

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

International Research Journal on Advanced Engineering Hub (IRJAEH)

198

Acadbot: AI-Driven Automation of Academic Services
Nandhitha B R1, Ayesha Siddiqah Khanam2, Bharath Moger3, Bhavana G M4, Keerthana M D5
1Associate professor Nandhitha B R, Dept of ISE, Malnad College of Engineering, Hassan, Karnataka India.
2,3,4,5UG Scholar Ayesha Siddiqah Khanam, Dept of ISE, Malnad College of Engineering, Hassan, Karnataka,

India.

Emails: brn@mcehassan.ac.in1, ayesha4siddiqah@gmail.com2, 03bharatmgr@gmail.com3,

bhavanagm004@gmail.com4, keerthanagowda9336@gmail.com5

Abstract

Accessing timely and accurate information in academic institutions is often challenging, as students, faculty,

and administrators struggle to locate dynamic data such as event schedules, meeting details, and academic

notifications, which are typically scattered across multiple systems. Traditional university portals lack

intuitive, centralized, and fast query mechanisms, leading to inefficiency, delays, and user dissatisfaction. To

address this issue, we present Acadbot, a full-stack web application built using the MERN (MongoDB,

Express, React, Node.js) stack, offering a unified and user-friendly dashboard for managing academic

information, supported by a secure Role-Based Access Control (RBAC) system that ensures proper

authorization for different user groups. The core innovation of this project is its lightweight, database-driven

AI chat assistant, which deviates from conventional systems that depend on large vector embeddings, FAISS

indexes, and separate retrieval pipelines. Instead, Acadbot employs a practical heuristic-based retrieval

engine that performs case-insensitive, token-based, and typo-tolerant regex searches directly on the live

MongoDB database. By querying real-time operational data rather than relying on preprocessed vector

stores, the system reduces complexity and avoids issues related to outdated or unsynchronized information.

This approach enables Acadbot to deliver fast, accurate, and context-aware responses tailored to academic

environments. The paper further discusses the system architecture, the implementation of the heuristic

retrieval algorithm, and the benefits of adopting this efficient approach for domain-specific academic

chatbots. Keywords: MERN Stack, AI Chatbot, Academic Portal, Heuristic Retrieval, Information Retrieval,

Role-Based Access Control (RBAC).

Keywords: Academic portal; Ai chatbot; Heuristiretrieval; Information retrieval; Mern stack.

1. Introduction

In modern academic institutions, sharing information

effectively is a crucial and ongoing challenge.

Universities create a constant stream of time-

sensitive data, which includes event schedules,

academic deadlines, meeting announcements, and

course-related documents. This information is often

spread out across different departmental websites,

hard-to-navigate portals, or scattered through email

inboxes. This fragmentation results in a poor to solve

this issue, we developed and implemented Acadbot,

a full-stack web application built on the MERN

(MongoDB, Express, React, Node.js) stack. Acadbot

creates a unified portal where all key academic

functions—from managing events and distributing

schedules to sharing documents and sending

university-wide notifications—can be handled and

accessed. A key feature of our system is a strong

Role-Based Access Control (RBAC) model.

Thisexperience for everyone involved. Students may

miss important deadlines, faculty face excessive

administrative tasks, and administrators struggle to

maintain consistent communication. Current

Learning Management Systems (LMS) are typically

complex and lack the intuitive, on- demand query

interfaces that users expect today. Without a

centralized, responsive, and easy-to-query "single

source of truth," there is a significant information gap

that leads to inefficiency, user frustration, and missed

opportunities. model customizes the app's

functionality and data visibility according to the

https://irjaeh.com/
mailto:ayesha4siddiqah@gmail.com2
mailto:bhavanagm004@gmail.com4,%20%20%20%20keerthanagowda9336@gmail.com5

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 199

specific needs of different user roles: administrators,

faculty, and students. To solve this issue, we

developed and implemented Acadbot, a full-stack

web application built on the MERN (MongoDB,

Express, React, Node.js) stack. Acadbot creates a

unified portal where all key academic functions—

from managing events and distributing schedules to

sharing documents and sending university-wide

notifications—can be handled and accessed. A key

feature of our system is a strong Role-Based Access

Control (RBAC) model. This model customizes the

app's functionality and data visibility according to the

specific needs of different user roles: administrators,

faculty, and students. It ensures that sensitive

functions, like creating new events or uploading

official documents, are limited to authorized users

while general information stays accessible. The main

focus of this paper is the design of the system's AI-

powered chat [1].

2. Related Works

Integrated Knowledge Management System

Based Mentoring for new University Staff

Development Topic:
This paper, written by Puangpet Srivichai, Komsak

Meksamoot, Anchalee Jengjalern, and Nopasit

Chakpitak, presents a framework for a system that

combines a Knowledge Management System (KMS)

with a mentoring process. The main goal is to

improve and speed up the professional development

of new university staff. The authors tackle a major

issue faced by academic institutions: the loss of

experienced staff due to retirement, which creates a

long gap before new hires reach a similar level of

expertise. Their proposed system aims to effectively

and efficiently close this knowledge gap. The

framework is based on the idea that a structured,

technology-driven environment can help transfer

both tacit and explicit knowledge from experienced

faculty to new staff. The system matches new staff

with established mentors who are recognized experts

in their fields. This matching goes beyond formal

guidance; it helps facilitate a variety of professional

development methods, including mentoring, training

sessions, coaching, and counseling. The KMS

component acts as a knowledge repository,

containing user profiles, educational content, and

records of various professional development

activities. This material is organized for easy access,

offering new staff the information and resources

needed to navigate their roles and advance their

careers. A key contribution of this work is its focus

on a facilitated approach. The system includes a

coordinator role to ensure effective mentoring

relationships and active engagement from new staff

members. This human aspect is essential to support

the technological structure, making sure the system

functions as an active tool for building professional

relationships and promoting a culture of continuous

learning. The authors collected data through

interviews with academic staff from both a newly

established and a well-established university to

inform their design, showcasing a practical base for

their conceptual model. They conclude that this

integrated approach is a valuable resource for

educational organizations, providing a solid solution

to cut down the time needed for new staff

development and address the larger issues of staff

succession and knowledge retention. The paper

effectively argues that a combined KMS and

mentoring program offers a more structured and

quicker path to expertise for new university personnel

compared to traditional, less formal methods [2].

Efficiency Engine: Designing and Implementing

an Academic Management System

Topic:

The paper "Efficiency Engine: Designing and

Implementing an Academic Management System,"

by Nishu Sethi and Anshu Malhotra, outlines the

creation and deployment of a software solution for

educational institutions. This system is seen as a

centralized platform that digitalizes and automates a

range of administrative and academic processes. The

main goal is to improve efficiency, accuracy, and

communication across the entire institution,

benefiting administrators, faculty, staff, and students.

The system is built with a modular design, integrating

key functionalities that are important for daily college

or university operations. These modules cover areas

like student information management, course

registration, attendance tracking, and maintaining

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 200

academic records. By bringing these functions into

one platform, the system eliminates manual

paperwork and reduces the likelihood of human

error—common issues in traditional administrative

workflows. The paper emphasizes how this digital

approach allows real-time access to information, so

all users can get up-to-date data when they need it,

which improves decision-making speed and quality.

A significant part of the paper addresses the practical

challenges and solutions involved in implementing

such a system. The authors stress the importance of

security, explaining the measures taken to protect

data, verify user identities, and ensure privacy. These

considerations are essential given the sensitive nature

of academic and personal information handled by the

system. The paper also highlights the need for a well-

planned implementation strategy that includes user

training and ongoing technical support. These

components are crucial for making sure the system is

not only technically sound but also widely adopted by

users, maximizing its potential benefits. The

"Efficiency Engine" is presented as a transformative

tool that can streamline operations, improve

communication, and create a more integrated and

efficient academic environment. The authors provide

a practical guide for institutions looking to modernize

their administrative and academic functions through

a strong and secure digital platform [3].

 Academic Management System Admin Reference

Manual Topic:

The "Academic Management System Admin

Reference Manual," created by the ICAR- Indian

Agricultural Statistics Research Institute (IASRI) for

agricultural universities, is a practical guide to a web-

enabled management system. The focus of the paper

is on the administrative features of this system, which

was developed under the National Agricultural

Higher Education Project (NAHEP). Its aim is to

improve governance and management of academic

activities in these universities by offering a clear,

automated framework for various tasks. The manual

guides administrators through the system's different

modules and functionalities. It outlines the specific

responsibilities tied to various user roles, such as

Dean, Registrar, Professor, and Student, along with

the Administrator. The paper details a range of

administrative tasks that the system automates,

including the approval of registered students and

faculty, adding new disciplines, and managing

courses and reports. A key feature highlighted is the

system's built-in workflow, which automatically

informs users of their next steps. This is vital for

ensuring that complex processes, like student

registration or course approval, are completed on

time and in an organized manner, improving overall

efficiency. The document provides a step-by-step

guide for common administrative tasks, such as

updating administrator profiles and adding new

faculty members. It also explains how administrators

can change their roles to manage other user profiles,

which is helpful if a user cannot complete their own

work. The manual describes search functions that

help administrators quickly locate student and faculty

profiles. Essentially, this paper serves as an

operational guide, showing how the system cuts

down the time and effort involved in manual

academic processes. It highlights the system's

modular design and how it enhances academic

management efficiency through automation and

clear, role-based duties. The work emphasizes the

importance of a user-friendly digital platform for

modern educational governance [4].

Lecture Management Notification System.

Topic:
The paper "LectureManagement Notification

System," written by Prof. VaishaliGedam, Vinay

Nikose, Neha Dhargave, Tejas Kripal, Shruti Patil,

Ayush Jharbade, and Khushi Gawande, introduces an

Android application designed as a complete solution

for college management. The main theme of this

work is the use of mobile technology to streamline

administrative tasks and improve communication

within educational institutions. The application is

presented as a single platform that meets the diverse

needs of various user groups, including

administrators, faculty, students, and parents. The

system is founded on the idea of providing a single

digital platform for all users. For administrators, the

application includes modules for managing

admissions, collecting fees, keeping student records,

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 201

and overseeing staff. By automating these complex

tasks, the system frees up time and resources for

strategic planning and institutional growth. Faculty

members gain from tools like attendance

management, grade books, course planning, and

communication features, which help them manage

classes efficiently and interact better with students.

This set of tools allows educators to spend more time

on teaching and less on administrative tasks. For

students, the application serves as a central hub for

their academic life. They can access course materials,

lecture notes, assignments, and other resources,

helping them stay organized, track their academic

progress, and engage with their coursework. The

paper also points out the collaborative features of the

system, such as discussion forums and chats, which

promote a more interactive learning experience. A

unique feature of the system is the real-time

notification module for parents. This ensures that

parents receive updates on their children's academic

progress and attendance, strengthening the important

relationship among parents, teachers, and students.

The application is a powerful tool for improving the

efficiency and effectiveness of educational

institutions [5].

3. Methodology

Our project, Acadbot, is a full-stack web application

built using the MERN stack. This section describes

the technologies and architectural patterns we used to

create the system, focusing on its three main layers:

the frontend, the backend, and the database. It also

breaks down the Role-Based Access Control (RBAC)

framework that secures the application and

customizes the user experience.

3.1 Full-Stack System Architecture

The system follows a classic three-tier architecture,

separating presentation, logic, and data [6].

3.2 Frontend (Client-Side)

The frontend is a modern, responsive Single Page

Application (SPA) developed with the React.js

library. This component-based approach allows for

reusable UI elements, which improves

maintainability and scalability. The structure of the

application is defined in App.js, which serves as the

main entry point for all visual components. These

components represent distinct features of the

application, such as Dashboard.js for the user's home

page, Login.js and Register.js for authentication, and

other feature-specific components like Events.js,

Schedules.js, Meetings.js, Documents.js, and the

AIChat.js interface..Client-side navigation is handled

by react-router- dom, enabling seamless transitions

between views without a full page reload. The routing

logic is defined within the <Router>, <Routes>, and

<Route> components, mapping URL paths to their

corresponding React components. A key part of our

security model is implemented with the custom

<ProtectedRoute> component, which serves as a

guard forsensitive routes. It checks localStorage for a

valid token; ifthe token is not there, the user is

redirected to the login page using the <Navigate

to="/" replace component, preventing unauthorized

access to dashboard pages. State management occurs

at the component level using React Hooks. The

useState hook manages local state, such as user inputs

in forms (for example, username and password in

Login.js) and stores data fetched from the backend

(like the events array in Events.js). The useEffect

hook manages by using mobile technology to create

a connected academic environment side effects,

especially for fetching initial data when a component

mounts (for example, fetchEvents() in Events.js) and

checking the user's authentication status when the

application loads (useEffect in App.js).

Communication with the backend API happens

through asynchronous axios requests. For protected

endpoints, the stored JWT is retrieved from

localStorage and included as a Bearer token in the

Authorization header. We implement robust error

handling within catch blocks to capture API or

network failures and display user-friendly error

messages, such as setError(errorMsg) in the Login

component.

3.3 Backend (Server-Side)

The backend API is a RESTful service built on

Node.js, an asynchronous, event-driven runtime,

along with the Express.js web framework. The server

is set up as an ES Module ("type": "module" in

package.json), allowing the use of modern

import/export syntax across the codebase. The main

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 202

server.js file acts as the application's entry point,

responsible for initializing the database connection,

setting up middleware, and mounting the modular

route handlers. The API's structure is highly modular.

All routes are namespaced under /api (for instance,

/api/auth, /api/events, /api/documents). Each feature's

routes are defined in separate files within the routes/

directory (like authRoutes, eventRoutes,

documentRoutes) and then imported and applied in

server.js using app.use(). This separation keeps the

main server file clean and makes the API easier to

maintain and extend. A critical aspect of the backend

is its middleware pipeline. CORS: The cors

middleware is configured with a strict whitelist of

allowed origins (for example, http://localhost:3000).

This is an essential security measure to ensure only

the React frontend can make requests to the API,

preventing Cross-Origin Resource Sharing attacks

from unauthorized domains. Body Parsing: The

express.json() middleware parses incoming JSON

payloads from the frontend, making them available

on the req.body object for all POST and PUT

requests. Static Files: express.static() serves files

from the /uploads directory. This middleware makes

user- uploaded documents accessible to the frontend

via adirect URL (like

http://localhost:5000/uploads/document.pdf).File

Uploads: The multer library is set up specifically for

document uploads. It uses diskStorage to define the

destination directory (uploads) and a custom filename

generator (Date.now() + '-' + file.originalname) to

avoid filename conflicts. This multer middleware [7].

3.4 Database (persistence)

The persistence layer of our application uses

MongoDB, a NoSQL, document-oriented database.

This choice was intentional, as MongoDB's flexible,

BSON (binary JSON) document model directly

matches the JavaScript objects used throughout our

MERN stack, making data handling simpler. The

application connects to the MongoDB instance using

the MONGO_URI connection string, securely stored

in an .env file rather than hardcoded, which follows

security best practices. The server.js file also includes

error handling for the initial database connection to

ensure the server logs a clear error and does not start

if the database is unavailable. We use Mongoose as

an Object Data Modeling (ODM) library to

communicate with MongoDB. Mongoose provides

an effective abstraction layer, allowing us to define

strict schemas for our data, ensuring data integrity

and offering built-in validation. All data models,

including User, Event, Schedule, Meeting,

Document, and Notification, are defined in the

models/ directory. For example, the User schema

defines the role field as an enum restricted to 'admin',

'faculty', or 'student', and specifies the username as

required and unique. Mongoose's middleware

capabilities are central to our security model. The

User schema uses a pre('save') hook to automatically

hash a user's password with bcryptjs before it is saved

to the database. This guarantees that no plain-text

passwords are stored, even in case of a database

breach. Additionally, we define a custom instance

method on the user schema, compare Password,

which includes the bcrypt. compare logic. This

method is then used in the login route

(/api/auth/login) to securely validate a user's

credentials, showing an object-oriented approach to

our data modeling [8].

3.5 Role-Based Access Control (RBAC)

Framework

Security and authorization are managed using a

solid RBAC system.

 User Roles: The User model defines three

roles: 'admin’,'faculty,' and 'student.

Admin has full control access whereas faculty

has few controls itself and students can only

view.

 Authentication: Users register by hashing

their passwords with bcryptjs and

authenticate using JWT.

 Authorization: A custom authMiddleware

protects API endpoints. This middleware

decodes the user's JWT, checks their role, and

blocks access if they are unauthorized.

 Example: The route to post a new document

is restricted to 'admin' and 'faculty' roles:

router.post('/',authMiddleware(['admin',

'faculty']), ...). The frontend UI also reflects

this, hiding the upload form from 'student'

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 203

users Shown in Figure 1 [9].

Figure 1 System Architecture

4. Results

The deployment of the Acadbot application produced

several important outcomes in both system

functionality and the performance of our new

retrieval engine.

System Functionality and RBAC Verification the

Acadbot MERN-stack application was successfully

implemented and operates as a cohesive academic

portal. All main components, from user registration

to the main dashboard, were fully functional. The

Role-Based Access Control (RBAC) system was a

key part of our testing and was shown to be

effective.Users with 'admin' or 'faculty' roles could

successfully access content creation forms. This

included posting new events, uploading documents

via the multer endpoint, and adding meetings. On the

other hand, users with the 'student' role were correctly

limited to a view-only interface for these

components. This confirms that our security model,

enforced at both the API level through

authMiddleware and on the client side through

conditional rendering, is working as intended.

6.Heuristic-Based Retrieval (HBR) Engine

Performance The main results of this study relate to

the performance of the Heuristic-Based Retrieval

(HBR) engine, which we used instead of a traditional

RAG pipeline. The main results of this study relate to

the performance of the Heuristic-Based Retrieval

(HBR) engine, which we used instead of a traditional

RAG pipeline.

Result 1: Real-Time Data Accuracy: The biggest

advantage of the HBR engine is its 100% data

freshness. In testing, any new document, event, or

schedule created by an admin was immediately

searchable by the AI Chatbot. This is a direct result

of querying the live MongoDB collections, which

completely resolves the data-staleness problem found

in a separate, pre-computed vector index [10].

Result 2: Low Latency and Zero Cost: The

retrieval process consists of a single, optimized

MongoDB query using case-insensitive regex and

token matching, making it extremely fast. This avoids

costs from external API calls and network delays

linked to embedding generation (for example, to

OpenAI) and LLM calls, which were part of the

initial RAG plan. The response to the user is nearly

instantaneous and incurs no monetary cost per query.

Discussion and Trade-Offs While the HBR

approach is successful, it has clear trade-offs. Our

discussion should recognize that this engine is

excellent for factual, keyword- based retrieval (for

example, "meetings today,""exam schedule") but

completely lacks semantic understanding. A query

like "What should I do if I miss an exam?" will not

work because it doesn’t include the keywords

"event," "schedule," or "meeting" that the engine

looks for. Additionally, the response is a formatted

data list, not a natural-language, conversational reply.

Thus, our HBR engine does not serve as a universal

replacement for RAG but rather as a highly

specialized tool. It is clearly better for cases where

data freshness and low operational cost are more

important than conversational depth or semantic

search features. The results are summarized in the

table below. Feature, Planned RAG (Vector Search),

Implemented HBR (Heuristic Search) Data Source,

Static FAISS Index, Live MongoDB Database Data

Freshness, Stale (requires re-indexing), Real-time

Query Type, Semantic (understands meaning),

Keyword/Regex (matches text) Overhead, High

(FAISS, Embeddings), Low (just a DB query) Cost,

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 204

High (OpenAI API calls), Zero (internal) Response

Style, Natural Language (via GPT- 3.5), Formatted

Data List.

5. Discussion

The development of AcadBot marks a significant step

toward integrating intelligent chat technologies in

education. As academic environments grow more

complex and the demand for personalized student

support increases, automation tools become essential.

AcadBot addresses this need through a Node.js

backend and MongoDB database, creating a

responsive and scalable chatbot that answers

institutional queries, provides course details, and

assists with administrative tasks. Technically,

Node.js supports asynchronous event- driven

processing, improving responsiveness and enabling

multiple user interactions simultaneously.

MongoDB’s flexibility as a NoSQL database allows

storage of various user inputs, chat histories, and

contextual data—making data retrieval quick and

efficient. Together, these technologies ensure

smooth, real-time communication between students

and the system. Testing results showed that AcadBot

efficiently handled academic queries related to

subjects, schedules, and course structures. The user-

friendly interface made it accessible even to non-

technical users, and feedback indicated high

satisfaction with both speed and accuracy. Its

modular architecture also supports easy integration of

new features like NLP-based analysis or third-party

APIs, ensuring long-term adaptability. AcadBot also

highlights the benefits of automation in education. By

managing routine queries, it reduces the workload on

staff and provides 24/7 academic assistance,

especially valuable for remote learners. However,

current limitations include reliance on predefined

responses, which restricts understanding of complex

queries. Future improvements could involve Natural

Language Processing (NLP) and Machine Learning

(ML) for better contextual comprehension. Ensuring

data privacy and security will also be a key focus in

upcoming versions.

Conclusion
In this paper, we introduced Acadbot, a complete

MERN application aimed at addressing ongoing

information management issues in academic

institutions. We built a secure, centralized portal for

managing dynamic data such as events, schedules,

meetings, and documents. The system is safeguarded

by a strong Role-Based Access Control (RBAC)

framework that customizes application permissions

for students, faculty, and administrators. Our main

contribution is the design and evaluation of the

integrated AI chatbot. We showcased a practical shift

from a complex, planned Retrieval-Augmented

Generation (RAG) pipeline to a more efficient

Heuristic-Based Retrieval (HBR) engine. The results

indicate that our HBR engine, which queries the live

MongoDB database directly with a multi-stage regex

and token-matching algorithm, achieves 100% real-

time data accuracy and incurs no operational cost. We

demonstrated that for domain-specific applications

where data freshness is critical, this lightweight,

database-native method is a better and more

manageable solution than a demanding vector-search

pipeline.

References

[1]. P. Mell and T. Grance, The NIST Definition

of Cloud Computing, NIST Special

Publication 800-145, 2011.

[2]. J. W. Rittinghouse and J. F. Ransome, Cloud

Computing: Implementation, Management,

and Security. Boca Raton, FL, USA: CRC

Press, 2017.

[3]. MongoDB Inc., “MongoDB

Documentation,” 2024. [Online]. Available:

https://www.mongodb.com/docs

[4]. Meta Platforms Inc., “React – A JavaScript

Library for Building User Interfaces,” 2024.

[Online]. Available: https://react.dev

[5]. Node.js Foundation, “Node.js

Documentation,” 2024. [Online]. Available:

https://nodejs.org/en/docs

[6]. Express.js, “Express Application

Framework,” 2024. [Online]. Available:

https://expressjs.com

[7]. D. F. Ferraiolo, R. Kuhn, and R.

Chandramouli, Role-Based Access Control.

Norwood, MA, USA: Artech House, 2007.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2026.0027

 205

[8]. R. Sandhu, E. J. Coyne, H. L. Feinstein, and

C. E. Youman, “Role-based access control

models,” IEEE Computer, vol. 29, no. 2, pp.

38–47, 1996.

[9]. M. McTear, Conversational AI: Dialogue

Systems, Conversational Agents, and

Chatbots. Cham, Switzerland: Springer,

2020.

[10]. B. A. Shawar and E. Atwell, “Chatbots: Are

they really useful?” LDV Forum, vol. 22, no.

1, pp. 29–49, 2007.

https://irjaeh.com/

