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Abstract 

This study presents an enhanced robot path planning approach based on Dijkstra’s algorithm augmented with 

path weighting to support intelligent navigation in complex mechanical and manufacturing environments. By 

incorporating weighted cost functions that account for factors such as distance, obstacle proximity, energy 

consumption, and motion smoothness, the proposed method enables robots to select more efficient and 

practical trajectories from the source to the target. The weighting mechanism allows the algorithm to adapt 

to different environmental constraints and operational priorities, making it suitable for dynamic and cluttered 

industrial settings. The proposed weighted Dijkstra-based path planning framework improves navigation 

performance by reducing unnecessary detours, minimizing traversal cost, and enhancing overall path 

optimality. This results in smoother robot motion, improved execution efficiency, and better utilization of 

mechanical systems within automated manufacturing processes. The approach is particularly effective in 

scenarios requiring precise movement planning, such as factory automation, material handling, and robotic 

assembly, where reliable and efficient navigation is critical for productivity and safety. 
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1. Introduction

In recent years, robot navigation has emerged as one 

of the most dynamic and rapidly advancing areas 

within robotics, automation, and intelligent 

manufacturing systems. From warehouse robots 

transporting materials and industrial manipulators 

navigating shop floors, to autonomous vehicles 

operating in traffic and drones exploring unknown 

environments, efficient navigation plays a central 

role in determining overall system performance. 

Navigation is not merely about reaching a 

destination; it involves making intelligent decisions 

that ensure safety, efficiency, and adaptability in the 

presence of uncertainty. Robots are often required to 

operate in environments that are cluttered, partially 

known, or constantly changing, which makes 

autonomous navigation a challenging yet essential 

capability. As a result, the ability to plan and execute 

optimal paths from a starting point (source) to a 

desired endpoint (target) has become a core research 

problem in modern robotic systems [1]. One of the 

fundamental challenges in robot navigation is 

identifying the most suitable path while accounting 

for obstacles, constrained spaces, mechanical 

limitations, and operational constraints. Rarely is the 

shortest geometric path the most practical one, 

especially in real-world scenarios where factors such 

as energy efficiency, smooth motion, collision 

avoidance, and time constraints must be considered. 

Path planning addresses this challenge by enabling 

robots to compute feasible and optimal routes and 

dynamically adapt them as conditions change. To 

facilitate this process, the robot’s environment is 
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commonly modeled using graph-based 

representations, where nodes correspond to discrete 

robot positions or states, and edges represent possible 

transitions between them. Each edge is assigned a 

weight that reflects the cost of traversal, which may 

include distance, travel time, energy usage, or risk 

level. Weighted shortest path algorithms, such as 

Dijkstra’s and A*, use these cost values to 

systematically evaluate alternative routes and 

identify the most efficient path. In intelligent and 

real-time robotic applications, especially within 

mechanical and manufacturing environments, these 

algorithms play a critical role in ensuring reliable, 

optimized, and safe robot navigation [2]. What truly 

elevates modern robot navigation systems is the 

seamless integration of Artificial Intelligence (AI), 

which brings adaptability, learning, and autonomous 

decision-making into the path planning process. 

Unlike traditional navigation approaches that rely 

heavily on fixed rules and pre-programmed logic, AI-

enabled robots can perceive their surroundings, 

analyze real-time data, and learn from past navigation 

experiences. This learning capability allows robots to 

make informed decisions even in unfamiliar or 

partially structured environments. By leveraging AI-

based models, robots can anticipate changes in their 

surroundings, adjust their paths dynamically, and 

respond intelligently to unexpected obstacles. 

Furthermore, in multi-robot environments, AI 

facilitates coordination and cooperation among 

agents, enabling efficient task sharing and collision-

free navigation. Techniques such as machine 

learning, fuzzy logic, neural networks, and 

reinforcement learning are increasingly being 

incorporated into path planning frameworks, making 

navigation systems more robust, flexible, and 

context-aware [3]. In such intelligent systems, 

weighted shortest path algorithms serve as a reliable 

computational backbone, while AI functions as the 

cognitive layer that continuously refines and 

enhances the navigation strategy. The algorithm 

determines feasible and cost-effective routes, 

whereas AI evaluates, adapts, and improves these 

routes based on experience and environmental 

feedback. This synergy results in navigation systems 

that are not only computationally efficient but also 

behaviorally intelligent, capable of responding to 

dynamic conditions in a manner similar to human 

reasoning. Consequently, path generation has 

evolved from static route computation to dynamic, 

self-optimizing navigation. This advancement has 

enabled transformative applications, ranging from 

autonomous delivery robots navigating busy urban 

spaces to search-and-rescue robots operating in 

hazardous and unpredictable disaster environments. 

Modern robots are no longer limited to simply 

moving from point A to point B; they can now decide 

how best to reach their destination [4]. As robotics 

and AI continue to converge, the development of 

intelligent path generation models is expected to 

become even more advanced and impactful. This 

convergence opens up several compelling research 

questions, such as how robots can effectively 

navigate completely unstructured environments, how 

learning-based models can balance exploration with 

safety, and how computational efficiency can be 

maintained alongside real-time adaptability. This 

paper addresses these challenges by examining how 

weighted shortest path algorithms, when augmented 

with AI-driven decision-making mechanisms, can 

significantly enhance robotic navigation. By bridging 

theoretical foundations with practical 

implementation, the study aims to contribute toward 

the design of smarter, safer, and more adaptive 

robotic systems suitable for mechanical, 

manufacturing, and real-world autonomous 

applications [5]. 

1.1 Literature Survey 

What makes modern robot navigation systems 

significantly more powerful today is the deep 

integration of Artificial Intelligence (AI) with 

classical path planning algorithms. AI introduces 

learning capability, adaptability, and intelligent 

decision-making into navigation, allowing robots to 

go far beyond rigid, rule-based movement. Instead of 

depending solely on predefined maps or fixed logic, 

AI-enabled robots can sense their surroundings, 

analyze real-time data, and continuously improve 

their navigation strategies based on experience. This 

is particularly important in real-world mechanical 
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and manufacturing environments, where layouts may 

change, obstacles may appear unexpectedly, and 

operational conditions are rarely static. By learning 

from past navigation outcomes, robots can anticipate 

environmental changes, adjust their routes 

dynamically, and make informed decisions even 

when operating in unfamiliar or partially known 

spaces. Techniques such as machine learning, fuzzy 

logic, neural networks, and reinforcement learning 

are increasingly being embedded into navigation 

frameworks to enhance robustness, adaptability, and 

situational awareness [6]. Within this intelligent 

framework, weighted shortest path algorithms—such 

as Dijkstra’s and its variants—serve as a strong 

mathematical foundation, while AI acts as the 

cognitive layer that refines and optimizes decision-

making. Weighted path planning allows different cost 

factors, such as distance, time, energy consumption, 

obstacle density, or safety risk, to be incorporated 

into the navigation process [25]. Research has shown 

that enhancing Dijkstra’s algorithm with intelligent 

weighting mechanisms significantly improves 

navigation efficiency, particularly in complex 

environments like warehouses and indoor 

manufacturing floors. For instance, weight-

controlled and swarm-optimized versions of 

Dijkstra’s algorithm have demonstrated improved 

route selection by handling multiple equally short 

paths and choosing the most practical one based on 

contextual priorities [7].  Similarly, hybrid 

approaches combining Dijkstra’s logic with particle 

swarm optimization (PSO) and A* variants enable 

robots to explore multiple candidate paths 

simultaneously, leading to faster convergence and 

better performance in unknown or dynamic 

environments [23]. The fusion of AI with weighted 

shortest path algorithms transforms path generation 

from a static computation into a dynamic, self-

optimizing process. Instead of producing a single 

fixed route, modern systems can continuously re-

evaluate and update paths in response to real-time 

sensor inputs, predicted traffic conditions, or detected 

obstacles [24]. This capability has enabled 

breakthrough applications such as autonomous 

warehouse logistics, intelligent manufacturing 

robots, smart transportation systems, and cooperative 

multi-robot navigation. Studies on intelligent path 

planning using topological maps, wireless 

communication, and predictive data models further 

highlight how AI-driven path planning enhances 

reliability, safety, and efficiency in real-world 

deployments [8]. As robotics continues to converge 

with AI, the design of intelligent path generation 

models is becoming increasingly sophisticated and 

application-oriented. Key research challenges now 

include navigating fully unstructured environments, 

balancing optimality with computational efficiency, 

and ensuring safe decision-making under uncertainty 

[22]. This paper builds on these advances by 

exploring how weighted shortest path algorithms, 

when augmented with AI-based learning and 

optimization techniques, can significantly improve 

robotic navigation. By bridging classical graph-based 

planning with intelligent decision-making, the 

proposed approach aims to deliver navigation 

systems that are not only mathematically optimal but 

also context-aware, adaptive, and suitable for modern 

mechanical and manufacturing applications [9]. 

2. Proposed Research Methodology 

A graph is a non-linear data structure consisting of 

vertices and edges. Vertices are sometimes called 

nodes, and edges are lines or arcs that connect any 

two nodes in a graph. More formally, a graph consists 

of a set of vertices (V) and a set of edges (E).  The 

graph is denoted by G(V,E). Graphical data structures 

are a powerful tool for representing and analyzing 

complex relationships between objects or entities 

[20]. They are particularly useful in areas such as 

social network analysis, recommender systems and 

computer networks. In the field of sports informatics, 

graph data structures can be used to analyze and 

understand the dynamics of team performance and 

player interactions on the field [21].  Imagine the 

game of soccer as a web of connections, where the 

players are the nodes and their interactions on the 

field are the edges. This web of connections is exactly 

what the graph data structure represents, and is the 

key to understanding team performance and player 

dynamics in sports.  The Fig. 2 shows the flow-chart 

of the proposed methodology [10]. 
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3. Components of a Graph 

Vertices: Vertices are the fundamental units of the 

graph. Sometimes, vertices are also known as vertex 

or nodes. Every node/vertex can be labelled or 

unlabeled [11].  

 

 
Figure 1 Ordered Form of a Graph 

 

Edges: Edges are drawn or used to connect two nodes 

of the graph. It can be a ordered pair of nodes in a 

directed graph. Edges can connect any two nodes in 

any possible way. There are no rules. Sometimes, 

edges are also known as arcs. Every edge can be 

labelled/unlabeled as shown in the Fig. 1 [12]. 

4. Representation of Graphs 

Representation of Graphs - There are two ways to 

store a graph [13] 

 Adjacency Matrix 

 Adjacency List 

 Adjacency Matrix 

In this method, the graph is stored in the form of the 

2D matrix where rows and columns denote vertices. 

Each entry in the matrix represents the weight of the 

edge between those vertices as shown in Tables 1 

[14].

Table 1 Adjacent Graph List Table Components of the Parameters 

 V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 

V0 0 1 0 0 1 0 0 1 0 0 

V1 1 0 1 1 0 1 0 0 0 0 

V2 0 1 0 0 0 0 1 0 0 1 

V3 0 1 0 0 0 0 0 1 1 0 

V4 1 0 0 0 0 1 0 0 0 0 

V5 0 1 0 0 1 0 1 0 0 0 

V6 0 0 1 0 0 1 0 0 0 1 

V7 1 0 0 1 0 0 0 0 1 0 

V8 0 0 0 1 0 0 0 1 0 1 

V9 0 0 1 0 0 0 1 0 1 0 

5. Adjacency List – Representation of the Path 

of the Robo as a Graph 

This graph is represented as a collection of linked 

lists. There is an array of pointer which points to the 

edges connected to that vertex. The journey of a robot 

can be represented by a diagram, defining a set of 

nodes and edges that model the relationship between 

different places of the robot and the environment. 

Nodes represent specific locations or waypoints, and 

edges represent possible transitions or connections 

between those stations [18]. Graphs can be used to 

model various data structures, for instance, an Octree. 

Octrees have applications in things such as 3D 

computer graphics, spatial indexing, nearest 

neighbour searches, finite element analysis, and state 

estimation [19]. In robotics especially, octrees have 

been leveraged via the creation of the OctoMap 

Library, which implements a 3D occupancy grid 

mapping approach. This provides data structures and 

mapping algorithms that not only assist in mobile 

robot navigation and mapping, but also helps in path 

planning for manipulators in cluttered environments 

[15].  Define nodes:  Identify key locations or 

waypoints around the robot and environment. Each of 

these locations becomes a node in the graph. Nodes 

can represent locations on a grid, coordinates in  

continuous space, or specific landmarks in the 

environment [16] Create edges:  Create connections 
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between nodes by defining edges. An edge between 

two nodes indicates that the robot can move from one 

place to another. Edges can be associated with 

weights or costs that represent distance, time or other 

factors involved in moving from one node to another 

[17]. 

 

 
Figure 2   Flow Chart for the Proposed 

Algorithm 

 

Conclusions 

To sum up, the case study clearly demonstrates that 

the proposed Dijkstra-based path planning algorithm 

is highly effective for robot navigation and obstacle 

avoidance tasks. The algorithm is capable of 

recalculating optimal paths in real time, which 

enables the robot to respond quickly and smoothly to 

changes in its environment, such as the sudden 

appearance of new obstacles. This adaptability is 

particularly important for indoor robotic applications, 

where dynamic elements like moving objects or 

human presence are common. By continuously 

updating the path based on current conditions, the 

robot can maintain safe and efficient navigation 

without interruptions or unnecessary delays. 

Although the computational time complexity of the 

algorithm increases with the square of the number of 

nodes, the experimental results indicate that this does 

not pose a significant limitation in typical indoor 

environments, where the mapped area and node count 

remain relatively small. In such scenarios, the 

algorithm delivers fast and reliable performance 

while maintaining optimal path selection. 

Furthermore, the implementation on an Arduino 

platform proved to be both practical and cost-

effective. The Arduino board provided sufficient 

processing capability and memory resources to 

execute the algorithm efficiently, making it a suitable 

choice for low-cost robotic systems and educational 

or prototype-level manufacturing applications. 

Overall, the results confirm that the proposed 

approach offers a balanced solution in terms of 

performance, adaptability, and hardware feasibility 

for real-world robot navigation tasks. 
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