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Abstract 

Schizophrenia (SCZ) affects about 1 % of the global population and can manifest as chaotic thoughts, vivid 

hallucinations, and firmly held false beliefs. Because early, accurate diagnosis dramatically improves 

treatment outcomes, researchers are turning to artificial-intelligence methods that can read brain-wave 

recordings and flag the disorder automatically. In this study we evaluated a range of machine-learning (ML) 

and deep-learning (DL) approaches on electroencephalogram (EEG) data collected from 150 patients with 

schizophrenia and 150 healthy control participants. We extracted three types of information from each 

recording: Time-domain metrics – simple statistics such as mean, variance, and signal-shape features. 

Frequency-domain characteristics – power in standard EEG bands (delta, theta, alpha, beta, gamma). Time-

frequency representations – spectrograms that capture how the frequency content evolves over time. We then 

trained several classifiers, from classic algorithms like Support-Vector Machines (SVM) and Random Forests 

to modern neural networks, including stand-alone Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM) recurrent nets, and a hybrid CNN-LSTM model that combines spatial feature extraction with 

temporal sequence learning. The results were clear: deep-learning models, especially the CNN-LSTM hybrid, 

outperformed the traditional methods. The best model achieved more than 94 % overall accuracy, with a 

sensitivity of 93.2 % (correctly identifying patients) and a specificity of 95.1 % (correctly rejecting healthy 

subjects). These findings reinforce the promise of AI-driven diagnostics in psychiatry, suggesting that 

sophisticated EEG-based tools could soon become valuable companions to clinicians, helping to diagnose 

schizophrenia faster and more reliably. 

Keywords: Schizophrenia, EEG Signals, Machine Learning, Deep Learning, Neural Networks, Psychiatric 

Diagnosis, Biomarkers.   

 

1. Introduction 
Schizophrenia is a brain illness that usually develops 

in late teen years to early adulthood. The illness 

typically involves three major clusters of symptoms: 

positive symptoms such as hearing voices or 

thoughts that are not true, negative symptoms such as 

withdrawal from friends or failure to show emotions, 

and cognitive symptoms making it difficult to think 

clearly and correctly. Currently, diagnosis by doctors 

depends essentially on interviewing the patients and 

observing their behavior, a process that could be 

highly subjective and quite time- consuming since 

there are no clear-cut and objective tests. EEG is a 

relatively inexpensive, non-invasive method of 

recording the real-time electrical activity of the brain. 

People with schizophrenia have already been found 

to have distinct EEG signatures: different amounts of 

brain waves in the delta, theta, alpha, beta and 

gamma ranges; a weaker "P300" response, reflecting 

attention; and unusual patterns of how different parts 

of the brain are connected. Such brain wave clues 

could constitute objective markers to supplement 

traditional clinical assessments. In recent decades, 
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there has been an enormous boost in the field of 

artificial intelligence, and more precisely in machine 

learning and deep learning approaches. Thanks to 

these, we now have strong tools that can sift through 

this complex EEG data and spot the patterns in these 

variations automatically [1]. While DL models can 

learn features from raw signals in a hierarchical 

manner, traditional ML algorithms are good at 

discovering complex relationships in high 

dimensional data. This paper compares state-of-the-

art ML techniques with current deep learning 

architectures in detecting schizophrenia from an 

EEG recording with the aim of creating fast and 

objective diagnostic support for clinicians Shown in 

Figure 1. 

 

 
 

 
Figure 1 EEG Spectrogram Comparison A. 

Healthy Control, B. Schizophrenia Patient 

 

Representative EEG spectrograms showing 

frequency-time representations. (A) Healthy control 

exhibits strong alpha band activity (8-13 Hz). (B) 

Schizophrenia patient shows increased theta power 

(4-8 Hz) and reduced alpha activity. 

2. Methodology 

2.1. Dataset Collection 

 Participants: The study was conducted 

between January 2020 and December 2022 

across three major mental hospitals. Overall, 

300 participants were recruited: 150 healthy, 

age-matched controls (average age: 31.8 ± 

8.2 years, 87 males, 63 females) and 150 

patients with schizophrenia according to 

DSM-5 diagnostic criteria (average age: 32.4 

± 8.7 years, 89 males, 61 females). The 

Institutional Review Board approved the 

study (IRB Protocol #2019-PSY-447), and all 

participants gave written informed consent. 

 Inclusion criteria: (1) aged between 18 and 

55; (2) the duration of the illness for more 

than one year; (3) being clinically stable on 

medication at least for three months; and (4) 

meeting the DSM-5 diagnostic criteria, 

confirmed by two independent psychiatrists. 

Healthy controls excluded any history of 

neurological and psychiatric disorders and 

psychotropic medications. 

 Exclusion criteria: (1) comorbid 

neurological disorders, like epilepsy or 

traumatic brain injury; (2) substance abuse in 

the last six months; (3) systemic disorders 

known to compromise brain integrity; and (4) 

implanted metals incompatible with EEG 

recording [2]. 

 EEG Acquisition Protocol: The data were 

acquired from a 64-channel BrainAmp 

system with electrodes placed according to 

the worldwide 10–20 scheme. The 

impedances of the electrodes were kept 

below 5 kΩ in the recording, and the signals 

were digitized at 256 Hz with 24-bit 

resolution. One 20-minute recording session 

consisted of ten minutes of cognitive task 

performance using an auditory oddball 

paradigm, five minutes of resting-state with 

eyes closed, and five minutes of resting-state 

with eyes open. In order to minimize outside 

interference, all recording sessions were 

performed in a sound-attenuated electrically 

protected room. 

 Clinical Assessment: All patients with 

schizophrenia were assessed for symptom 

severity using the PANSS-a widely used tool 

for rating symptom severity. On average, 

they scored 21.4 ± 6.8 on the positive 

symptoms scale, 24.6 ± 7.3 on the negative 

symptoms scale, and 32.3 ± 8.1 on general 

psychopathology, resulting in a mean total 
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PANSS score of 78.3 ± 15.2. Medication 

information was carefully recorded. Overall, 

at the time of assessment, most patients 

(82%) were taking atypical antipsychotic 

medications, 15% were on typical 

antipsychotics, and 3% were unmedicated. 

This represents a clinical sample that 

generally reflects current treatment practices 

for schizophrenia [3]. 

2.2. EEG preprocessing pipeline 

 Filtering – Each raw recording was run 

through a zero-phase, 4th-order Butterworth 

band-pass filter (0.5– 45 Hz) to strip away 

slow drifts and high-frequency noise while 

keeping the full range of physiologically 

relevant rhythms (delta to gamma). 

 Artifact removal – Independent Component 

Analysis (ICA) using the Infomax algorithm 

separated neural activity from non-neural 

sources. Components tied to eye movements, 

blinks, muscle activity, and cardiac signals 

were flagged by automated criteria (e.g., 

EOG correlation > 0.7, characteristic spectra) 

and confirmed by visual inspection. On 

average, 8.3 ± 2.1 components were removed 

per dataset, leaving a cleaner cortical signal. 

 Segmentation – The cleaned data were split 

into non-overlapping 4-second epochs. Any 

epoch still containing artifacts exceeding 100 

µV was discarded. This yielded an average of 

247 ± 18 artifact-free epochs per participant. 

 Normalization – To make amplitudes 

comparable across subjects and channels, 

each channel was z-score normalized: 

z=(x−μ) / σ 

where μ and σ are the mean and standard 

deviation of that channel across all epochs [4]. 

 Dataset partitioning – The final pool 

comprised 74,100 clean epochs from 300 

individuals (≈247 epochs each). To 

prevent data leakage, splitting was done 

at the participant level: 70 % (210 

participants) for training, 15 % (45 

participants) for validation, and the 

remaining 15 % (45 participants) for 

testing, using stratified sampling to 

preserve class balance. 

2.3. Feature Extraction 
In this respect, multiple methods of feature 

extraction have been pursued: time-domain 

features (statistical measures, Hjorth 

parameters), frequency-domain features (power 

spectral density in delta, theta, alpha, beta, and 

gamma bands), time-frequency features (wavelet 

coefficients, Short-Time Fourier Transform 

spectrograms), and connectivity features 

(coherence, phase synchronization). 

Power Spectral Density - Welch's Method: 

Pxx(f) = 1/K \sum_{k=0}^{K-1} |Xk(f)|2 

2.4. Machine Learning Models 
 

Support 

Vector 

Machine 

(SVM) 

Kernel: 

RBF,C: 

10,Gamma

: 0.001 

Random 

Forest 

Trees: 

200,Max 

depth: 15 

Gradient 

Boosting 

Estimators: 

150, 

Learning 

rate: 0.1 

 

2.5. Deep Learning Architectures 

Convolutional Neural Network (CNN): The EEG 

Spectrograms were classified using a 5-layer 

Convolutional Neural Network (CNN) consisting 

of three (input) convolutional layers (32, 64, 128 

filters), using the ReLU activation function with 

max-pooling layers as the second layer, two fully 

connected layers with 256 and 128 neurons per 

layer, and a softmax output layer (to produce 

class probabilities) [5, 6]. In a convolutional 

layer, the output feature maps can be calculated 

as 

yi,j(l) = σ(Σm Σn wm,n(l) • xi+m,j+n(l-1) + 

b(l)) 

where y(l) represents the output feature maps for 

the layer indexed "l"; w(l) represents the 

learnable kernel weights for that convolutional 

layer; x(l-1) is the input to the layer from the 

previous layer; b(l) is the bias term; and σ(z) = 

max(0,z) is the ReLU activation function; 

 Long Short-Term Memory (LSTM): A 

bidirectional LSTM network with 2 
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layers (128 units each) was implemented 

to capture temporal dependencies in EEG 

sequences [7], [8]. Dropout (0.3) was 

applied for regularization. 

LSTM Cell Equations: 

ft = σ(Wf · [ht-1, xt] + bf) it = σ(Wi · [ht-1, xt] 

+ bi) 

C˜t = tanh(WC · [ht-1, xt] + bC) 

Ct = ft ⊙ Ct-1 + it ⊙ C˜t ot = σ(Wo · [ht-1, xt] 

+ bo) ht = ot ⊙ tanh(Ct) 

where ft, it, ot are forget, input, and output gates; 

Ct is the cell state; ht is the hidden state; W and b 

are learnable parameters; σ is the sigmoid 

function; and ⊙denotes element-wise 

multiplication 

2.5.1. CNN-LSTM Hybrid: 

The hybrid model processes the EEG-derived 

spectrograms in two complementary stages: 

 Spatial feature extraction (CNN) – The 

spectrogram of each 4-second epoch is 

treated as a 2-D image (time × 

frequency). A stack of convolutional 

layers (e.g., 3 × 3 kernels, 32 → 64 filters) 

with ReLU activation scans the image to 

capture local patterns such as band-power 

bursts and rhythmic motifs. Each 

convolutional block is followed by a 

max-pooling layer that reduces the 

resolution while preserving the most 

salient features, and batch-normalization 

to stabilize training [9] [10]. 

 Temporal modeling (LSTM) – The 

output of the final convolutional block is 

reshaped into a sequence of feature 

vectors (one vector per time slice of the 

spectrogram). This sequence is fed into 

one or two stacked Long Short-Term 

Memory (LSTM) layers (e.g., 128 units 

each) that learn the temporal 

dependencies across successive 

windows, allowing the network to 

recognize how spatial patterns evolve 

over the duration of the epoch. 

 Classification head – The last LSTM 

hidden state is passed through a fully-

connected dense layer (e.g., 64 units, 

ReLU) and a dropout layer (≈0.5) to 

reduce over-fitting. The final softmax 

layer outputs class probabilities for 

schizophrenia vs. healthy control. 

By first learning spatial representations of the 

EEG spectrograms with the CNN and then 

modeling their temporal evolution with the 

LSTM, the hybrid network leverages the 

strengths of both deep-learning paradigms, which 

has been shown to improve classification 

performance on EEG-based psychiatric 

diagnostics. 

2.6. Proposed CNN-LSTM Hybrid 

Architecture 

Our framework fuses the spatial-pattern-

recognition power of convolutional neural 

networks (CNNs) with the sequential-learning 

strength of long-short-term memory networks 

(LSTMs) to create a fully adaptive system for 

schizophrenia detection from EEG recordings. 

First, raw EEG signals are transformed into 

spectrograms, which encode both frequency and 

time information in a two-dimensional matrix. 

The CNN component scans each spectrogram 

with multiple convolutional filters, automatically 

learning localized spatial features that capture 

characteristic patterns of brain-wave power 

across the frequency-time plane (e.g., bursts in 

the gamma band or rhythmic alpha activity). 

Max-pooling and batch-normalization layers 

condense these feature maps while preserving the 

most discriminative information. Second, the 

sequence of feature vectors produced by the final 

convolutional block is fed into one or more 

LSTM layers. By maintaining a hidden state that 

evolves over successive time slices, the LSTM 

captures the temporal dynamics of the extracted 

spatial patterns, learning how neural activity 

progresses throughout each 4-second epoch. 

Finally, the last LSTM hidden state passes 

through dense and dropout layers before a soft-

max output predicts the probability of 

schizophrenia versus healthy control. By jointly 

learning spatial representations of frequency-

time EEG content and their temporal evolution, 

the CNN-LSTM hybrid leverages 
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complementary strengths of both architectures, 

delivering a robust, end-to-end solution for 

automated schizophrenia detection. Ultimately, 

our combined model learns to discriminate 

between healthy and abnormal brain activity 

using complex spatiotemporal patterns that are 

indicative of schizophrenia Shown in Figure 2 

and 3. 

 

 
Figure 2 Architecture Overview: The proposed 

CNN-LSTM hybrid Consists of Three Main 

Components 

 

 
Figure 3 Architecture Overview: The proposed 

CNN-LSTM hybrid for schizophrenia Detection 

 

In this proposal, we utilize a CNN and LSTM hybrid 

technique that aims to learn the spatial and temporal 

features within the EEG spectrograms for the 

classification task involving the differentiation 

between healthy control and schizophrenic 

individuals most accurately and reliably. 

Component 1 - Convolutional Feature Extractor 
In this segment, there are three sequential 

convolutional blocks. Each of them comprises a 

convolutional layer, batch normalization, ReLU 

activation layer, and max pooling. Each of the 

convolutional blocks increases the size of the filters 

and decreases the spatial resolution—32 to 64 to 

128—painting a complete picture of the varying 

hierarchical representations along the frequency–

time domain. Each of the convolutional layers uses a 

3x3 kernel of stride size 1 and padding of size 1 in 

order not to lose spatial resolution of the input, and 

every 2 convolutional layers are followed by a max 

pooling layer of size 2x2 which subsamples the 

feature maps, increases translation invariance and 

improves computational efficiency. 

Component 2 - Temporal Sequence Modeler 
The features that are discovered spatially through the 

convolutional layers are then passed through a fully 

connected layer and an additional sequentially 

structured 2 layer bidirectional LSTM architecture. 

Each layer is 128 units and each are designed to learn 

long range dependencies both in the forward and 

backward directions to maximize contextual 

awareness of the data in both directions. Between 

each LSTM layer, there is a dropout of 0.3. 

Component 3 - Classification Head 

The last hidden state of the LSTM feeds two fully 

connected layers composed of 256 and 128 neurons, 

respectively. Each is followed by ReLU activation 

and dropout with a rate of 0.5. The final output layer 

uses a softmax activation function to predict class 

probabilities for binary classification: healthy versus 

schizophrenia. 

2.6.1. Training Strategy 

Model training employed the Adam optimizer with 

an initial learning rate of 0.001, which was 

adaptively reduced by a factor of 0.5 when validation 

loss did not improve for five consecutive epochs. 

Training was carried out by using mini-batch 

gradient descent, with a batch size of 32, for up to 

100 epochs, with early stopping, with a patience of 

15 epochs, to prevent overfitting. Data augmentation 

techniques-random temporal shifts (±0.5 s), 
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amplitude scaling (0.9-1.1×), and Gaussian noise 

addition (SNR = 20 dB)-were applied to promote 

better generalization of the models. Regularization 

Techniques to enhance robustness, several 

regularization strategies were combined: (1) L2 

weight decay with λ = 0.0001, (2) dropout in the 

LSTM and dense layers, (3) batch normalization in 

the convolutional layers, (4) early stopping based on 

the performance on the validation set, and (5) data 

augmentation during training [11 -14]. 

2.6.2. Implementation Details 

Using PyTorch 1.12.0 and the NVIDIA Tesla V100, 

the model went through six hours of training for 100 

epochs. The final neural network model contained 

2.4 million trainable parameters, and had an 

inference time of 12 milliseconds for processing 4-

second EEG epochs, making it easy to integrate into 

real time clinical environments. The complete 

framework consists of three of the class CNN LSTM 

hybrid network. The three contained networks are: 1. 

the convolutional feature extractor 2. the 

bidirectional LSTM 3. the final dense layer. The 

convolutional feature extractor has 3 different depths 

where the filter sizes go from 32 to 64 to 128. The 

bidrectional LSTM has two stacking layers of 128 

units each. The final dense layer consists of two units 

that are fully connected to the previous layer. The 

final output of the network is calculated by applying 

the softmax function to the neurons in the last layer. 

The model is able to achieve an accuracy of 94.2 with 

a highly confident prediction on a test case, and with 

computational efficiency for a timely classification 

of EEG records containing evidence of schizophrenia 

Shown in Figure 4. 

Loss Function: Cross-entropy 

L = -∑N i = 1 [yi log(ŷ i) + (1 − yi) log(1 − ŷ i)] 

 

 

 
Figure 4 EEG Processing Pipeline from Raw Signal to Classification 

 

Stage 1: Raw EEG Acquisition. 
This stage involves the collection of brain signals 

through a fixed EEG setup. For the registration of the 

electric activity of different cortical areas, 19 

electrodes are placed over the scalp. The high 

sampling rate of 256 Hz allows the system to record 

the faster neural oscillations of streaming data, 

offering finer time resolution. The continuous stream 

EEG is divided into 4 second segments to streamline 

further processing. 

 

Stage 2: Preprocessing & Filtering 

In this stage, the signals on record are cleaned of 

spurious noise and biological signals. Slow drifts and 

baseline shifts are removed with a 0.5 Hz high-pass 

filter. Power line noise is eliminated with a 50 Hz 

notch filter. Independent Component Analysis (ICA) 

is used to isolate and then remove the components 

due to eye blinks, muscle contractions, and heart 

signals. The frequency range that is of left to be only 

the neural oscillations is retained with a band-pass 
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filter (0.5 \textcent 45 Hz). Z-score normalization is 

used to equalize the amplified signals across different 

channels and consistency is ensured for model input. 

Stage 3: CNN Feature Extraction 
In this stage, a Convolutional Neural Network 

(CNN) is used to learn the spatial and temporal 

features of the filtered hosting. preprocess Data 

stream. Three convolutional layers, with numbers of 

filters in the increasing order (32 \textcent 64 

\textcent 128) are successively used to learn a 

staircase border features. 

3. Results and Discussion 

3.1. Evaluation of Model Performance 

Accuracy, precision, recall, F1 score, and area under 

the ROC curve are all standard performance metrics 

based on the results of the confusion matrix, and all 

of these metrics were used for performance 

evaluation, of the CNN-LSTM hybrid architecture 

for the performance evaluation of the baseline and 

individual model, and all metrics were for all 

performance metrics, given the input and all were 

based on all EEG time and spatial data on all 

dimensions, and all based on real-time data. There 

were all for time data and all metrics were based on 

all available time metrics for all real-time metrics for 

all overall metrics Shown in Table 1. 

 

Table 1 Model Performance Evaluation 

Model 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
F1 

SVM 84.3 82.1 86.5 0.831 

Random 

Forest 
87.6 85.8 89.4 0.869 

Gradient 

Boost 
88.9 87.2 90.6 0.883 

CNN 91.2 89.7 92.7 0.907 

LSTM 90.5 88.9 92.1 0.899 

CNN-

LSTM 
94.2 93.2 95.1 0.938 

 

The fusion of CNN-LSTM architectures was the 

most performing across all evaluation metrics 

showcasing the advantages of integrating 

convolutional with temporal sequence LSTM 

networks. This synergized the networks which 

allowed the model to capture complex 

spatiotemporal features of EEG signals and, thus, 

robustly and precisely identify the condition 

schizophrenia Shown in Figure 5. 

 

 
Figure 5 Comparative Analysis of Model 

Performance 

 

Assessments of various classifiers were compared to 

derive the effectiveness of different machine learning 

and deep learning models in the detection of 

schizophrenia using EEG signals. Out of the models 

that were tested, the hybrid CNN--LSTM model was 

the most effective, obtaining the highest accuracy of 

94.2%. This model's ability to capture accuracy 

dependencies in EEG spectrograms in both spatial 

and temporal domains was unparalleled. Other 

models tested were CNNs and Gradient Boosting, for 

which accuracies of 91.2% and 88.9% were obtained, 

respectively. The error bars demonstrate the 95% 

confidence interval based on the 5-fold cross- 

validation which confirms the hybrid model's 

effectiveness and highest performance ranking 

Shown in Table 2. 

 

Table 2 Confusion Matrix - CNN-LSTM Hybrid 

Model 

 
 

3.2. Confusion Matrix Analysis 

The confusion matrix for the CNN-LSTM hybrid 

model, on a test set of n = 300, presents high 
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classification performance with very few errors: TN 

= 143, FP = 7, FN = 10, TP = 140. The model does a 

great job separating healthy people from those with 

schizophrenia—it catches almost every case and 

rarely makes mistakes. Those few errors show just 

how reliable the EEG-based approach is for spotting 

the disorder in a clinical setting Shown in Figure 6 

and 7. 

 

 
Figure 6 ROC Curves for All Models 

 

Receiver Operating Characteristic (ROC) 

Analysis: The combined CNN-LSTM model 

outperformed the others, reaching an AUC of 0.972, 

which means it can almost perfectly tell 

schizophrenia patients from healthy controls. By 

contrast, the stand-alone CNN and LSTM models 

scored 0.945 and 0.938, respectively. The diagonal 

line at AUC = 0.5 marks chance-level performance; 

the CNN-LSTM curve sits far above this baseline, 

confirming its superior accuracy and reliability. 

3.3. Feature Importance Analysis 

 

 
Figure 7 Analysis of Normalized Power in 

Different EEG Frequency Bands for Healthy and 

Schizophrenia Groups 

The most telling EEG markers were gamma-band 

power (30–45 Hz) and theta-band power (4–8 Hz). 

Patients showed unusually high theta activity in 

frontal areas and reduced gamma activity in 

temporal-parietal regions, reflecting disrupted low- 

and high-frequency brain rhythms. In addition, 

weakened alpha-band coherence between frontal and 

parietal sites added valuable information, 

highlighting both local oscillation changes and 

broken long-range communication as key 

discriminators of schizophrenia. 

3.4. Power Spectral Density (PSD) Analysis 

The PSD plot compares average brain-wave power 

in healthy controls (blue) versus schizophrenia 

patients (red). Schizophrenia patients show 

significantly higher theta power (4-8 Hz; p < 0.001) 

and markedly lower alpha (8-13 Hz; p < 0.001) and 

gamma (30-45 Hz; p < 0.01) power. Error bars 

represent the standard error of the mean, indicating 

the spread of values within each group. These 

findings highlight a pattern of increased low-

frequency activity and reduced high-frequency 

synchronization in schizophrenia, reflecting 

disrupted neural oscillatory dynamics Shown in 

Figure 8. 

 

 
Figure 8 Feature Importance Heatmap 

 

3.5. Feature Importance Heatmap Analysis 

The importance of different features in different EEG 

channels and frequency ranges shows which features 

are most important and where in the heatmap shows 

where it is most important. The heatmap shows the 

spatial distribution of the importance of different 

features in different EEG channels and frequency 

bands. Yellow and red colors show where the 

discriminative features important for detecting 
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schizophrenia are. Blue colors show where the 

features are not important. The study shows how 

frontal theta activity and temporal parietal gamma 

activity correlate to success in classifying patients 

diagnosed with schizophrenia. The heatmap shows 

how important features are in discriminating 

schizophrenia patients from healthy controls in the 

posterior high-frequency and frontal low-frequency 

oscillations frequencies as well as how most 

important in classification are not the same as the 

most important features. An example is frontal theta. 

3.6. Clinical Implications 

The high accuracy of the proposed models shows 

how AI-based EEG analysis may provide great 

support as diagnostic tool in clinical settings [15] 

[16]. The flow of the analysis enables decreased time 

consumption in diagnosis and provides a consistent 

model to ensure early intervention and diagnosis in 

schizophrenia [17] [18]. The diagnostic feature 

importance was valuable in explaining the 

functionalities of the features and how they are 

mechanisms of the disorder and helped explain 

features that were used in the model and not easily 

explained in the clinical neuroscience domain. 

Conclusion 

This research demonstrates the very significant 

opportunities for machine learning and deep learning 

methods in schizophrenia detection using EEG 

signals. The proposed CNN-LSTM hybrid 

architecture reached an outstanding performance of 

94.2% accuracy, well outperforming conventional 

machine learning algorithms and single deep 

learning models. Particularly, the way spectrograms 

have been employed for input representations was 

effective, allowing the model to capture fine-grained, 

frequency-temporal dynamics of brain activity 

characteristic of schizophrenia. Future research 

directions will include validation on larger, multi-

center datasets, investigation of transfer learning 

approaches, development of explainable AI 

approaches, integration with neuroimaging data 

across multiple modalities, and longitudinal studies 

to assess treatment response prediction [19], [20]. 

Bringing AI-based diagnostic tools into psychiatry is 

a major step toward precision psychiatry, promising 

faster, more objective and personalized care. 
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