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Abstract 

This paper presents a comprehensive longitudinal ablation study that systematically evaluates the 

architectural evolution of rice (Oryza sativa) disease diagnosis systems across eight consecutive research 

publications from 2023 to 2025. Our research trajectory has progressed through four distinct technological 

epochs: (1) Traditional Machine Learning employing handcrafted features with KNN and Decision Trees, (2) 

Deep Convolutional Neural Networks with comparative architecture analysis and edge optimization, (3) 

Advanced Paradigms including Vision Transformers, hyperspectral-temporal fusion, and attention 

mechanisms, and (4) Explainable AI Systems with integrated interpretability modules. We conduct a unified 

evaluation across a consolidated multimodal dataset of 15,230 images encompassing RGB field images, 

laboratory samples, and hyperspectral sequences across eight disease classes. The ablation reveals that while 

the transition from ML to deep learning yields the largest accuracy gain (+22.7%), the integration of attention 

mechanisms provides the optimal accuracy-efficiency trade-off (+11.3% accuracy, +28ms overhead). Vision 

Transformers demonstrate superior performance on globally distributed disease patterns (+4.8% over CNNs), 

while hyperspectral CNN-LSTM fusion enables unprecedented pre-symptomatic detection capability (88.5% 

accuracy at 48 hours before visual symptoms). Surprisingly, explainability modules incur only 2.4-8.1% 

computational overhead while increasing diagnostic confidence by 68.3% among agricultural experts. This 

study establishes the first quantified efficiency-performance frontier for agricultural vision systems and 

provides an architectural roadmap for future research in precision agriculture diagnostics. 

Keywords: Evolutionary Ablation, Architectural Progress, Rice Disease Diagnosis, Multimodal Learning, 

Machine Learning, Deep Learning, Explainable AI, Vision Transformers, Hyperspectral Imaging, Precision 

Agriculture. 

 

1. Introduction  

The automated diagnosis of plant diseases represents 

one of the most promising applications of artificial 

intelligence in agriculture, with rice (Oryza sativa) 

serving as a critical testbed given its status as a staple 

food for over half the world's population. Over the 

past three years, our research program has 

systematically explored the architectural design 

space for rice disease diagnosis, publishing eight 

papers that document the evolution from traditional 

machine learning to sophisticated multimodal 

explainable systems. This progression mirrors the 

broader trajectory of computer vision in agriculture 

but presents unique challenges: field conditions with 

variable lighting, subtle symptom differences 

between diseases, resource constraints in farming 

communities, and the critical need for interpretability 

in agricultural decision-making. Each of our 
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publications has addressed specific aspects of these 

challenges, yet the cumulative impact and relative 

contribution of each architectural innovation remain 

unquantified. Traditional ablation studies focus on 

deconstructing a single model to understand 

component contributions. However, in rapidly 

evolving fields like agricultural AI, a more 

comprehensive approach is needed—one that 

evaluates progress across research generations and 

technological paradigms. This paper introduces 

"Evolutionary Ablation"—a methodological 

framework for quantifying architectural progress 

across consecutive research milestones. Our eight 

publications form a natural evolutionary sequence: 

 2023 - Foundational ML: Traditional 

algorithms with handcrafted features [1, 2] 

 2023 - CNN Exploration: Comparative 

analysis of deep learning architectures [8] 

 2024 - Real-time Deployment: Edge-

optimized systems for field use [3] 

 2024 - Advanced Sensing: Hyperspectral 

imaging for early detection [4] 

 2024 - Paradigm Shift: Vision Transformers 

for global context [7] 

 2025 - Explainable Systems: Integrated 

interpretability with BioLIME [5] 

 2025 - Generative Future: Foundation 

models for zero-shot diagnosis [6] 

This paper addresses three fundamental questions: (1) 

What is the quantifiable improvement at each 

technological transition? (2) Which innovations 

provide essential capabilities versus marginal 

improvements? (3) What architectural patterns 

emerge as optimal for different deployment 

scenarios? 

2. Related Work and Research Context 

2.1.The Evolution of Plant Disease Diagnosis 

Plant disease diagnosis has evolved through distinct 

technological phases. Early work focused on image 

processing and traditional machine learning [1, 2], 

leveraging color histograms, texture features, and 

geometric properties with classifiers like SVM and 

Random Forests. The deep learning revolution began 

with the application of CNNs to standardized datasets 

like PlantVillage, achieving remarkable accuracy but 

struggling with field conditions [8]. Recent advances 

include multimodal approaches combining RGB with 

hyperspectral or thermal imaging [4], attention 

mechanisms for focusing on symptomatic regions 

[5], and vision transformers for capturing long-range 

dependencies [7]. 

2.2.Ablation Studies in Computer Vision 

Ablation studies are fundamental to understanding 

model design in computer vision. Traditional 

approaches remove or modify components of a single 

architecture to isolate their effects. However, as noted 

by Zhang et al. [2024], this approach becomes limited 

when evaluating progress across research 

generations. Our work extends this concept to 

evolutionary ablation—comparing complete systems 

across technological epochs to quantify architectural 

progress. 

2.3.Our Research Trajectory as a Case Study 

Our eight papers represent a microcosm of 

agricultural AI development: 

 Papers 1-2 (2023): Established baselines 

with traditional ML 

 Paper 8 (2023): Systematic CNN comparison 

identifying DenseNet121 as optimal 

 Paper 3 (2024): Introduced real-time 

constraints and edge optimization 

 Paper 4 (2024): Pioneered hyperspectral-

temporal fusion for early detection 

 Paper 7 (2024): Demonstrated transformer 

superiority for certain disease patterns 

 Paper 5 (2025): Integrated explainability as a 

core system component 

 Paper 6 (2025): Proposed generative 

foundation models for future systems 

This progression provides an ideal tested for 

evolutionary ablation analysis. 

3. Methodology: Evolutionary Ablation 

Framework 

3.1.Unified Evaluation Dataset 

To ensure fair comparison across all eight studies, we 

constructed a consolidated multimodal dataset 
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Shown in Table 1: 

 

Table 1 Consolidated Dataset Composition 

 
 

3.2.Dataset Processing 

 All images resized to 384×384 pixels 

 Hyperspectral sequences converted to 

temporal RGB cubes 

 Unified annotation schema across all sources 

 Train/Validation/Test split: 60%/20%/20% 

(stratified by source) [10] 

3.3.Model Selection and Implementation 

We implemented representative models from each 

paper Shown in Table 2 and 3: 

 

Table 2 Model Implementations for Evolutionary 

Ablation 

 
 

3.4.Evaluation Metrics 

We employed comprehensive metrics covering 

performance, efficiency, and utility: 

 Performance Metrics: Accuracy, Precision, 

Recall, F1-Score, AUC-ROC [11] 

 Efficiency Metrics: Inference time 

(CPU/GPU), Model size, FLOPs, Memory 

usage 

 Robustness Metrics: Performance on field 

images, early detection capability 

 Utility Metrics: Expert confidence scores, 

Explanation quality (for XAI systems) 

 Composite Metrics: Accuracy-Efficiency 

Product (AEP = Accuracy/Inference_Time) 

3.5.Ablation Dimensions 

Our evolutionary ablation examines six critical 

dimensions: 

 D1: ML → DL Transition (Papers 1-2 vs 

Paper 8) [12] 

 D2: CNN Architecture Selection (Within 

Paper 8: ResNet50 vs DenseNet121 vs 

EfficientNet) 

 D3: Efficiency Optimization (Paper 8 best vs 

Paper 3 edge-optimized) 

 D4: Paradigm Shift: CNN → Transformer 

(Paper 8 best vs Paper 7) 

 D5: Modality Expansion: RGB → 

Hyperspectral (Paper 7 vs Paper 4) 

 D6: Explainability Integration (Paper 7 vs 

Paper 5) Shown in Figure 1. 

4. Results: Quantifying Architectural Evolution 

4.1.Overall Performance Progression 

 

Table 3 Performance Evolution Across Research 

Generations 
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4.2.Component Contribution Analysis 

 

 
Figure 1 Improvement from Baseline 

 

4.3.Key Findings 

 ML→DL Transition: +6.1% accuracy 

(largest single improvement) 

 CNN Architecture Optimization: +5.6% 

(DenseNet121 over ResNet50) 

 Attention Mechanisms: +3.8% (within 

RICEDX-LIME ablation) [13] 

 Transformer Paradigm: +0.2% (marginal 

but consistent) 

 Explainability Integration: -2.9% accuracy 

but +68% expert confidence Shown in Figure 

2. 

4.4.Efficiency-Performance Trade-offs 

 

 
Figure 2 Accuracy vs Inference Time Pareto 

Frontier 

 

The relationship between diagnostic accuracy and 

computational efficiency defines practical 

deployment boundaries for agricultural AI systems. 

We map all evaluated models across this two-

dimensional space to identify Pareto-optimal 

configurations where no alternative provides both 

higher accuracy and lower inference time, 

establishing clear efficiency-performance frontiers 

for different deployment scenarios Shown in Table 4. 

4.5.Pareto-Optimal Models 

 Edge-Optimized CNN [3]: Best for real-time 

applications (93.2% @ 48ms) [14] 

 DenseNet121 [8]: Best pure accuracy (96.8% 

@ 185ms) 

 RICEDX-LIME [5]: Best balance with 

explainability (93.9% @ 163ms) Shown in 

Figure 3 

4.6.Specialized Capability Analysis 

 

Table 4 Innovation Effectiveness for Specific 

Challenges 

 
 

4.7.Cost-Benefit Analysis of Innovations 

 

 
Figure 3 Innovation Return on Investment 

(Accuracy Gain/Complexity Cost) 
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To guide strategic architectural decisions, we 

quantify the return on investment (ROI) for each 

innovation, calculating ROI as accuracy gain divided 

by complexity cost (inference time increase, model 

size growth, and training difficulty). This analysis 

reveals which innovations provide maximal benefit 

per unit of computational expense, separating 

essential improvements from marginal gains[15 - 25]. 

4.8.High-ROI Innovations 

 Attention Mechanisms: +3.8% accuracy, 

+28ms cost (ROI: 0.136) 

 CNN Architecture Selection: +5.6% 

accuracy, +90ms cost (ROI: 0.062) 

 Edge Optimization: -3.6% accuracy, -137ms 

cost (ROI: 0.026 for speed) 

4.9.Low-ROI Innovations 

 Transformer Adoption: +0.2% accuracy, 

+30ms cost (ROI: 0.007) 

 Hyperspectral Modality: -2.8% accuracy, 

+165ms cost (ROI: -0.017 for standard 

detection) 

5. Discussion: Architectural Insights and 

Roadmap 

5.1.The Three Essential Innovations 

Our evolutionary ablation reveals three non-

negotiable components for modern rice diagnosis 

systems: 

 Attention Mechanisms: Not merely for 

performance (+3.8%) but for robustness 

(+11.7% on field images). The dual-path 

attention in RICEDX-LIME demonstrates 

how spatial and channel attention 

complement each other for agricultural 

vision. 

 Modality-Aware Design: Different 

modalities serve different purposes. RGB is 

sufficient for symptomatic detection, 

Hyperspectral enables early intervention, and 

Multispectral may offer the optimal trade-off. 

The HSI-FuseNet's ability to detect diseases 

48 hours before symptoms represent a 

paradigm shift from reactive to proactive 

agriculture. 

 Integrated Explainability: The BioLIME 

module in RICEDX-LIME demonstrates that 

explainability should not be an afterthought. 

While it reduces headline accuracy by 2.9%, 

it increases expert confidence by 68.3% and 

robustness by 4.6%. This trade-off is essential 

for real-world adoption. 

5.2.The Efficiency-Performance Frontier 

We identify three optimal operating points on the 

efficiency-performance frontier: 

 Point A (Edge Deployment): Optimized 

CNN [3] - 93.2% accuracy, 48ms inference 

 Use case: Real-time field applications on 

mobile devices 

 Point B (Balanced Performance): 
RICEDX-LIME [5] - 93.9% accuracy, 163ms 

inference, plus explainability 

 Use case: Agricultural advisory services, 

expert systems 

 Point C (Maximum Accuracy): 
DenseNet121 [8] - 96.8% accuracy, 185ms 

inference 

 Use case: Laboratory analysis, high-stakes 

diagnosis 

5.3.Surprising Findings 

 Transformers Offer Marginal Gains: 
Despite their theoretical advantages, Swin 

Transformer provides only +0.2% over 

DenseNet121 for rice disease diagnosis. This 

suggests that local patterns may be more 

important than global context for this 

application. 

 Early ML Systems Remain Competitive: 
For datasets under 500 images, traditional ML 

with handcrafted features achieves 

comparable performance to deep learning, 

challenging the "DL always better" narrative. 

 Explainability Has Training Benefits: 
BioLIME not only provides post-hoc 

explanations but also improves feature 

learning, as evidenced by the 4.6% robustness 

increase. 

http://www.irjaeh.com/
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5.4.The Rice Diagnosis Architecture Genome 

Based on our ablation, we propose an architecture 

genome—a set of modular components that can be 

combined based on requirements: 

 

[Input Modality] 

↓ 

[Encoder Family] → RGB: EfficientNet-B3/B4 

HSI: CNN-LSTM Fusion 

Edge: MobileNetV3 

↓ 

[Attention Module] → Dual-Path (Spatial + 

Channel) 

Cross-Attention (for multimodal) 

↓ 

[Explainability] → BioLIME (training-time 

feedback) 

Grad-CAM++ (inference-time) 

↓ 

[Optimization] → Quantization (FP16/INT8) 

Pruning (structured/unstructured) 

↓ 

[Deployment Target] → Cloud: Full model 

Edge: Optimized version 

Mobile: Quantized + pruned 

 

5.5.Limitations and Future Directions 

Limitations 

 Dataset Bias: Our consolidated dataset 

favors certain diseases and imaging 

conditions 

 Implementation Variance: Different 

frameworks (PyTorch vs TensorFlow) may 

affect comparisons 

 Hardware Dependence: Inference times 

vary significantly across devices 

 Expert Subjectivity: Trust metrics rely on 

subjective expert evaluations 

Future Directions from Our Research Program 

 Paper 6 (RiceGAN-Dx): Generative 

foundation models could address data scarcity 

 Federated Learning: Mentioned in Paper 5, 

could enable privacy-preserving 

collaboration 

 Multimodal Fusion: Combining RGB, HSI, 

and environmental sensors 

 Continual Learning: Adapting to new 

diseases and environmental conditions 

Conclusion 

This evolutionary ablation study provides the first 

comprehensive quantification of architectural 

progress in rice disease diagnosis across eight 

research publications spanning 2023-2025. Our 

analysis reveals that: 

 Deep learning provides substantial gains over 

traditional ML (+22.7% cumulative 

improvement), but the largest leap occurs in 

the initial transition. 

 Attention mechanisms offer the best return on 

investment, providing significant accuracy 

and robustness improvements with moderate 

computational cost. 

 Different modalities serve complementary 

purposes: RGB for symptomatic detection, 

hyperspectral for early intervention, with no 

single modality dominating all use cases. 

 Explainability is not a luxury but a necessity 

for adoption, increasing expert confidence by 

68.3% despite modest accuracy costs. 

 Architectural choice depends fundamentally 

on deployment context, with different optimal 

points for edge, balanced, and maximum-

accuracy scenarios. 

Our research trajectory—from traditional ML to 

multimodal explainable AI—demonstrates how 

agricultural computer vision has matured from proof-

of-concept to deployable technology. This 

evolutionary ablation provides both a retrospective 

validation of our architectural choices and a forward-

looking roadmap for the next generation of 

agricultural AI systems. The key insight is that there 

is no single best architecture for rice disease 

diagnosis. Instead, we must cultivate an architecture 

ecology where different designs thrive in different 

environments, united by shared principles of 

attention, explainability, and efficiency-awareness. 
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