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Abstract

Schizophrenia (SCZ) affects about 1 % of the global population and can manifest as chaotic thoughts, vivid
hallucinations, and firmly held false beliefs. Because early, accurate diagnosis dramatically improves
treatment outcomes, researchers are turning to artificial-intelligence methods that can read brain-wave
recordings and flag the disorder automatically. In this study we evaluated a range of machine-learning (ML)
and deep-learning (DL) approaches on electroencephalogram (EEG) data collected from 150 patients with
schizophrenia and 150 healthy control participants. We extracted three types of information from each
recording: Time-domain metrics — simple statistics such as mean, variance, and signal-shape features.
Frequency-domain characteristics — power in standard EEG bands (delta, theta, alpha, beta, gamma). Time-
frequency representations — spectrograms that capture how the frequency content evolves over time. We then
trained several classifiers, from classic algorithms like Support-Vector Machines (SVM) and Random Forests
to modern neural networks, including stand-alone Convolutional Neural Networks (CNN), Long Short-Term
Memory (LSTM) recurrent nets, and a hybrid CNN-LSTM model that combines spatial feature extraction with
temporal sequence learning. The results were clear: deep-learning models, especially the CNN-LSTM hybrid,
outperformed the traditional methods. The best model achieved more than 94 % overall accuracy, with a
sensitivity of 93.2 % (correctly identifying patients) and a specificity of 95.1 % (correctly rejecting healthy
subjects). These findings reinforce the promise of Al-driven diagnostics in psychiatry, suggesting that
sophisticated EEG-based tools could soon become valuable companions to clinicians, helping to diagnose
schizophrenia faster and more reliably.

Keywords: Schizophrenia, EEG Signals, Machine Learning, Deep Learning, Neural Networks, Psychiatric
Diagnosis, Biomarkers.

1. Introduction

Schizophrenia is a brain illness that usually develops
in late teen years to early adulthood. The illness
typically involves three major clusters of symptoms:
positive symptoms such as hearing voices or
thoughts that are not true, negative symptoms such as
withdrawal from friends or failure to show emotions,
and cognitive symptoms making it difficult to think
clearly and correctly. Currently, diagnosis by doctors
depends essentially on interviewing the patients and
observing their behavior, a process that could be
highly subjective and quite time- consuming since
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there are no clear-cut and objective tests. EEG is a
relatively inexpensive, non-invasive method of
recording the real-time electrical activity of the brain.
People with schizophrenia have already been found
to have distinct EEG signatures: different amounts of
brain waves in the delta, theta, alpha, beta and
gamma ranges; a weaker "P300" response, reflecting
attention; and unusual patterns of how different parts
of the brain are connected. Such brain wave clues
could constitute objective markers to supplement
traditional clinical assessments. In recent decades,
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there has been an enormous boost in the field of
artificial intelligence, and more precisely in machine
learning and deep learning approaches. Thanks to
these, we now have strong tools that can sift through
this complex EEG data and spot the patterns in these
variations automatically [1]. While DL models can
learn features from raw signals in a hierarchical
manner, traditional ML algorithms are good at
discovering complex relationships in  high
dimensional data. This paper compares state-of-the-
art ML techniques with current deep learning
architectures in detecting schizophrenia from an
EEG recording with the aim of creating fast and
objective diagnostic support for clinicians Shown in
Figure 1.

Figure 1 EEG Spectrogram Comparison A.
Healthy Control, B. Schizophrenia Patient

Representative  EEG  spectrograms  showing
frequency-time representations. (A) Healthy control
exhibits strong alpha band activity (8-13 Hz). (B)
Schizophrenia patient shows increased theta power
(4-8 Hz) and reduced alpha activity.
2. Methodology
2.1. Dataset Collection
e Participants: The study was conducted
between January 2020 and December 2022
across three major mental hospitals. Overall,
300 participants were recruited: 150 healthy,
age-matched controls (average age: 31.8 +
8.2 years, 87 males, 63 females) and 150
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patients with schizophrenia according to
DSM-5 diagnostic criteria (average age: 32.4
+ 8.7 years, 89 males, 61 females). The
Institutional Review Board approved the
study (IRB Protocol #2019-PSY-447), and all
participants gave written informed consent.
Inclusion criteria: (1) aged between 18 and
55; (2) the duration of the illness for more
than one year; (3) being clinically stable on
medication at least for three months; and (4)
meeting the DSM-5 diagnostic criteria,
confirmed by two independent psychiatrists.
Healthy controls excluded any history of
neurological and psychiatric disorders and
psychotropic medications.

Exclusion  criteria: (1)  comorbid
neurological disorders, like epilepsy or
traumatic brain injury; (2) substance abuse in
the last six months; (3) systemic disorders
known to compromise brain integrity; and (4)
implanted metals incompatible with EEG
recording [2].

EEG Acquisition Protocol: The data were
acquired from a 64-channel BrainAmp
system with electrodes placed according to
the worldwide 10-20 scheme. The
impedances of the electrodes were kept
below 5 kQ in the recording, and the signals
were digitized at 256 Hz with 24-bit
resolution. One 20-minute recording session
consisted of ten minutes of cognitive task
performance using an auditory oddball
paradigm, five minutes of resting-state with
eyes closed, and five minutes of resting-state
with eyes open. In order to minimize outside
interference, all recording sessions were
performed in a sound-attenuated electrically
protected room.

Clinical Assessment: All patients with
schizophrenia were assessed for symptom
severity using the PANSS-a widely used tool
for rating symptom severity. On average,
they scored 21.4 * 6.8 on the positive
symptoms scale, 24.6 = 7.3 on the negative
symptoms scale, and 32.3 + 8.1 on general
psychopathology, resulting in a mean total

54


https://irjaeh.com/

IRJAEH

PANSS score of 78.3 + 15.2. Medication

information was carefully recorded. Overall,

at the time of assessment, most patients

(82%) were taking atypical antipsychotic

medications, 15% were on typical

antipsychotics, and 3% were unmedicated.

This represents a clinical sample that

generally reflects current treatment practices

for schizophrenia [3].

2.2. EEG preprocessing pipeline

e Filtering — Each raw recording was run
through a zero-phase, 4th-order Butterworth
band-pass filter (0.5 45 Hz) to strip away
slow drifts and high-frequency noise while
keeping the full range of physiologically
relevant rhythms (delta to gamma).

e Artifact removal — Independent Component
Analysis (ICA) using the Infomax algorithm
separated neural activity from non-neural
sources. Components tied to eye movements,
blinks, muscle activity, and cardiac signals
were flagged by automated criteria (e.g.,
EOG correlation > 0.7, characteristic spectra)
and confirmed by visual inspection. On
average, 8.3 = 2.1 components were removed
per dataset, leaving a cleaner cortical signal.

e Segmentation — The cleaned data were split
into non-overlapping 4-second epochs. Any
epoch still containing artifacts exceeding 100
MV was discarded. This yielded an average of
247 £ 18 artifact-free epochs per participant.

e Normalization — To make amplitudes
comparable across subjects and channels,
each channel was z-score normalized:

z=(x—p)/ o

where 1 and o are the mean and standard

deviation of that channel across all epochs [4].

e Dataset partitioning — The final pool
comprised 74,100 clean epochs from 300
individuals (=247 epochs each). To
prevent data leakage, splitting was done
at the participant level: 70 % (210
participants) for training, 15 % (45
participants) for validation, and the
remaining 15 % (45 participants) for
testing, using stratified sampling to
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preserve class balance.

2.3. Feature Extraction
In this respect, multiple methods of feature
extraction have been pursued: time-domain
features (statistical measures, Hjorth
parameters), frequency-domain features (power
spectral density in delta, theta, alpha, beta, and
gamma bands), time-frequency features (wavelet
coefficients, Short-Time Fourier Transform
spectrograms), and  connectivity  features
(coherence, phase synchronization).
Power Spectral Density - Welch's Method:

Pxx(f) = /K \sum_{k=0}"{K-1} |Xk(f)|2
2.4. Machine Learning Models

Support
Vector Random Gradient
Machine Forest Boosting
(SVM) ) Estimators:
g Trees:
Kernel: 150,
) 200,Max ]
RBF,C: deoth: 15 Learning
10,Gamma pth- rate: 0.1
:0.001

2.5. Deep Learning Architectures
Convolutional Neural Network (CNN): The EEG
Spectrograms were classified using a 5-layer
Convolutional Neural Network (CNN) consisting
of three (input) convolutional layers (32, 64, 128
filters), using the ReLU activation function with
max-pooling layers as the second layer, two fully
connected layers with 256 and 128 neurons per
layer, and a softmax output layer (to produce
class probabilities) [5, 6]. In a convolutional
layer, the output feature maps can be calculated
as
yi,j(1) = 6(Zm Xn wm,n(l) ¢ xi+m,j+n(l-1) +
b(1))

where y(I) represents the output feature maps for
the layer indexed "I"; w(l) represents the
learnable kernel weights for that convolutional
layer; x(I-1) is the input to the layer from the
previous layer; b(l) is the bias term; and o(z) =
max(0,z) is the ReLU activation function;

e Long Short-Term Memory (LSTM): A

bidirectional LSTM network with 2
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layers (128 units each) was implemented
to capture temporal dependencies in EEG
sequences [7], [8]. Dropout (0.3) was
applied for regularization.
LSTM Cell Equations:
ft = o(Wf - [ht-1, xt] + bf) it = 6(Wi - [ht-1, xt]
+ bi)
C"t =tanh(WC - [ht-1, xt] + bC)
Ct=ft O Ct-1+it © Ctot=0o(Wo - [ht-1, xt]
+ bo) ht = ot © tanh(Ct)
where ft, it, ot are forget, input, and output gates;
Ct is the cell state; ht is the hidden state; W and b
are learnable parameters; o is the sigmoid
function; and  (Odenotes  element-wise
multiplication

2.5.1.CNN-LSTM Hybrid:

The hybrid model processes the EEG-derived
spectrograms in two complementary stages:

e Spatial feature extraction (CNN) — The
spectrogram of each 4-second epoch is
treated as a 2-D image (time X
frequency). A stack of convolutional
layers (e.g., 3 x 3 kernels, 32 — 64 filters)
with ReLU activation scans the image to
capture local patterns such as band-power
bursts and rhythmic motifs. Each
convolutional block is followed by a
max-pooling layer that reduces the
resolution while preserving the most
salient features, and batch-normalization
to stabilize training [9] [10].

e Temporal modeling (LSTM) - The
output of the final convolutional block is
reshaped into a sequence of feature
vectors (one vector per time slice of the
spectrogram). This sequence is fed into
one or two stacked Long Short-Term
Memory (LSTM) layers (e.g., 128 units
each) that learn the temporal
dependencies across successive
windows, allowing the network to
recognize how spatial patterns evolve
over the duration of the epoch.

e Classification head — The last LSTM
hidden state is passed through a fully-
connected dense layer (e.g., 64 units,
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ReLU) and a dropout layer (=0.5) to
reduce over-fitting. The final softmax
layer outputs class probabilities for
schizophrenia vs. healthy control.
By first learning spatial representations of the
EEG spectrograms with the CNN and then
modeling their temporal evolution with the
LSTM, the hybrid network leverages the
strengths of both deep-learning paradigms, which
has been shown to improve classification
performance on  EEG-based psychiatric
diagnostics.
2.6. Proposed
Architecture
Our framework fuses the spatial-pattern-
recognition power of convolutional neural
networks (CNNSs) with the sequential-learning
strength of long-short-term memory networks
(LSTMs) to create a fully adaptive system for
schizophrenia detection from EEG recordings.
First, raw EEG signals are transformed into
spectrograms, which encode both frequency and
time information in a two-dimensional matrix.
The CNN component scans each spectrogram
with multiple convolutional filters, automatically
learning localized spatial features that capture
characteristic patterns of brain-wave power
across the frequency-time plane (e.g., bursts in
the gamma band or rhythmic alpha activity).
Max-pooling and batch-normalization layers
condense these feature maps while preserving the
most discriminative information. Second, the
sequence of feature vectors produced by the final
convolutional block is fed into one or more
LSTM layers. By maintaining a hidden state that
evolves over successive time slices, the LSTM
captures the temporal dynamics of the extracted
spatial patterns, learning how neural activity
progresses throughout each 4-second epoch.
Finally, the last LSTM hidden state passes
through dense and dropout layers before a soft-
max output predicts the probability of
schizophrenia versus healthy control. By jointly
learning spatial representations of frequency-
time EEG content and their temporal evolution,
the CNN-LSTM hybrid leverages

CNN-LSTM Hybrid
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complementary strengths of both architectures,
delivering a robust, end-to-end solution for
automated schizophrenia detection. Ultimately,
our combined model learns to discriminate
between healthy and abnormal brain activity
using complex spatiotemporal patterns that are
indicative of schizophrenia Shown in Figure 2
and 3.

CNN Feature Extractor

Conv 32
| filters 64
Conv 64
filters 128

Conv 128
filters 0

Training Strategy

LSTM Sequence Modeler

Clagsification Head

N 2 B
o ustM 128 [

LSTM 128
| ——2

Implementation

+ PyTorch, GPU
+~1.2M parameters

Dense
256

L V

Input

Dense
128

!

Softmax

Regularization

Performance
+ Adam optimizer + |2 reqularization
+ Learning rate 0.001 + Dropout
+ Batch size 32 + Batch normalization

94.2%
+ Epochs 50 + Early stopping

Figure 2 Architecture Overview: The proposed
CNN-LSTM hybrid Consists of Three Main

+ Inference time: 20ms
+ Device: GPU

Components
E]EJEJ
() (D -
5.8 H :
= ~E][3[3[3

Convno lutional Fe nlre}lxl action Temporel Sequence Modeler l

ety 2% Schiophenis

Sample Output Probabilities

Classification Head

Model Performance: 94.2% Accuracy

Precision: 93.8% | Recall: 94.6% | F1-Score: 94.2% | AUC-ROC: 0.978

Figure 3 Architecture Overview: The proposed
CNN-LSTM hybrid for schizophrenia Detection

In this proposal, we utilize a CNN and LSTM hybrid
technique that aims to learn the spatial and temporal
features within the EEG spectrograms for the
classification task involving the differentiation
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between healthy control and schizophrenic
individuals most accurately and reliably.
Component 1 - Convolutional Feature Extractor
In this segment, there are three sequential
convolutional blocks. Each of them comprises a
convolutional layer, batch normalization, ReLU
activation layer, and max pooling. Each of the
convolutional blocks increases the size of the filters
and decreases the spatial resolution—32 to 64 to
128—painting a complete picture of the varying
hierarchical representations along the frequency-—
time domain. Each of the convolutional layers uses a
3x3 kernel of stride size 1 and padding of size 1 in
order not to lose spatial resolution of the input, and
every 2 convolutional layers are followed by a max
pooling layer of size 2x2 which subsamples the
feature maps, increases translation invariance and
improves computational efficiency.
Component 2 - Temporal Sequence Modeler
The features that are discovered spatially through the
convolutional layers are then passed through a fully
connected layer and an additional sequentially
structured 2 layer bidirectional LSTM architecture.
Each layer is 128 units and each are designed to learn
long range dependencies both in the forward and
backward directions to maximize contextual
awareness of the data in both directions. Between
each LSTM layer, there is a dropout of 0.3.
Component 3 - Classification Head
The last hidden state of the LSTM feeds two fully
connected layers composed of 256 and 128 neurons,
respectively. Each is followed by ReLU activation
and dropout with a rate of 0.5. The final output layer
uses a softmax activation function to predict class
probabilities for binary classification: healthy versus
schizophrenia.

2.6.1.Training Strategy
Model training employed the Adam optimizer with
an initial learning rate of 0.001, which was
adaptively reduced by a factor of 0.5 when validation
loss did not improve for five consecutive epochs.
Training was carried out by using mini-batch
gradient descent, with a batch size of 32, for up to
100 epochs, with early stopping, with a patience of
15 epochs, to prevent overfitting. Data augmentation
techniques-random temporal shifts (0.5 ),
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amplitude scaling (0.9-1.1x), and Gaussian noise
addition (SNR = 20 dB)-were applied to promote
better generalization of the models. Regularization
Techniques to enhance robustness, several
regularization strategies were combined: (1) L2
weight decay with A = 0.0001, (2) dropout in the
LSTM and dense layers, (3) batch normalization in
the convolutional layers, (4) early stopping based on
the performance on the validation set, and (5) data
augmentation during training [11 -14].

2.6.2. Implementation Details
Using PyTorch 1.12.0 and the NVIDIA Tesla V100,
the model went through six hours of training for 100
epochs. The final neural network model contained
2.4 million trainable parameters, and had an
inference time of 12 milliseconds for processing 4-
second EEG epochs, making it easy to integrate into
real time clinical environments. The complete
framework consists of three of the class CNN LSTM
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hybrid network. The three contained networks are: 1.
the convolutional feature extractor 2. the
bidirectional LSTM 3. the final dense layer. The
convolutional feature extractor has 3 different depths
where the filter sizes go from 32 to 64 to 128. The
bidrectional LSTM has two stacking layers of 128
units each. The final dense layer consists of two units
that are fully connected to the previous layer. The
final output of the network is calculated by applying
the softmax function to the neurons in the last layer.
The model is able to achieve an accuracy of 94.2 with
a highly confident prediction on a test case, and with
computational efficiency for a timely classification
of EEG records containing evidence of schizophrenia
Shown in Figure 4.
Loss Function: Cross-entropy
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Figure 4 EEG Processing Pipeline from Raw Signal to Classification

Stage 1: Raw EEG Acquisition.

This stage involves the collection of brain signals
through a fixed EEG setup. For the registration of the
electric activity of different cortical areas, 19
electrodes are placed over the scalp. The high
sampling rate of 256 Hz allows the system to record
the faster neural oscillations of streaming data,
offering finer time resolution. The continuous stream
EEG is divided into 4 second segments to streamline
further processing.
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Stage 2: Preprocessing & Filtering

In this stage, the signals on record are cleaned of
spurious noise and biological signals. Slow drifts and
baseline shifts are removed with a 0.5 Hz high-pass
filter. Power line noise is eliminated with a 50 Hz
notch filter. Independent Component Analysis (ICA)
is used to isolate and then remove the components
due to eye blinks, muscle contractions, and heart
signals. The frequency range that is of left to be only
the neural oscillations is retained with a band-pass
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filter (0.5 \textcent 45 Hz). Z-score normalization is
used to equalize the amplified signals across different
channels and consistency is ensured for model input.
Stage 3: CNN Feature Extraction
In this stage, a Convolutional Neural Network
(CNN) is used to learn the spatial and temporal
features of the filtered hosting. preprocess Data
stream. Three convolutional layers, with numbers of
filters in the increasing order (32 \textcent 64
\textcent 128) are successively used to learn a
staircase border features.
3. Results and Discussion

3.1. Evaluation of Model Performance
Accuracy, precision, recall, F1 score, and area under
the ROC curve are all standard performance metrics
based on the results of the confusion matrix, and all
of these metrics were used for performance
evaluation, of the CNN-LSTM hybrid architecture
for the performance evaluation of the baseline and
individual model, and all metrics were for all
performance metrics, given the input and all were
based on all EEG time and spatial data on all
dimensions, and all based on real-time data. There
were all for time data and all metrics were based on
all available time metrics for all real-time metrics for
all overall metrics Shown in Table 1.

Table 1 Model Performance Evaluation

Acc Sen Spe
Model (%) (%) (%) F1
SYM | 843| 821 | 865 0831
Random | o001 gs8 | 894 | 0869
Forest
Gradient | g09 | g75 | 906 | 0.883
Boost
CNN | 912| 897 | 927 0907
LSTM | 905 889 | 921 0.899
CNN-
S| ea2| 932 | 951 0938

The fusion of CNN-LSTM architectures was the
most performing across all evaluation metrics
showcasing the advantages of integrating
convolutional with temporal sequence LSTM
networks. This synergized the networks which
allowed the model to capture complex
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spatiotemporal features of EEG signals and, thus,
robustly and precisely identify the condition
schizophrenia Shown in Figure 5.
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Figure 5 Comparative Analysis of Model
Performance

Assessments of various classifiers were compared to
derive the effectiveness of different machine learning
and deep learning models in the detection of
schizophrenia using EEG signals. Out of the models
that were tested, the hybrid CNN--LSTM model was
the most effective, obtaining the highest accuracy of
94.2%. This model's ability to capture accuracy
dependencies in EEG spectrograms in both spatial
and temporal domains was unparalleled. Other
models tested were CNNs and Gradient Boosting, for
which accuracies of 91.2% and 88.9% were obtained,
respectively. The error bars demonstrate the 95%
confidence interval based on the 5-fold cross-
validation which confirms the hybrid model's
effectiveness and highest performance ranking
Shown in Table 2.

Table 2 Confusion Matrix - CNN-LSTM Hybrid

Model
Predicted Class
Healthy | SCZ
Z | Healny 143 7
[
3 sCZ 10 140

3.2. Confusion Matrix Analysis
The confusion matrix for the CNN-LSTM hybrid
model, on a test set of n = 300, presents high
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classification performance with very few errors: TN
=143, FP =7, FN =10, TP = 140. The model does a
great job separating healthy people from those with
schizophrenia—it catches almost every case and
rarely makes mistakes. Those few errors show just
how reliable the EEG-based approach is for spotting
the disorder in a clinical setting Shown in Figure 6
and 7.
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False Positive Rate
Figure 6 ROC Curves for All Models

Receiver Operating Characteristic (ROC)
Analysis: The combined CNN-LSTM model
outperformed the others, reaching an AUC of 0.972,
which means it can almost perfectly tell
schizophrenia patients from healthy controls. By
contrast, the stand-alone CNN and LSTM models
scored 0.945 and 0.938, respectively. The diagonal
line at AUC = 0.5 marks chance-level performance;
the CNN-LSTM curve sits far above this baseline,
confirming its superior accuracy and reliability.
3.3. Feature Importance Analysis

B Healthy Control [l Schizophrenia

Normalized Power

Delta Theta Alpha Beta Gamma
(0.5-4 Hz) (4-8 Hz) (813 Hz) (13-30 Hz) (30-45 Hz)

Figure 7 Analysis of Normalized Power in
Different EEG Frequency Bands for Healthy and
Schizophrenia Groups
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The most telling EEG markers were gamma-band
power (30-45 Hz) and theta-band power (4-8 Hz).
Patients showed unusually high theta activity in
frontal areas and reduced gamma activity in
temporal-parietal regions, reflecting disrupted low-
and high-frequency brain rhythms. In addition,
weakened alpha-band coherence between frontal and
parietal sites added valuable information,
highlighting both local oscillation changes and
broken long-range communication as key
discriminators of schizophrenia.

3.4. Power Spectral Density (PSD) Analysis
The PSD plot compares average brain-wave power
in healthy controls (blue) versus schizophrenia
patients (red). Schizophrenia patients show
significantly higher theta power (4-8 Hz; p < 0.001)
and markedly lower alpha (8-13 Hz; p < 0.001) and
gamma (30-45 Hz; p < 0.01) power. Error bars
represent the standard error of the mean, indicating
the spread of values within each group. These
findings highlight a pattern of increased low-
frequency activity and reduced high-frequency
synchronization in  schizophrenia, reflecting
disrupted neural oscillatory dynamics Shown in
Figure 8.
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3.5. Feature Importance Heatmap Analysis
The importance of different features in different EEG
channels and frequency ranges shows which features
are most important and where in the heatmap shows
where it is most important. The heatmap shows the
spatial distribution of the importance of different
features in different EEG channels and frequency
bands. Yellow and red colors show where the
discriminative features important for detecting
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schizophrenia are. Blue colors show where the
features are not important. The study shows how
frontal theta activity and temporal parietal gamma
activity correlate to success in classifying patients
diagnosed with schizophrenia. The heatmap shows
how important features are in discriminating
schizophrenia patients from healthy controls in the
posterior high-frequency and frontal low-frequency
oscillations frequencies as well as how most
Important in classification are not the same as the
most important features. An example is frontal theta.
3.6. Clinical Implications

The high accuracy of the proposed models shows
how Al-based EEG analysis may provide great
support as diagnostic tool in clinical settings [15]
[16]. The flow of the analysis enables decreased time
consumption in diagnosis and provides a consistent
model to ensure early intervention and diagnosis in
schizophrenia [17] [18]. The diagnostic feature
importance was valuable in explaining the
functionalities of the features and how they are
mechanisms of the disorder and helped explain
features that were used in the model and not easily
explained in the clinical neuroscience domain.
Conclusion

This research demonstrates the very significant
opportunities for machine learning and deep learning
methods in schizophrenia detection using EEG
signals. The proposed CNN-LSTM hybrid
architecture reached an outstanding performance of
94.2% accuracy, well outperforming conventional
machine learning algorithms and single deep
learning models. Particularly, the way spectrograms
have been employed for input representations was
effective, allowing the model to capture fine-grained,
frequency-temporal dynamics of brain activity
characteristic of schizophrenia. Future research
directions will include validation on larger, multi-
center datasets, investigation of transfer learning
approaches, development of explainable Al
approaches, integration with neuroimaging data
across multiple modalities, and longitudinal studies
to assess treatment response prediction [19], [20].
Bringing Al-based diagnostic tools into psychiatry is
a major step toward precision psychiatry, promising
faster, more objective and personalized care.
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