International Research Journal on Advanced Engineering Hub (IRJAEH)
e ISSN: 2584-2137

Vol. 04 Issue: 01 January 2026

Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

IRJAEH

Acadbot: Al-Driven Automation of Academic Services

Nandhitha B R?, Ayesha Siddigah Khanam?, Bharath Moger?, Bhavana G M*, Keerthana M D®

Associate professor Nandhitha B R, Dept of ISE, Malnad College of Engineering, Hassan, Karnataka India.
2345UG Scholar Ayesha Siddigah Khanam, Dept of ISE, Malnad College of Engineering, Hassan, Karnataka,
India.

Emails: brn@mcehassan.ac.in?,
bhavanagm004@gmail.com?,

ayeshadsiddigah@gmail.com?, 03bharatmgr@gmail.com?,

keerthanagowda9336@gmail.com®

Abstract

Accessing timely and accurate information in academic institutions is often challenging, as students, faculty,
and administrators struggle to locate dynamic data such as event schedules, meeting details, and academic
notifications, which are typically scattered across multiple systems. Traditional university portals lack
intuitive, centralized, and fast query mechanisms, leading to inefficiency, delays, and user dissatisfaction. To
address this issue, we present Acadbot, a full-stack web application built using the MERN (MongoDB,
Express, React, Node.js) stack, offering a unified and user-friendly dashboard for managing academic
information, supported by a secure Role-Based Access Control (RBAC) system that ensures proper
authorization for different user groups. The core innovation of this project is its lightweight, database-driven
Al chat assistant, which deviates from conventional systems that depend on large vector embeddings, FAISS
indexes, and separate retrieval pipelines. Instead, Acadbot employs a practical heuristic-based retrieval
engine that performs case-insensitive, token-based, and typo-tolerant regex searches directly on the live
MongoDB database. By querying real-time operational data rather than relying on preprocessed vector
stores, the system reduces complexity and avoids issues related to outdated or unsynchronized information.
This approach enables Acadbot to deliver fast, accurate, and context-aware responses tailored to academic
environments. The paper further discusses the system architecture, the implementation of the heuristic
retrieval algorithm, and the benefits of adopting this efficient approach for domain-specific academic
chatbots. Keywords: MERN Stack, Al Chatbot, Academic Portal, Heuristic Retrieval, Information Retrieval,
Role-Based Access Control (RBAC).

Keywords: Academic portal; Ai chatbot; Heuristiretrieval; Information retrieval; Mern stack.

1. Introduction

In modern academic institutions, sharing information
effectively is a crucial and ongoing challenge.
Universities create a constant stream of time-
sensitive data, which includes event schedules,
academic deadlines, meeting announcements, and
course-related documents. This information is often
spread out across different departmental websites,
hard-to-navigate portals, or scattered through email
inboxes. This fragmentation results in a poor to solve
this issue, we developed and implemented Acadbot,
a full-stack web application built on the MERN
(MongoDB, Express, React, Node.js) stack. Acadbot
creates a unified portal where all key academic
functions—from managing events and distributing
schedules to sharing documents and sending

International Research Journal on Advanced Engineering Hub (IRJAEH)

university-wide notifications—can be handled and
accessed. A key feature of our system is a strong
Role-Based Access Control (RBAC) model.
Thisexperience for everyone involved. Students may
miss important deadlines, faculty face excessive
administrative tasks, and administrators struggle to
maintain consistent communication. Current
Learning Management Systems (LMS) are typically
complex and lack the intuitive, on- demand query
interfaces that users expect today. Without a
centralized, responsive, and easy-to-query "single
source of truth,"” there is a significant information gap
that leads to inefficiency, user frustration, and missed
opportunities. model customizes the app's
functionality and data visibility according to the

198

https://irjaeh.com/
mailto:ayesha4siddiqah@gmail.com2
mailto:bhavanagm004@gmail.com4,%20%20%20%20keerthanagowda9336@gmail.com5

IRJAEH

specific needs of different user roles: administrators,
faculty, and students. To solve this issue, we
developed and implemented Acadbot, a full-stack
web application built on the MERN (MongoDB,
Express, React, Node.js) stack. Acadbot creates a
unified portal where all key academic functions—
from managing events and distributing schedules to
sharing documents and sending university-wide
notifications—can be handled and accessed. A key
feature of our system is a strong Role-Based Access
Control (RBAC) model. This model customizes the
app's functionality and data visibility according to the
specific needs of different user roles: administrators,
faculty, and students. It ensures that sensitive
functions, like creating new events or uploading
official documents, are limited to authorized users
while general information stays accessible. The main
focus of this paper is the design of the system's Al-
powered chat [1].

2. Related Works

Integrated Knowledge Management System
Based Mentoring for new University Staff
Development Topic:

This paper, written by Puangpet Srivichai, Komsak
Meksamoot, Anchalee Jengjalern, and Nopasit
Chakpitak, presents a framework for a system that
combines a Knowledge Management System (KMS)
with a mentoring process. The main goal is to
improve and speed up the professional development
of new university staff. The authors tackle a major
issue faced by academic institutions: the loss of
experienced staff due to retirement, which creates a
long gap before new hires reach a similar level of
expertise. Their proposed system aims to effectively
and efficiently close this knowledge gap. The
framework is based on the idea that a structured,
technology-driven environment can help transfer
both tacit and explicit knowledge from experienced
faculty to new staff. The system matches new staff
with established mentors who are recognized experts
in their fields. This matching goes beyond formal
guidance; it helps facilitate a variety of professional
development methods, including mentoring, training
sessions, coaching, and counseling. The KMS
component acts as a knowledge repository,

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

containing user profiles, educational content, and
records of various professional development
activities. This material is organized for easy access,
offering new staff the information and resources
needed to navigate their roles and advance their
careers. A key contribution of this work is its focus
on a facilitated approach. The system includes a
coordinator role to ensure effective mentoring
relationships and active engagement from new staff
members. This human aspect is essential to support
the technological structure, making sure the system
functions as an active tool for building professional
relationships and promoting a culture of continuous
learning. The authors collected data through
interviews with academic staff from both a newly
established and a well-established university to
inform their design, showcasing a practical base for
their conceptual model. They conclude that this
integrated approach is a valuable resource for
educational organizations, providing a solid solution
to cut down the time needed for new staff
development and address the larger issues of staff
succession and knowledge retention. The paper
effectively argues that a combined KMS and
mentoring program offers a more structured and
quicker path to expertise for new university personnel
compared to traditional, less formal methods [2].
Efficiency Engine: Designing and Implementing
an Academic Management System

Topic:

The paper “Efficiency Engine: Designing and
Implementing an Academic Management System,"”
by Nishu Sethi and Anshu Malhotra, outlines the
creation and deployment of a software solution for
educational institutions. This system is seen as a
centralized platform that digitalizes and automates a
range of administrative and academic processes. The
main goal is to improve efficiency, accuracy, and
communication across the entire institution,
benefiting administrators, faculty, staff, and students.
The system is built with a modular design, integrating
key functionalities that are important for daily college
or university operations. These modules cover areas
like student information management, course
registration, attendance tracking, and maintaining

199

https://irjaeh.com/

IRJAEH

academic records. By bringing these functions into
one platform, the system eliminates manual
paperwork and reduces the likelihood of human
error—common issues in traditional administrative
workflows. The paper emphasizes how this digital
approach allows real-time access to information, so
all users can get up-to-date data when they need it,
which improves decision-making speed and quality.
A significant part of the paper addresses the practical
challenges and solutions involved in implementing
such a system. The authors stress the importance of
security, explaining the measures taken to protect
data, verify user identities, and ensure privacy. These
considerations are essential given the sensitive nature
of academic and personal information handled by the
system. The paper also highlights the need for a well-
planned implementation strategy that includes user
training and ongoing technical support. These
components are crucial for making sure the system is
not only technically sound but also widely adopted by
users, maximizing its potential benefits. The
"Efficiency Engine" is presented as a transformative
tool that can streamline operations, improve
communication, and create a more integrated and
efficient academic environment. The authors provide
a practical guide for institutions looking to modernize
their administrative and academic functions through
a strong and secure digital platform [3].

Academic Management System Admin Reference
Manual Topic:

The "Academic Management System Admin
Reference Manual," created by the ICAR- Indian
Agricultural Statistics Research Institute (IASRI) for
agricultural universities, is a practical guide to a web-
enabled management system. The focus of the paper
is on the administrative features of this system, which
was developed under the National Agricultural
Higher Education Project (NAHEP). Its aim is to
improve governance and management of academic
activities in these universities by offering a clear,
automated framework for various tasks. The manual
guides administrators through the system's different
modules and functionalities. It outlines the specific
responsibilities tied to various user roles, such as
Dean, Registrar, Professor, and Student, along with

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

the Administrator. The paper details a range of
administrative tasks that the system automates,
including the approval of registered students and
faculty, adding new disciplines, and managing
courses and reports. A key feature highlighted is the
system's built-in workflow, which automatically
informs users of their next steps. This is vital for
ensuring that complex processes, like student
registration or course approval, are completed on
time and in an organized manner, improving overall
efficiency. The document provides a step-by-step
guide for common administrative tasks, such as
updating administrator profiles and adding new
faculty members. It also explains how administrators
can change their roles to manage other user profiles,
which is helpful if a user cannot complete their own
work. The manual describes search functions that
help administrators quickly locate student and faculty
profiles. Essentially, this paper serves as an
operational guide, showing how the system cuts
down the time and effort involved in manual
academic processes. It highlights the system's
modular design and how it enhances academic
management efficiency through automation and
clear, role-based duties. The work emphasizes the
importance of a user-friendly digital platform for
modern educational governance [4].

Lecture Management Notification System.

Topic:

The paper "LectureManagement Notification
System," written by Prof. VaishaliGedam, Vinay
Nikose, Neha Dhargave, Tejas Kripal, Shruti Patil,
Ayush Jharbade, and Khushi Gawande, introduces an
Android application designed as a complete solution
for college management. The main theme of this
work is the use of mobile technology to streamline
administrative tasks and improve communication
within educational institutions. The application is
presented as a single platform that meets the diverse
needs of wvarious user groups, including
administrators, faculty, students, and parents. The
system is founded on the idea of providing a single
digital platform for all users. For administrators, the
application includes modules for managing
admissions, collecting fees, keeping student records,

200

https://irjaeh.com/

IRJAEH

and overseeing staff. By automating these complex
tasks, the system frees up time and resources for
strategic planning and institutional growth. Faculty
members gain from tools like attendance
management, grade books, course planning, and
communication features, which help them manage
classes efficiently and interact better with students.
This set of tools allows educators to spend more time
on teaching and less on administrative tasks. For
students, the application serves as a central hub for
their academic life. They can access course materials,
lecture notes, assignments, and other resources,
helping them stay organized, track their academic
progress, and engage with their coursework. The
paper also points out the collaborative features of the
system, such as discussion forums and chats, which
promote a more interactive learning experience. A
unique feature of the system is the real-time
notification module for parents. This ensures that
parents receive updates on their children's academic
progress and attendance, strengthening the important
relationship among parents, teachers, and students.
The application is a powerful tool for improving the
efficiency and effectiveness of educational
institutions [5].
3. Methodology
Our project, Acadbot, is a full-stack web application
built using the MERN stack. This section describes
the technologies and architectural patterns we used to
create the system, focusing on its three main layers:
the frontend, the backend, and the database. It also
breaks down the Role-Based Access Control (RBAC)
framework that secures the application and
customizes the user experience.

3.1 Full-Stack System Architecture
The system follows a classic three-tier architecture,
separating presentation, logic, and data [6].

3.2 Frontend (Client-Side)
The frontend is a modern, responsive Single Page
Application (SPA) developed with the React.js
library. This component-based approach allows for
reusable Ul elements, which improves
maintainability and scalability. The structure of the
application is defined in App.js, which serves as the
main entry point for all visual components. These

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

components represent distinct features of the
application, such as Dashboard.js for the user's home
page, Login.js and Register.js for authentication, and
other feature-specific components like Events.js,
Schedules.js, Meetings.js, Documents.js, and the
AlChat.js interface..Client-side navigation is handled
by react-router- dom, enabling seamless transitions
between views without a full page reload. The routing
logic is defined within the <Router>, <Routes>, and
<Route> components, mapping URL paths to their
corresponding React components. A key part of our
security model is implemented with the custom
<ProtectedRoute> component, which serves as a
guard forsensitive routes. It checks localStorage for a
valid token; ifthe token is not there, the user is
redirected to the login page using the <Navigate
to="/" replace component, preventing unauthorized
access to dashboard pages. State management occurs
at the component level using React Hooks. The
useState hook manages local state, such as user inputs
in forms (for example, username and password in
Login.js) and stores data fetched from the backend
(like the events array in Events.js). The useEffect
hook manages by using mobile technology to create
a connected academic environment side effects,
especially for fetching initial data when a component
mounts (for example, fetchEvents() in Events.js) and
checking the user's authentication status when the
application loads (useEffect in App.js).
Communication with the backend API happens
through asynchronous axios requests. For protected
endpoints, the stored JWT is retrieved from
localStorage and included as a Bearer token in the
Authorization header. We implement robust error
handling within catch blocks to capture APl or
network failures and display user-friendly error
messages, such as setError(errorMsg) in the Login
component.
3.3 Backend (Server-Side)

The backend API is a RESTful service built on
Node.js, an asynchronous, event-driven runtime,
along with the Express.js web framework. The server
is set up as an ES Module ("type": "module” in
package.json), allowing the wuse of modern
import/export syntax across the codebase. The main

201

https://irjaeh.com/

IRJAEH

server.js file acts as the application's entry point,
responsible for initializing the database connection,
setting up middleware, and mounting the modular
route handlers. The API's structure is highly modular.
All routes are namespaced under /api (for instance,
/api/auth, /api/events, /api/documents). Each feature's
routes are defined in separate files within the routes/
directory (like authRoutes, eventRoutes,
documentRoutes) and then imported and applied in
server.js using app.use(). This separation keeps the
main server file clean and makes the API easier to
maintain and extend. A critical aspect of the backend
Is its middleware pipeline. CORS: The cors
middleware is configured with a strict whitelist of
allowed origins (for example, http://localhost:3000).
This is an essential security measure to ensure only
the React frontend can make requests to the API,
preventing Cross-Origin Resource Sharing attacks
from unauthorized domains. Body Parsing: The
express.json() middleware parses incoming JSON
payloads from the frontend, making them available
on the reg.body object for all POST and PUT
requests. Static Files: express.static() serves files
from the /uploads directory. This middleware makes
user- uploaded documents accessible to the frontend
via adirect URL (like
http://localhost:5000/uploads/document.pdf).File

Uploads: The multer library is set up specifically for
document uploads. It uses diskStorage to define the
destination directory (uploads) and a custom filename
generator (Date.now() + '-' + file.originalname) to
avoid filename conflicts. This multer middleware [7].

3.4 Database (persistence)

The persistence layer of our application uses
MongoDB, a NoSQL, document-oriented database.
This choice was intentional, as MongoDB's flexible,
BSON (binary JSON) document model directly
matches the JavaScript objects used throughout our
MERN stack, making data handling simpler. The
application connects to the MongoDB instance using
the MONGO_URI connection string, securely stored
in an .env file rather than hardcoded, which follows
security best practices. The server.js file also includes
error handling for the initial database connection to
ensure the server logs a clear error and does not start

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

if the database is unavailable. We use Mongoose as
an Object Data Modeling (ODM) library to
communicate with MongoDB. Mongoose provides
an effective abstraction layer, allowing us to define
strict schemas for our data, ensuring data integrity
and offering built-in validation. All data models,
including User, Event, Schedule, Meeting,
Document, and Notification, are defined in the
models/ directory. For example, the User schema
defines the role field as an enum restricted to ‘admin’,
‘faculty’, or 'student’, and specifies the username as
required and unique. Mongoose's middleware
capabilities are central to our security model. The
User schema uses a pre('save’) hook to automatically
hash a user's password with bcryptjs before it is saved
to the database. This guarantees that no plain-text
passwords are stored, even in case of a database
breach. Additionally, we define a custom instance
method on the user schema, compare Password,
which includes the bcrypt. compare logic. This
method is then wused in the login route
(/api/auth/login) to securely validate a user's
credentials, showing an object-oriented approach to
our data modeling [8].

3.5 Role-Based Access

Framework

Security and authorization are managed using a
solid RBAC system.

e User Roles: The User model defines three
roles: 'admin’,'faculty,’ and 'student.
Admin has full control access whereas faculty
has few controls itself and students can only
view.

e Authentication: Users register by hashing
their ~ passwords with bcryptjs and
authenticate using JWT.

e Authorization: A custom authMiddleware
protects APl endpoints. This middleware
decodes the user's JWT, checks their role, and
blocks access if they are unauthorized.

e Example: The route to post a new document
is restricted to 'admin' and ‘faculty' roles:
router.post(’/',authMiddleware(['admin’,
‘faculty']), ...). The frontend Ul also reflects
this, hiding the upload form from 'student’

Control (RBAC)

202

https://irjaeh.com/

IRJAEH

users Shown in Figure 1 [9].

AcadBot System Architecture

—

Presentation Layer

React.js Web Application

y

Application Layer

Node.js + Express Server

[Chatbot]

RESTful API Database

Queries

Data Layer

MongoDB Database

Figure 1 System Architecture

4. Results
The deployment of the Acadbot application produced
several important outcomes in both system

functionality and the performance of our new
retrieval engine.

System Functionality and RBAC Verification the
Acadbot MERN-stack application was successfully
implemented and operates as a cohesive academic
portal. All main components, from user registration
to the main dashboard, were fully functional. The
Role-Based Access Control (RBAC) system was a
key part of our testing and was shown to be
effective.Users with ‘admin’ or ‘faculty' roles could
successfully access content creation forms. This
included posting new events, uploading documents
via the multer endpoint, and adding meetings. On the
other hand, users with the 'student’ role were correctly
limited to a view-only interface for these
components. This confirms that our security model,
enforced at both the APl level through
authMiddleware and on the client side through
conditional rendering, is working as intended.
6.Heuristic-Based Retrieval (HBR) Engine
Performance The main results of this study relate to
the performance of the Heuristic-Based Retrieval
(HBR) engine, which we used instead of a traditional

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

RAG pipeline. The main results of this study relate to
the performance of the Heuristic-Based Retrieval
(HBR) engine, which we used instead of a traditional
RAG pipeline.

Result 1: Real-Time Data Accuracy: The biggest
advantage of the HBR engine is its 100% data
freshness. In testing, any new document, event, or
schedule created by an admin was immediately
searchable by the Al Chatbot. This is a direct result
of querying the live MongoDB collections, which
completely resolves the data-staleness problem found
in a separate, pre-computed vector index [10].
Result 2: Low Latency and Zero Cost: The
retrieval process consists of a single, optimized
MongoDB query using case-insensitive regex and
token matching, making it extremely fast. This avoids
costs from external API calls and network delays
linked to embedding generation (for example, to
OpenAl) and LLM calls, which were part of the
initial RAG plan. The response to the user is nearly
instantaneous and incurs no monetary cost per query.
Discussion and Trade-Offs While the HBR
approach is successful, it has clear trade-offs. Our
discussion should recognize that this engine is
excellent for factual, keyword- based retrieval (for
example, "meetings today,""exam schedule™) but
completely lacks semantic understanding. A query
like "What should I do if I miss an exam?" will not
work because it doesn’t include the keywords
"event,"” "schedule,” or "meeting" that the engine
looks for. Additionally, the response is a formatted
data list, not a natural-language, conversational reply.
Thus, our HBR engine does not serve as a universal
replacement for RAG but rather as a highly
specialized tool. It is clearly better for cases where
data freshness and low operational cost are more
important than conversational depth or semantic
search features. The results are summarized in the
table below. Feature, Planned RAG (Vector Search),
Implemented HBR (Heuristic Search) Data Source,
Static FAISS Index, Live MongoDB Database Data
Freshness, Stale (requires re-indexing), Real-time
Query Type, Semantic (understands meaning),
Keyword/Regex (matches text) Overhead, High
(FAISS, Embeddings), Low (just a DB query) Cost,

203

https://irjaeh.com/

IRJAEH

High (OpenAl API calls), Zero (internal) Response
Style, Natural Language (via GPT- 3.5), Formatted
Data List.

5. Discussion

The development of AcadBot marks a significant step
toward integrating intelligent chat technologies in
education. As academic environments grow more
complex and the demand for personalized student
support increases, automation tools become essential.
AcadBot addresses this need through a Node.js
backend and MongoDB database, creating a
responsive and scalable chatbot that answers
institutional queries, provides course details, and
assists with administrative tasks. Technically,
Node.js supports asynchronous event- driven
processing, improving responsiveness and enabling
multiple user interactions simultaneously.
MongoDB’s flexibility as a NoSQL database allows
storage of various user inputs, chat histories, and
contextual data—making data retrieval quick and
efficient. Together, these technologies ensure
smooth, real-time communication between students
and the system. Testing results showed that AcadBot
efficiently handled academic queries related to
subjects, schedules, and course structures. The user-
friendly interface made it accessible even to non-
technical wusers, and feedback indicated high
satisfaction with both speed and accuracy. Its
modular architecture also supports easy integration of
new features like NLP-based analysis or third-party
APIs, ensuring long-term adaptability. AcadBot also
highlights the benefits of automation in education. By
managing routine queries, it reduces the workload on
staff and provides 24/7 academic assistance,
especially valuable for remote learners. However,
current limitations include reliance on predefined
responses, which restricts understanding of complex
queries. Future improvements could involve Natural
Language Processing (NLP) and Machine Learning
(ML) for better contextual comprehension. Ensuring
data privacy and security will also be a key focus in
upcoming versions.

Conclusion

In this paper, we introduced Acadbot, a complete
MERN application aimed at addressing ongoing

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0027

information management issues in academic
institutions. We built a secure, centralized portal for
managing dynamic data such as events, schedules,
meetings, and documents. The system is safeguarded
by a strong Role-Based Access Control (RBAC)
framework that customizes application permissions
for students, faculty, and administrators. Our main
contribution is the design and evaluation of the
integrated Al chatbot. We showcased a practical shift
from a complex, planned Retrieval-Augmented
Generation (RAG) pipeline to a more efficient
Heuristic-Based Retrieval (HBR) engine. The results
indicate that our HBR engine, which queries the live
MongoDB database directly with a multi-stage regex
and token-matching algorithm, achieves 100% real-
time data accuracy and incurs no operational cost. We
demonstrated that for domain-specific applications
where data freshness is critical, this lightweight,
database-native method is a better and more
manageable solution than a demanding vector-search
pipeline.
References
[1]. P. Mell and T. Grance, The NIST Definition
of Cloud Computing, NIST Special
Publication 800-145, 2011.

[2]. J. W. Rittinghouse and J. F. Ransome, Cloud
Computing: Implementation, Management,
and Security. Boca Raton, FL, USA: CRC
Press, 2017.

[3]. MongoDB Inc., “MongoDB
Documentation,” 2024. [Online]. Available:
https://www.mongodb.com/docs

[4]. Meta Platforms Inc., “React — A JavaScript
Library for Building User Interfaces,” 2024.
[Online]. Available: https://react.dev

[5]. Node.js Foundation, “Node.js
Documentation,” 2024. [Online]. Available:
https://nodejs.org/en/docs

[6]. Express.js, “Express Application
Framework,” 2024. [Online]. Available:
https://expressjs.com

[7]. D. F. Ferraiolo, R. Kuhn, and R.

Chandramouli, Role-Based Access Control.
Norwood, MA, USA: Artech House, 2007.

204

https://irjaeh.com/

IRJAEH

[8].

[9].

[10].

R. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman, “Role-based access control
models,” IEEE Computer, vol. 29, no. 2, pp.
38-47, 1996.

M. McTear, Conversational Al: Dialogue
Systems, Conversational ~ Agents, and
Chatbots. Cham, Switzerland: Springer,
2020.

B. A. Shawar and E. Atwell, “Chatbots: Are
they really useful?” LDV Forum, vol. 22, no.
1, pp. 29-49, 2007.

International Research Journal on Advanced Engineering Hub (IRJIAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 198-205

https://irjaech.com
https://doi.org/10.47392/IRJAEH.2026.0027

205

https://irjaeh.com/

