economy and a vital contributor to food security. Yet, 

crop productivity continues to face challenges due to 

different factors like drought, nutrient imbalance, and 

pest or disease attacks. Traditionally, farmers identify 

crop stress through manual inspection, which 

demands experience, time, and consistency—factors 

that are not always guaranteed, especially across 

large cultivation areas. The AI and computer vision 

are changing the game in agriculture, making it 

possible to check crop health with way more 

accuracy—and a lot less guesswork. Machine 

learning, especially Convolutional Neural Networks 

(CNNs), really shine here. They’re great at spotting 

patterns in images, so they can pick up on early signs 

of stress in leaves and stems [1]. This project picks 

up where Phase-1 left off. So, after digging through 

recent research and putting together a solid dataset, 

we’re now moving into Phase-2. That’s where things 

get real: actually building and rolling out the system. 

We’re using Python to develop the core models. 

Furthermore, this research contributes to the digital 

transformation of agriculture, where automated 

decision-support systems play a vital role in 

achieving sustainable development goals (SDGs) 

such as responsible consumption and production. The 

incorporation of scalable cloud infrastructure and 

real-time data visualization ensures that this system 

is not just a model demonstration but a deployable 

product ready for real-world adaptation [2]. 

2. Merits of the Proposed System 

This system helps in transforming the way crop 

monitoring and stress detection are carried out. It 

provides a robust AI-based framework capable of 

analyzing crop images and identifying stress 

conditions automatically. The system minimizes 
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human intervention and error by replacing traditional 

visual inspection with a data-driven, automated 

approach. Through deep learning with cloud 

computing, it achieves accuracy and scalability. This 

research stands out by using MobileNetV2, a 

lightweight CNN that’s both fast and accurate. 

Because it runs efficiently, you can use it on phones 

and web apps—even in places where resources are 

tight, like many farms. The backend runs on Python, 

so it handles image processing and runs the model 

quickly. For storing data, Supabase steps in, making 

sure everything syncs smoothly, scales well, and 

keeps user info safe. On the frontend, ReactJS gives 

farmers a clean, easy-to-use interface. They just 

upload a crop photo and get stress detection results 

right away. This system does a lot more than just 

automate chores. It gives farmers a sharper, more 

reliable way to manage irrigation, fertilizer, and pest 

control—decisions that can make all the difference in 

a season’s outcome. When it catches the first signs of 

trouble, like thirsty plants or missing nutrients, it 

stops waste in its tracks. Less wasted water, fertilizer, 

and pesticides means good news for the environment 

and anyone who cares about a stable food supply. The 

real breakthrough here is how this research drags crop 

monitoring into the age of data-driven decisions. 

With AI-powered image recognition, the system 

spots tiny color changes, weird textures, or subtle 

shifts in leaf shape—details most people would 

overlook. And here’s something important: the team 

didn’t just pick any model—they went with 

MobileNetV2 for a reason. Its depthwise separable 

convolutions let it process data fast without losing 

accuracy. That’s a game-changer if you’re running on 

low-power gadgets out in the field, not just lab 

equipment. Mixing machine learning and computer 

vision with farming isn’t just hype—it’s actually 

shaking things up where it matters most. Take 

MobileNetV2, for example. It’s quick, doesn’t 

demand fancy gear, and still delivers solid accuracy. 

Toss in some basic data tricks—like flipping or 

rotating photos, messing with brightness—and 

suddenly, this model can handle whatever the farm 

throws at it. That’s what gives this project real weight 

for anyone working in AI-powered agriculture or 

environmental science. Here’s the thing: this isn’t 

just tech for the sake of showing off. It’s proof that 

AI, cloud services, and web tools actually solve real 

problems for farmers. The system’s simple, 

affordable, and built to flex—exactly what people 

need when money’s tight. By cutting down pointless 

chores, catching crop problems early, and making 

farm work more accurate, this AI setup is changing 

the way people farm. It’s a solid step toward a 

smarter, more sustainable future for everybody who 

works the land. [3]-[6]  

3. Methodology 

The methodology adopted for this research outlines a 

systematic workflow for detecting crop stress using 

Artificial Intelligence and deep learning techniques 

[7]-[9]. The overall process, illustrated in the block 

diagram, is composed of nine sequential stages—

beginning with image acquisition and ending with 

system deployment. Each stage contributes to the 

reliability, accuracy, and automation of this system. 

The major steps are described in Figure 1. 

 

 

 

 
Figure 1 Block Diagram 
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3.1. Image Acquisition 

It all circles back to smart farming. Here, AI teams up 

with IoT sensors, satellite images, and piles of 

environmental data. You can keep an eye on soil 

moisture, check the weather on the fly, or just let the 

system handle irrigation automatically. The result? A 

farm that actually keeps up and adapts to whatever 

comes its way [10]. 

3.2. Image Preprocessing 

After acquisition, the raw images undergo several 

preprocessing operations to improve data quality and 

prepare them for deep learning model training. The 

first step in preprocessing is noise reduction, which is 

performed using filtering techniques such as 

Gaussian blur to remove unwanted background 

disturbances. This step is essential to ensure that only 

relevant visual features (such as leaf texture, color, 

and shape) are emphasized. Once you cut out the 

noise, you shrink the images down to a standard 

size—usually 224 by 224 pixels—so they fit what the 

Convolutional Neural Network wants. Next up is 

normalization. Basically, you scale the pixel values 

so they all end up in the same range. That way, the 

model picks things up faster and doesn’t get thrown 

off if one picture’s a lot brighter than the rest. In the 

end, all these steps just make sure the dataset’s 

consistent and ready for the model to chew through 

[11]-[13]. 

3.3. Data Augmentation 

We make the model tougher and keep it from 

overfitting by using data augmentation. That’s just a 

fancy way of saying we take our original images and 

mess with them a bit—rotate them, flip them around, 

tweak the brightness, or zoom in and out—without 

making them look fake. So, a plant might be tilted, or 

maybe it’s upside down, or the lighting’s a little 

weird, just like what you’d see if someone snapped a 

quick photo out in the field. With all these changes, 

the model doesn’t just memorize one version of a 

plant. Instead, it learns what really matters, no matter 

how the photo was taken or what angle it’s at. This 

way, when the CNN sees new crop images later on, 

whether during testing or real-world use, it handles 

them with a lot more confidence. 

3.4.  Segmentation 

Once you’ve pumped up your dataset, it’s time to 

dive into image segmentation. Basically, you’re 

trying to zero in on what you actually care about—

usually the crop leaf—and cut it out from all the 

background noise. That way, the CNN focuses on the 

real action in the image. You’ll use tools like 

thresholding and contour detection to make this 

happen. But let’s be real, sometimes the background 

just refuses to cooperate. When things get tricky or 

the image is a mess, people step in and adjust the 

boundaries by hand to nail the segmentation. The 

segmentation process removes non-essential 

elements such as soil, sky, or surrounding vegetation, 

ensuring that the model is trained only on meaningful 

pixel regions. This step significantly enhances 

classification accuracy by reducing feature noise and 

ensuring the CNN focuses on the physiological 

characteristics of the plant [14]-[16]. 

3.5. Feature Extraction using CNN 

By this sits right at the center of this system—and 

that’s where Convolutional Neural Networks, or 

CNNs, really shine. They grab the input images and 

start digging out visual details one layer at a time. At 

first, the model notices the basics like edges, color 

changes, or textures. Then it starts to catch bigger 

patterns—shapes, repeating designs, structural stuff. 

By the end, it’s picking up on those high-level clues 

that actually point to stress, like leaf discoloration, 

necrosis, or lesions.The model extracts three levels of 

features: 

 Low-level features: such as edges, color 

gradients, and textures. 

 Mid-level features: capturing shapes, 

patterns, and structure details. 

 High-level features: corresponding to stress 

indicators like leaf discoloration, necrosis, or 

lesion formation. 

All of this runs on MobileNetV2. It’s a lightweight 

architecture that still manages to punch above its 

weight. MobileNetV2 uses depthwise separable 

convolutions, so it gets more done with fewer 

parameters and less training. That’s perfect for web 

and mobile apps—speed matters, and you don’t want 

to burn through resources. The best part? Feature 

extraction happens automatically, runs on your data. 

3.6.  Model Training 

The extracted features are used to train the CNN 

model through supervised learning. The process 

leverages transfer learning, where a pre-trained 
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MobileNetV2 model (originally trained on 

ImageNet) is fine-tuned using the agricultural 

dataset. This will reduce training time and improves 

performance on small, domain-specific datasets.  

We break the dataset into three chunks: 70% for 

training, 20% for validation, and the final 10% for 

testing. For training, we stick with the Adam 

optimizer since it adjusts the learning rate as it goes. 

Because we’re sorting samples into several classes, 

we use categorical cross-entropy for the loss. To 

boost performance, we mess around with things like 

batch size, learning rate, and the number of epochs. 

The model learns to connect the data’s features to 

stress labels like “Healthy,” “Drought Stress,” 

“Nutrient Deficiency,” and “Disease Stress.” 

3.7. Classification 

After training finishes, the CNN model can look at 

any crop image you throw at it and sort it into a stress 

category. It sends everything through a Softmax layer 

at the end, which just means it cranks out a list of 

probabilities for each class. The highest score wins—

that’s the category the image lands in. So you get one 

of these: Healthy, Drought Stress, Nutrient 

Deficiency, or Disease Stress. You also get a 

confidence score, so you know how sure the model is 

about its pick. That’s the final step. The model takes 

everything it’s learned and turns it into something 

straightforward—real answers for people who need 

them. 

3.8. Evaluation 

We keep an eye on a bunch of metrics to figure out if 

the system’s really pulling its weight. Accuracy’s the 

easy one—it just tells us how often the model nails it. 

Precision goes a step further, making sure the model 

isn’t too quick to call something a win when it’s not. 

Recall looks at the flipside, checking if the model’s 

actually catching everything it should. Then there’s 

the F1-Score, which blends precision and recall, so 

we get a clearer picture of how things balance out. 

We also lean on the Confusion Matrix. It lays out 

where the model gets things right and where it 

stumbles, especially when you break it down by 

stress categories. This way, it’s easier to spot which 

types are getting mixed up. And then there’s the 

AUC-ROC curve—it helps us see how well the 

model separates true from false across different cut-

off points. Putting all these metrics together, we get a 

pretty solid idea of whether the model’s not just 

accurate, but actually stays reliable when new data 

rolls in. 

3.9. Deployment 

The final stage involves deploying the trained and 

validated model into a functional application 

accessible to end users. The deployment phase 

integrates the model into a web-based dashboard 

using a ReactJS frontend, a Python backend (FastAPI 

or Flask), and a Supabase cloud database. The model 

processes the image, predicts the stress category, and 

returns the result to the user within seconds. The 

deployment is further extended to potential mobile 

and drone-based systems, enabling real-time 

monitoring of large agricultural areas. The system’s 

cloud integration ensures scalability, data storage, 

and accessibility, thus transforming the AI model into 

a fully functional, real-world precision agriculture 

tool. 

4. Results and Discussion 

We tested our CNN model pretty hard, just to see if it 

could really tell when crops are stressed. Table 1 

summarizes the key evaluation metrics of the system: 

 

Table 1 Performance Metrics of the Proposed CNN Model (MobileNetV2 using TensorFlow and 

ImageDataGenerator) 

Algorithm/Framework Accuracy 

(%) 

Precision (%) F1-Score (%) 

CNN (MobileNetV2 + 

TensorFlow + 

ImageDataGenerator) 

93.2 91.5 92.3 
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The results pretty much speak for themselves—the 

system just gets it right. With 93.2% accuracy, it sorts 

through stress images without breaking a sweat. 

Precision lands at 91.5%, so you don’t have to deal 

with a bunch of false alarms. And that F1-score? It’s 

sitting at 92.3%, which means you get a system that 

knows how to find real problems without freaking out 

over nothing, when things get messy out in field. It’s 

quick, too. The backend runs through images and 

spits out predictions in two or three seconds. That’s 

fast enough for real-time use, not just on paper but in 

the real world. Supabase keeps everything safe and 

tidy in the cloud, while ReactJS gives users a smooth, 

interactive front end. The whole thing just works—

whether you’re a farmer, an agronomist, or someone 

deep into research. These results really back up the 

idea that this AI approach can change the way people 

monitor crops. Instead of sending folks out to walk 

the fields, you get sharp, automated analysis. And 

testing it on bigger, more varied datasets only makes 

it stronger and more flexible. We pushed the model 

with different crop types and weather conditions, 

checking both the numbers and the actual predictions. 

The confusion matrix made it obvious: the model 

nailed water stress (with 96.4% accuracy) and still 

did a solid job with nutrient deficiency (91.8%). That 

shows the CNN can pick up on those subtle changes 

in leaf color and texture. We also put MobileNetV2 

up against other big-name CNNs like ResNet50 and 

VGG16. Sure, ResNet50 had a slight edge in 

accuracy, but MobileNetV2 was way faster—five 

times quicker at making predictions and much lighter 

on the GPU. If you’re building something for the 

web, that speed really matters. And about the speed—

latency stays under 3 seconds, even for images up to 

512×512 pixels. It will be use it live in the field and 

get answers right when you need them. Plus, when 

we checked out the Grad-CAM heatmaps, the model 

didn’t just take random guesses—it focused on the 

right parts of the leaves, showing that it really learned 

what matters when spotting stress.Overall, these 

findings confirm that the combination of 

MobileNetV2, TensorFlow, and cloud-based storage 

yields a reliable and practical crop stress detection 

pipeline. 

 

 

Conclusion 

This research spells out a full-blown AI setup for 

catching crop stress before it gets out of hand. The 

team didn’t just play around with theory—they 

actually pulled together MobileNetV2, TensorFlow, 

a Python backend, Supabase for the cloud, and a 

ReactJS frontend. So yeah, it’s not just some 

academic idea; it’s a real, working tool for precision 

farming.Instead of farmers squinting at leaves and 

hoping to spot problems—which takes forever and 

still misses stuff—this AI checks leaf images and 

flags stress way faster and more reliably. And it’s all 

in real time, so there’s no waiting around. The 

numbers don’t lie: 93.2% accuracy, 91.5% precision, 

and a 92.3% F1-score. The model doesn’t just find 

one kind of problem either. It tells the difference 

between things like water stress, nutrient gaps, and 

disease. They used ImageDataGenerator to bulk up 

the dataset, so even if the leaves are tilted, the 

lighting’s weird, or the background’s a mess, the 

model still holds up. But honestly, the real win isn’t 

just the tech. This actually makes a difference for 

sustainable, high-precision farming. When farmers 

know about stress early, they can make smart calls on 

watering, fertilizing, or pest control. That means less 

waste and better crops. The system scales easily, 

too—so it works for different crops, climates, and 

regions. Pretty crucial if your whole community 

depends on farming. What really sticks out is how 

modular this system is. Every part—from gathering 

the data to processing, augmenting, training, and 

deploying—can be swapped out or upgraded 

whenever better tech comes along. There’s tons of 

room to grow, like: 

 Plugging in IoT sensors for real-time soil and 

weather data. 

 Using drones to scan big farm areas. 

 Layering on GIS to map out exactly where 

stress is the worst. 

 Trying federated learning to make the model 

smarter with data from everywhere, without 

risking privacy. 
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Plus, the whole thing is ready for edge computing. It 

runs on phones or drones right in the field—even if 

the internet drops out. That’s a lifesaver for rural 

spots with spotty service   Bottom line? This project 

pushes AI-powered farming a lot further.  
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