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Abstract

This paper presents a comprehensive longitudinal ablation study that systematically evaluates the
architectural evolution of rice (Oryza sativa) disease diagnosis systems across eight consecutive research
publications from 2023 to 2025. Our research trajectory has progressed through four distinct technological
epochs: (1) Traditional Machine Learning employing handcrafted features with KNN and Decision Trees, (2)
Deep Convolutional Neural Networks with comparative architecture analysis and edge optimization, (3)
Advanced Paradigms including Vision Transformers, hyperspectral-temporal fusion, and attention
mechanisms, and (4) Explainable Al Systems with integrated interpretability modules. We conduct a unified
evaluation across a consolidated multimodal dataset of 15,230 images encompassing RGB field images,
laboratory samples, and hyperspectral sequences across eight disease classes. The ablation reveals that while
the transition from ML to deep learning yields the largest accuracy gain (+22.7%), the integration of attention
mechanisms provides the optimal accuracy-efficiency trade-off (+11.3% accuracy, +28ms overhead). Vision
Transformers demonstrate superior performance on globally distributed disease patterns (+4.8% over CNNs),
while hyperspectral CNN-LSTM fusion enables unprecedented pre-symptomatic detection capability (88.5%
accuracy at 48 hours before visual symptoms). Surprisingly, explainability modules incur only 2.4-8.1%
computational overhead while increasing diagnostic confidence by 68.3% among agricultural experts. This
study establishes the first quantified efficiency-performance frontier for agricultural vision systems and
provides an architectural roadmap for future research in precision agriculture diagnostics.

Keywords: Evolutionary Ablation, Architectural Progress, Rice Disease Diagnosis, Multimodal Learning,
Machine Learning, Deep Learning, Explainable Al, Vision Transformers, Hyperspectral Imaging, Precision
Agriculture.

1. Introduction
The automated diagnosis of plant diseases represents

papers that document the evolution from traditional
machine learning to sophisticated multimodal

one of the most promising applications of artificial
intelligence in agriculture, with rice (Oryza sativa)
serving as a critical testbed given its status as a staple
food for over half the world's population. Over the
past three years, our research program has
systematically explored the architectural design
space for rice disease diagnosis, publishing eight

explainable systems. This progression mirrors the
broader trajectory of computer vision in agriculture
but presents unique challenges: field conditions with
variable lighting, subtle symptom differences
between diseases, resource constraints in farming
communities, and the critical need for interpretability
in agricultural decision-making. Each of our
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publications has addressed specific aspects of these
challenges, yet the cumulative impact and relative
contribution of each architectural innovation remain
unquantified. Traditional ablation studies focus on
deconstructing a single model to understand

component contributions. However, in rapidly
evolving fields like agricultural Al, a more
comprehensive approach is needed—one that

evaluates progress across research generations and
technological paradigms. This paper introduces
"Evolutionary Ablation"—a methodological
framework for quantifying architectural progress
across consecutive research milestones. Our eight
publications form a natural evolutionary sequence:
e 2023 - Foundational ML: Traditional
algorithms with handcrafted features [1, 2]
e 2023 - CNN Exploration: Comparative
analysis of deep learning architectures [8]
e 2024 - Real-time Deployment: Edge-
optimized systems for field use [3]
e 2024 - Advanced Sensing: Hyperspectral
imaging for early detection [4]
e 2024 - Paradigm Shift: Vision Transformers
for global context [7]

e 2025 - Explainable Systems: Integrated
interpretability with BioLIME [5]
e 2025 - Generative Future: Foundation

models for zero-shot diagnosis [6]
This paper addresses three fundamental questions: (1)
What is the quantifiable improvement at each
technological transition? (2) Which innovations

provide essential capabilities versus marginal
improvements? (3) What architectural patterns
emerge as optimal for different deployment
scenarios?

2. Related Work and Research Context
2.1.The Evolution of Plant Disease Diagnosis

Plant disease diagnosis has evolved through distinct
technological phases. Early work focused on image
processing and traditional machine learning [1, 2],
leveraging color histograms, texture features, and
geometric properties with classifiers like SVM and
Random Forests. The deep learning revolution began
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with the application of CNNs to standardized datasets
like PlantVillage, achieving remarkable accuracy but
struggling with field conditions [8]. Recent advances
include multimodal approaches combining RGB with
hyperspectral or thermal imaging [4], attention
mechanisms for focusing on symptomatic regions
[5], and vision transformers for capturing long-range
dependencies [7].
2.2.Ablation Studies in Computer Vision
Ablation studies are fundamental to understanding
model design in computer vision. Traditional
approaches remove or modify components of a single
architecture to isolate their effects. However, as noted
by Zhang et al. [2024], this approach becomes limited
when evaluating progress across research
generations. Our work extends this concept to
evolutionary ablation—comparing complete systems
across technological epochs to quantify architectural
progress.
2.3.0ur Research Trajectory as a Case Study
Our eight papers represent a microcosm of
agricultural Al development:
e Papers 1-2 (2023): Established baselines
with traditional ML
e Paper 8(2023): Systematic CNN comparison
identifying DenseNet121 as optimal
e Paper 3 (2024): Introduced
constraints and edge optimization
e Paper 4 (2024): Pioneered hyperspectral-
temporal fusion for early detection
e Paper 7 (2024): Demonstrated transformer
superiority for certain disease patterns
e Paper 5 (2025): Integrated explainability as a
core system component
e Paper 6 (2025): Proposed generative
foundation models for future systems
This progression provides an ideal tested for
evolutionary ablation analysis.
3. Methodology: Evolutionary Ablation
Framework
3.1.Unified Evaluation Dataset
To ensure fair comparison across all eight studies, we
constructed a consolidated multimodal dataset

real-time
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Shown in Table 1:

Table 1 Consolidated Dataset Composition

Data Source Paper | Images | Modality | Classes | Special Characteristics
ML Studies [L.2] 1280 |RGB 3 | Controlled backeround
CNN Comparison | [§] [3200 |RGB § White background
EdgeFramework [ [3] [2650 [RGB {4 |Fieldconditions
Transformer Study | [7] | 5200 |RGB 4 Mixed backgrounds
RICEDX-LDME [ [5] |[3430 [RGB |4 | Complexfield images
| Hyperspectral [ [4] {1300 |HSI-RGB 3 Temporal sequences
Total Al [18850 [Muld |8 Unified annotation

3.2.Dataset Processing

All images resized to 384x384 pixels
Hyperspectral  sequences converted to
temporal RGB cubes

Unified annotation schema across all sources
Train/Validation/Test split: 60%/20%/20%
(stratified by source) [10]

3.3.Model Selection and Implementation
We implemented representative models from each
paper Shown in Table 2 and 3:

Table 2 Model Implementations for Evolutionary

Ablation
Paper | Representative Key Components Implementation Details
Model
[4,2] | Decision Tree (best) | Handcrafted features, Gini impurity | WEKA implementation with 10-

fold CV

8 DenseNet121 (best)

Dense connestions, transition layers | PyTorch. ImageNet pretrained

13 Edge-Optimized Depthwise separable cony, TensorFlow Lite optimized
ON bk
m Swin Transformer | Shifted windows, hierarchical design | PyTorch. pretrained o ImageNet-

Tiny 1K

[ HSI-FuseNet CNN-LSTM fusion, spectral attention | Custom TensorFlow
mplementation
[§ RICEDX-LIME Full | EfficientNet-B4, Dual-path attention. | TensorFlow 2.8 with custom
BioLIME modules
Baseline | ResNet50 Standard CNN baseline PyTorch. ImageNet pretrained

3.4.Evaluation Metrics
We employed comprehensive metrics covering
performance, efficiency, and utility:

Performance Metrics: Accuracy, Precision,
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Recall, F1-Score, AUC-ROC [11]

Efficiency  Metrics:  Inference  time
(CPU/GPU), Model size, FLOPs, Memory
usage

Robustness Metrics: Performance on field
images, early detection capability

Utility Metrics: Expert confidence scores,
Explanation quality (for XAl systems)
Composite Metrics: Accuracy-Efficiency
Product (AEP = Accuracy/Inference_Time)

3.5.Ablation Dimensions
Our evolutionary ablation examines six critical
dimensions:

D1: ML — DL Transition (Papers 1-2 vs
Paper 8) [12]

D2: CNN Architecture Selection (Within
Paper 8: ResNet50 vs DenseNetl21 vs
EfficientNet)

D3: Efficiency Optimization (Paper 8 best vs
Paper 3 edge-optimized)

D4: Paradigm Shift: CNN — Transformer
(Paper 8 best vs Paper 7)

D5: Modality Expansion: RGB —
Hyperspectral (Paper 7 vs Paper 4)

D6: Explainability Integration (Paper 7 vs
Paper 5) Shown in Figure 1.

4. Results: Quantifying Architectural Evolution
4.1.0verall Performance Progression

Table 3 Performance Evolution Across Research

Generations

Research Representative | Accaracy | FI- | Inference Time | Model Size | Special
Generation Model %) Score | (ms) (ME) Capability
Traditional ML | Decision Tree 87 0876 |12 08 Interpretable
nules
Standard CNN | ResNets0 912 0832 |9 9% Automatic
features
Optiniized CNN | DengeNetl11 964 0958 [ 185 85 High aceuracy |
Edge (XX Optimized CNN[3) | 932 0916 |4 H Real-time field
use
Vision $win-T Tiny 910 0962 |21 107 Global context
Trausformer
Multimodal HSLFuseNet[4] | 942 0928 | 380 20 Early detection
Explainable RICEDX-LIME[3] | 939 0926 | 163 115 Trust+
transpareacy
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4.2.Component Contribution Analysis

CUMULATIVE PERFORMANCE TRPROVEMENT WATERFALL CWART

umlative: 95.

195, 2% o 102.6% ®.7%

Figure 1 Improvement from Baseline

4.3.Key Findings

e ML—DL Transition: +6.1%
(largest single improvement)

e CNN Architecture Optimization: +5.6%
(DenseNet121 over ResNet50)

e Attention Mechanisms: +3.8%
RICEDX-LIME ablation) [13]

e Transformer Paradigm: +0.2% (marginal
but consistent)

e Explainability Integration: -2.9% accuracy
but +68% expert confidence Shown in Figure
2.

4.4 Efficiency-Performance Trade-offs

accuracy

(within

ACCURACY vs INFEREMCE TIME PARETO FRONTIER

® Denselietidl (96,8%, 185m)
Pareto Frontier -
1
1

mil ® SwinT (97.0%, 215es) @
wlil ® RICEDK-LIME [93.%,‘ 163m) II

7% ll : - hobiledlcltw {3428, ss-l‘)
% ll . (og:e o isa.ln. Apms) :I

1 Parets Frontier
1

x4 ® HSD-fussliet (04,25, dAows)

Gms  ems  Ie0ms  IN0ms 200w 2%0ms  Jobes  J50ms
Inference Time (williseconds)

Figure 2 Accuracy vs Inference Time Pareto
Frontier

The relationship between diagnostic accuracy and

computational  efficiency  defines  practical
deployment boundaries for agricultural Al systems.
We map all evaluated models across this two-
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dimensional space to identify Pareto-optimal
configurations where no alternative provides both
higher accuracy and lower inference time,
establishing clear efficiency-performance frontiers
for different deployment scenarios Shown in Table 4.
4.5.Pareto-Optimal Models

e Edge-Optimized CNN [3]: Best for real-time
applications (93.2% @ 48ms) [14]

e DenseNet121 [8]: Best pure accuracy (96.8%
@ 185ms)

e RICEDX-LIME [5]: Best balance with
explainability (93.9% @ 163ms) Shown in
Figure 3

4.6.Specialized Capability Analysis

Table 4 Innovation Effectiveness for Specific

Challenges
Diagnostic Most Effective Performance Gain | Key Insight
Challenge Approach |
Early Detection | HSI-CNN-LSTM4] | +62.3%atd8h Spectral-temporal pattems
. | vty | ecial |
Field Robustness | Attention +11.7% on complax Dynamic featurs salection

. | Mechanisms (9] _| backgrounds | essential
Similar Diseases | Swin Transformer | +8.4% (Brown Spotys | Global context
| M ‘ Blast) ‘ distinguishes pattams .
LimitedData | Traditional ML[1, | Comparsblewith<500 | DL needs substantial dats
, | 2] ' samples ' ,
Edge Quantizad CNN[3] | 5.2x spaadup,4.1¢siza | Optimizationcritical for
Deployment reduction flduse |
ExpertTrust | BiglIME (3] 68.3% conSdmos incramse| Explainability ensbles |

adoption

4.7.Cost-Benefit Analysis of Innovations

Figure 3 Innovation Return on Investment
(Accuracy Gain/Complexity Cost)
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To guide strategic architectural decisions, we
quantify the return on investment (ROI) for each
innovation, calculating ROI as accuracy gain divided
by complexity cost (inference time increase, model
size growth, and training difficulty). This analysis
reveals which innovations provide maximal benefit
per unit of computational expense, separating
essential improvements from marginal gains[15 - 25].
4.8.High-ROI Innovations

e Attention Mechanisms: +3.8% accuracy,
+28ms cost (ROI: 0.136)

e CNN Architecture Selection: +5.6%
accuracy, +90ms cost (ROI: 0.062)

e Edge Optimization: -3.6% accuracy, -137ms
cost (ROI: 0.026 for speed)

4.9.Low-ROI Innovations

e Transformer Adoption: +0.2% accuracy,
+30ms cost (ROI: 0.007)

e Hyperspectral Modality: -2.8% accuracy,
+165ms cost (ROI: -0.017 for standard
detection)

5. Discussion: Architectural Insights and

Roadmap

5.1.The Three Essential Innovations

Our evolutionary ablation reveals three non-
negotiable components for modern rice diagnosis
systems:

e Attention Mechanisms: Not merely for
performance (+3.8%) but for robustness
(+11.7% on field images). The dual-path
attention in RICEDX-LIME demonstrates
how spatial and channel attention
complement each other for agricultural
vision.

e Modality-Aware Design: Different
modalities serve different purposes. RGB is
sufficient for symptomatic  detection,
Hyperspectral enables early intervention, and
Multispectral may offer the optimal trade-off.
The HSI-FuseNet's ability to detect diseases
48 hours before symptoms represent a
paradigm shift from reactive to proactive
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agriculture.

Integrated Explainability: The BioLIME
module in RICEDX-LIME demonstrates that
explainability should not be an afterthought.
While it reduces headline accuracy by 2.9%,
it increases expert confidence by 68.3% and
robustness by 4.6%. This trade-off is essential
for real-world adoption.

5.2.The Efficiency-Performance Frontier
We identify three optimal operating points on the
efficiency-performance frontier:

Point A (Edge Deployment): Optimized
CNN [3] - 93.2% accuracy, 48ms inference
Use case: Real-time field applications on
mobile devices

Point B  (Balanced Performance):
RICEDX-LIME [5] - 93.9% accuracy, 163ms
inference, plus explainability

Use case: Agricultural advisory services,
expert systems

Point C (Maximum Accuracy):
DenseNet121 [8] - 96.8% accuracy, 185ms
inference

Use case: Laboratory analysis, high-stakes
diagnosis

5.3.Surprising Findings

Transformers Offer Marginal Gains:
Despite their theoretical advantages, Swin
Transformer provides only +0.2% over
DenseNet121 for rice disease diagnosis. This
suggests that local patterns may be more
important than global context for this
application.

Early ML Systems Remain Competitive:
For datasets under 500 images, traditional ML
with  handcrafted  features  achieves
comparable performance to deep learning,
challenging the "DL always better" narrative.
Explainability Has Training Benefits:
BioLIME not only provides post-hoc
explanations but also improves feature
learning, as evidenced by the 4.6% robustness
increase.
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5.4.The Rice Diagnosis Architecture Genome
Based on our ablation, we propose an architecture
genome—a set of modular components that can be
combined based on requirements:

[Input Modality]
i)
[Encoder Family] — RGB: EfficientNet-B3/B4
HSI: CNN-LSTM Fusion
Edge: MobileNetV3

!

[Attention Module] — Dual-Path (Spatial +

Channel)
Cross-Attention (for multimodal)

!

[Explainability] — BioLIME (training-time

feedback)
Grad-CAM++ (inference-time)

!

[Optimization] — Quantization (FP16/INTS8)

Pruning (structured/unstructured)

)

[Deployment Target] — Cloud: Full model

Edge: Optimized version
Mobile: Quantized + pruned

5.5.Limitations and Future Directions
Limitations

e Dataset Bias: Our consolidated dataset

favors certain diseases and imaging
conditions
e Implementation  Variance: Different

frameworks (PyTorch vs TensorFlow) may
affect comparisons

e Hardware Dependence: Inference times
vary significantly across devices

o Expert Subjectivity: Trust metrics rely on
subjective expert evaluations

Future Directions from Our Research Program

e Paper 6 (RiceGAN-Dx): Generative
foundation models could address data scarcity

e Federated Learning: Mentioned in Paper 5,
could enable privacy-preserving
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collaboration

e Multimodal Fusion: Combining RGB, HSI,
and environmental sensors

e Continual Learning: Adapting to new
diseases and environmental conditions

Conclusion

This evolutionary ablation study provides the first
comprehensive  quantification of architectural
progress in rice disease diagnosis across eight
research publications spanning 2023-2025. Our
analysis reveals that:

e Deep learning provides substantial gains over
traditional ML  (+22.7%  cumulative
improvement), but the largest leap occurs in
the initial transition.

e Attention mechanisms offer the best return on
investment, providing significant accuracy
and robustness improvements with moderate
computational cost.

e Different modalities serve complementary
purposes: RGB for symptomatic detection,
hyperspectral for early intervention, with no
single modality dominating all use cases.

e Explainability is not a luxury but a necessity
for adoption, increasing expert confidence by
68.3% despite modest accuracy costs.

e Architectural choice depends fundamentally
on deployment context, with different optimal
points for edge, balanced, and maximum-
accuracy scenarios.

Our research trajectory—from traditional ML to
multimodal explainable Al—demonstrates how
agricultural computer vision has matured from proof-
of-concept to deployable technology. This
evolutionary ablation provides both a retrospective
validation of our architectural choices and a forward-
looking roadmap for the next generation of
agricultural Al systems. The key insight is that there
is no single best architecture for rice disease
diagnosis. Instead, we must cultivate an architecture
ecology where different designs thrive in different
environments, united by shared principles of
attention, explainability, and efficiency-awareness.
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