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Abstract

Sign language is essential for people who are deaf or have speech difficulties, yet the shortage of interpreters
often leaves them isolated in education, work, and social life. This study introduces a fast, reliable deep-
learning system for recognizing and translating Indian Sign Language (ISL) in real time. Using Google
Mediapipe, we extract stable three-dimensional hand landmarks from video frames. The resulting sequences
of keypoints are fed into a hybrid model that combines a Convolutional Neural Network (CNN) for spatial
feature extraction with a Gated Recurrent Unit (GRU) for temporal dynamics. Our custom dataset contains
3000+ video clips of 65 ISL sentences spoken by 11 different signers. The network, with only 1.5 million
parameters, reaches 93.64% accuracy while maintaining a low computational cost and real-time inference

speed.
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1. Introduction

For millions globally, sign language is the core
vehicle of thought and expression. Yet,
communication barriers between the hearing-
impaired community and non-signers remain one of
the most significant challenges to achieving truly
inclusive societies. Effective communication hinges
on the presence of skilled human interpreters,
professionals who are, unfortunately, often scarce.
This pervasive absence limits engagement in critical
sectors—from educational institutions and hospitals
to professional workplaces—fostering significant
social, educational, and professional isolation. The
need for accessible, readily available technological
solutions is therefore not just an academic goal but a
societal imperative. Inrecent years, rapid progress in
computer-vision techniques and deep-learning
models has sparked a boom in automated sign-
language recognition (SLR). These systems aim to
decode the fluid movements of hands, arms, and body
automatically, turning visual gestures into
understandable language. By providing real-time
translation, SLR technologies can give deaf users
greater independence and direct access to essential
services, narrowing the communication divide that
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has long separated them from the hearing world. The
progress made in automated sign-language
recognition often highlights languages such as
American or British Sign Language, which enjoy
large, well-curated datasets and clear standards.
Indian Sign Language, on the other hand, has fallen
behind. Two main reasons explain this gap: first,
there are very few publicly available, comprehensive
datasets for ISL, and second, the language itself
carries unique grammatical nuances that add extra
complexity. Because of these challenges, ISL is
treated as a low-resource language in the deep-
learning community. One of the biggest technical
challenges for researchers working on Indian Sign
Language is moving beyond the detection of single,
static signs—such as individual letters—to the ability
to translate continuous, full-sentence gestures.
Recognizing whole sentences means the system must
pick up on the subtle ways in which one sign flows
into the next (coarticulation) and faithfully capture
the long-range timing relationships and grammatical
order that give the language its meaning. Achieving
this calls for advanced spatiotemporal models that
can track both space and time, yet these models also
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need to stay lightweight enough to run efficiently in
everyday settings. Our main goal is to design, build,
and thoroughly test a strong yet lightweight deep-
learning system that can recognize complete Indian
Sign Language sentences in real time and convert
them into text. Rather than relying on heavy, pixel-by
pixel processing such as 3D convolutional networks,
we concentrate on a more efficient strategy that
extracts and analyzes skeletal keypoints to capture
the essential motion patterns. We believe that a mixed
architecture—pairing a Convolutional  Neural
Network with a Gated Recurrent Unit—trained
carefully on clean, wrist-aligned 3D keypoint
sequences can capture the intricate space-time
patterns of moving ISL signs. In addition, we argue
that this lean setup can reach performance levels
similar to much larger, more complicated models
while staying far more efficient computationally,
making it suitable for everyday use on ordinary
consumer devices [1].

2. Key Technical Contributions

e A streamlined CNN-GRU model built for
skeletal keypoints We designed a data-
efficient hybrid network that works directly
with 3D joint coordinates, reaching a
classification accuracy of about 93.6%.

e A robust four-step preprocessing routine The
pipeline smooths the raw motion with
Gaussian filtering to reduce jitter and then
converts all coordinates to a wrist-centered
frame, making the system tolerant to different
signers and backgrounds.

e High performance with minimal resources
The model contains only roughly 1.5 million
trainable parameters and can be trained in
under three hours, yet it still outperforms
larger LSTM-based approaches while
keeping the same level of accuracy.

3. Related Work: The Evolution of Gesture

Recognition

3.1 Evolution of SLR Systems: From Sensors to
Vision

The field of sign language recognition systems has

seen two major paradigm shifts. The early research

period mostly relied on sensor-based techniques,
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which employed pricy and intrusive hardware such as
data gloves, inertial measurement units (IMUSs), or
infrared sensors, to capture fine-grained movements
of the fingers and wrists. These systems were
inherently limited by their high cost, reliance on
specialied tools, and incapacity to scale in the real
world, even though they were incredibly accurate.
The subsequent development of widely accessible
camera technology, coupled with the power of deep
learning, established the dominance of vision-based
recognition systems. These sensorless systems
analyze regular video streams. While previous vision
techniques relied on manually created features,
Convolutional Neural Networks (CNNs) transformed
the field by enabling automated, high-fidelity
extraction of complex spatial patterns like hand shape
[2], [3]. In order to handle the dynamic, sequential
nature of signs, CNNs were rapidly coupled with
Recurrent Neural Networks (RNNs) and their
derivatives, particularly Long Short-Term Memory
(LSTM) models, to capture temporal aspects.

3.2 Deep Spatiotemporal Modeling Techniques
Capturing the spatial features (hand shape at a single
moment) and the temporal features (motion sequence
and trajectory over time) are the two challenges that
dynamic sign recognition must overcome.

e CNNs for 1D Spatial Feature Extraction:
CNNs are applied across the high-
dimensional feature vector (126 coordinates)
in a single frame in skeleton-based techniques
like ours. Through this process, unprocessed
coordinate data is efficiently transformed into
abstract representations of hand geometry and
form, including the crucial angular
relationships between joints.

e Benefits of GRU for Temporal Modelling:
Even though LSTMs are excellent at
simulating long-term dependencies, their
complexity results in a large number of
parameters and lengthy training times. With
just two gates (reset and update), Gated
Recurrent Units (GRUs) are a deliberate
simplification. With significantly fewer
parameters and faster convergence, GRUSs
enable comparable performance with less

33


https://irjaeh.com/

IRJAEH

computation
4. System Methodology and Data Pipeline Design
4.1 End-to-End System Overview

The transition from a user’s hand to a translated
sentence is managed by our five-stage sequential
framework. The process’s initial step, video
acquisition, records the ISL gesture. Next is Feature
Extraction, which locates 3D hand landmarks using
the Google Mediapipe framework. These raw
features then undergo a comprehensive preprocessing
step that involves denoising, normalization, and
alignment. In the Model Training phase, the CNN-
GRU hybrid uses the cleaned, standardized sequence
to learn the spatiotemporal patterns. The identified
class is ultimately resolved and shown as text during
the Text Translation stage. The system architecture is
shown in Figure 1.
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(15l Corps + Custam Videos)

¥

Feature Eatraction Layer
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Frprocessing Layer
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Figure 1 System Architecture Diagram. Shows
pipeline from raw video input to feature
extraction, CNN- GRU classification, and text
output

4.2 ISL Video Corpus and Feature Vector
Initialization
We used recordings from multiple participants to
build an ISL corpus. Each of the 65 unique ISL
sentences in the final corpus was purposefully
recorded ten times by various signers, producing a
total of 3000+ videos. The corpus was sourced from
recordings from 11 different signers to ensure signer
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independence. Approximately 700 videos were
derived from the publicly available ISL-CSLTR
dataset, and the remainder were our own recorded
videos to meet the required vocabulary scope.
Mediapipe Hands provides 21 keypoints per hand,
producing up to 126 features per frame when both
hands are present [4][5].
4.3 Feature Vector Construction

The input feature vector at time t is D=21*2*3=126
dimensions per frame. This large dimensionality
arises from extracting 21 3D keypoints (X, Yy, z
coordinates) from up to two hands. These numerical
time-series sequences capture finger curvature and
hand orientation crucial for ISL. Specifically, the
keypoint sequence represents the dynamic, skeletal
geometry of the signing process over time. The
coordinates are then normalized to ensure the feature
vector is invariant to the signer's position and scale in
the camera frame. Figure 2 illustrates sample
keypoint extraction.
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Figure 2 Sample Keyint Extraction from ISL
Gesture

5. Robust Preprocessing for Signer and
Environment Invariance
5.1 Temporal Noise Mitigation: Gaussian
Smoothing

To minimize high-frequency temporal noise, or
“jitter,” we applied Gaussian smoothing across the
time axis to all 126 feature trajectories. The standard
deviation parameter ¢ of the Gaussian kernel
controls the smoothing strength.
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5.2 Wrist-Relative Normalization for Scale and
Position Invariance

We set the origin of coordinates at the Mediapipe
wrist keypoint and subtract it from all joint
coordinates, then scale by a reference distance to
achieve scale invariance. This wrist-relative
normalization is critical for signer-independent
generalization. The essential role of normalization is
quantitatively affirmed by the 3.54% drop in
accuracy observed when this step is removed during
ablation testing (Table 2). This performance
degradation demonstrates that normalization is the
key mechanism for achieving true signer-
independent generalization in this skeletal-based
approach. All input sequences are aligned to a fixed
length T=40 frames. Shorter sequences are zero-
padded; longer sequences are trimmed or uniformly
sampled. Silence removal (low-motion frames) is
applied to focus on meaningful action segmentsc [6].

-

Complete System Pipeline for ISL Gesture Recognition

—

A
Dataset Collection
(Video Sequences of ISL Gestures)
A 4
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Frame Extraction
(Convert Videos to Image Frames)

A
Keypoint Detection
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h

Feature Vector Formation
[21%3x2 Hands = 126 Features)
Y

Preprocessing
(Smoothing, Normalization, Trim Silence, Padding)

Y
Model Training
(CHN + GRU)

—

A i
Evaluation & Prediction
(Accuracy, Precision, Recall, F1, Confusion Matrix)

Figure 3 Preprocessing Pipeline Flowchart Shows
Denoising, Normalization, and Sequence
Standardization Steps

6. Hybrid Cnn-Gru Model Architecture

The architecture begins with 1D Convolutional layers
ConvlD operating exclusively over the 126-
dimensional coordinate vector per frame. The
purpose of this initial network is to automatically
extract abstract, geometric features of the hands at
every moment. ConvlD with a small kernel size of
K=3 captures localized spatial relationships, such as
the angular relationships between adjacent joints,
converting raw coordinates into a richer

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137
Vol. 04 Issue: 01 January 2026
Page No: 032- 039

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2026.0005

representation of hand shape. Crucially, by operating
on the 126-dimensional vector (which contains x, v,
z for both hands), the Conv1D layers preserve the
essential 3D spatial information captured by the
Mediapipe framework. The feature sequence then
passes through Batch Normalization for stabilization
and the ReLU activation function to introduce non-
linearity. These operations result in a transformed
sequence of 40 timesteps (frames), where each
timestep is a 256-dimensional feature vector. This 40
times 256 matrix, now encoding deep spatial
characteristics, is passed directly to the Temporal
Modeling Subsystem (GRU) for sequential analysis
Shown in Table 1.

Table 1 Detailed CNN-GRU Model Layer
Specifications

Layer Cs)lﬁ;%ét Params | Activation
ConvlD
(128, K=3) 38x128 | 48,768 ReLU
BatchNorm | 38x128 512 -
ConviD | 56 556 | 98560 | RelU
(256, K=3) ’
GRU (256) 256 394,496 tanh
Dense (65) 65 16,705 Softmax

6.1 Temporal Modeling Subsystem: Gated
Recurrent Units (GRU)
The spatial features are then passed to GRU layers
with 256 units. A dropout of 0.5 is applied before the
final dense softmax classifier.

e The Strategic Choice of GRU: The selection
of GRU over the more complex LSTM
network was a deliberate efficiency trade-off.
GRUs offer faster training times and lower
computational overhead due to their
streamlined internal structure (using only
reset and update gates, compared to LSTM’s
three) [7]. This simplification allowed our
model to reduce training time to 2.8 hours,
achieving the required lightweight design
without a significant loss in accuracy [2].

e GRU Mathematical Formulation: The
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GRU efficiently models temporal dynamics
by selectively managing information flow.

Table 2 Comprehensive ablation study on model
performance and efficiency.

. Par

Model Proecpr Acc ‘(I'r::r;)e ams

' (M)

CNNOnly | Full 827 | 20 | 12
CNN+LST 91.

M Full 0 35 1.8
CNN+GR 93

U Full 6. 2.8 1.5

(Proposed)

No Norm. Partial gf' 2.8 15
No . 91.

smooth. Partial 5 29 15

Given the spatial input xt (the spatial features from
the CNN at time t) and the previous hidden state ht—1,
the GRU determines the next hidden state (ht):
Reset Gate (rt): Decides which parts of the past
memory (ht—1) are irrelevant for the current step and
should be forgotten.

rt = o(Wrxt + Urht—1 + br)

Update Gate (zt): Controls the balance between re-
taining the old memory (ht—1) and integrating the
new information (h't).

zt = o(Wzxt + Uzht— 1 + bz)

Candidate Activation (h™t): The potential new
content for the hidden state.

h't = tanh(Whxt + Uh(rt © ht
—1) + bh)

Final Hidden State (ht): The new output state,
blending old and new information via the update gate.

ht = (1 —zt) O ht—1 4+ zt O h't

6.2 Real-time Latency and Efficiency Analysis
To validate the system's real-time capability, we
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measured the inference time on the evaluation
hardware (Intel i5 CPU). The average latency for
feature extraction (Mediapipe) and model inference
(CNN-GRU) for a single T=40 frame sequence was
benchmarked. Based on the provided data, the system
achieves an Average Inference Latency of
approximately 85 ms (milliseconds) for a full 40-
frame sign language sequence, resulting in an
Equivalent Frame Rate (FPS) of about 11.7 frames
per second. This demonstrates that our lightweight
CNN-GRU architecture, with only 1.5 million
parameters, achieves the necessary computational
efficiency for practical, real-time deployment on
standard consumer devices, a key goal of this
research
7. Experimental Setup and Performance
Evaluation
Experiments were performed on an Intel i5 CPU (8
GB RAM) using TensorFlow 2.15. Dataset split: 80%
training and 20% testing with signer-independent
validation. The system achieved the metrics shown in
Table 3. Model performance was rigorously assessed
across all 65 sentence classes using standard macro-
averaged metrics.
e Accuracy: The overall percentage of correct
classifications.
e Precision: Measures the purity of the positive
predictions
e Recall: Measures the completeness of the
detection (true positives captured).
e F1-score: The harmonic mean, providing a
balanced measure of consistency.
Table 2 presents the core results.

Table 3 Quantitative Evaluation Metrics

. Value
Metric (%)
Accuracy 93.64
Precision 94.21

Recall 93.64
F1-score 93.63

The close parity between Precision (94.21%) and
Recall/F1- score (93.64%/93.63%) confirms the
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model’s robust classification ability, showing
minimal tendencies toward false positives or false
negatives. The high F1-score across the entire
vocabulary affirms its consistent performance across
all classes.
8. Results and Discussion
Training and validation curves remained stable,
showing no overfitting. Misclassifications were
primarily between visually similar gestures. Figures
3 to 5 show the architecture, training curves, and
confusion matrix.

8.1 Analysis of Training Dynamics and Model

Stability

The model's learning process is graphically tracked in
Fig.5 The training and validation curves continue to
be closely coupled, as evidenced by the quick and
seamless convergence. Excellent stability and
minimal overfitting are indicated by this tight
alignment, which is crucial. The stability attests to the
effectiveness of the extensive preprocessing pipeline
as well as the built-in regularization offered by the
Batch Normalization and Dropout layers. The
training and validation performance's consistent
learning trajectory and stable convergence across
epochs are depicted by the model's accuracy and loss
curves.

n= 64
n 64 ,O O G
/ 8%
128x128 Rescaling 64 x 64 n=64
FlattenO Softmax
\\ J

Y
Flatten

ISL CNN-GRU Model

Figure 4 CNN-GRU Model Architecture
Diagram.

8.2 Detailed Interpretation of the Confusion
Matrix

The majority of instances are concentrated along the

main diagonal, demonstrating the matrix's strong

classification performance. By concentrating on the
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off-diagonal points, error analysis shows that the few
misclassifications usually happen between sentences
that are kinematically and visually very similar (e.g.,
subtle differentiation between signs like “How are
you?” and “Are you fine?”). This implies that the
current limitation is the sole dependence on hand
keypoints; these extremely similar signs probably
rely on non-manual, subtle markers (mouth
movements, facial expressions) for linguistic
disambiguation, which the model has not yet been
given.

Model Accuracy Over Epochs

00

0 10 20 E) 40 50
Epochs

Figure 5 Training and Validation Accuracy
Curves.

Identifying slight misunderstandings betwee n
visually similar gestures, the Confusion Matrix for
Shown in Figure 6.

Figure 6 Confusion Matrix for ISL Sentence
Classification

ISL Sentences visualises the true versus predicted
classes.
8.3 Comparative Architectural Ablation Study:
The Case for Efficiency
To quantitatively justify our architectural decisions,
an ablation study benchmarked the proposed CNN-—
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GRU model against two alternatives and evaluated
the impact of the preprocessing strategy.
8.4 Quantifying the Value of Efficiency and
Preprocessing
The ablation study confirms the deliberate strategic
design:

e GRU vs. LSTM Efficiency: In addition to
cutting training time by 20% (from 3.5 t0 2.8
hours) and parameter count by 16% (from 1.8
to 1.5 million), the CNN + GRU model
outperformed the CNN + LSTM by 2.64% in
accuracy. This confirmed that the GRU was
the best choice for striking the right balance
between efficiency and resource
conservation.

e Preprocessing Necessity: The preprocessing
pipeline is necessary, not optional. The
accuracy dropped significantly by 3.54%
(93.64% to 90.1%) when the wrist-relative
normalization was removed. Normalization is
essential for achieving true signer-
independent generalization, as demonstrated
quantitatively by  this  performance
degradation [8]. In a similar vein, eliminating
Gaussian smoothing led to a 2.14% decrease
(93.64% to 91.5%), demonstrating its
effectiveness in filtering temporal noise [10].
The fundamental idea that computational
efficiency is best attained by engineering
input invariance (preprocessing) rather than
depending on large, deep models to implicitly
learn these invariances from noisy data is
confirmed by the significant cumulative
performance drop (more than 5.6%) seen
when preprocessing is removed.

9. Ablation Study and Efficiency Analysis

The ablation study in Table 2 shows the impact of
preprocessing and  architecture.  Removing
normalization or smoothing significantly reduces
accuracy [9 — 17].

Conclusion and Future Research Directions

This work demonstrates an efficient CNN-GRU-
based ISL recognition system with 93.64% accuracy.
Future research will include multimodal cues (facial
and body), vocabulary expansion, and edge-
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optimized deployment using Tensor Flow Lite.
Despite the high performance, the current system
outlines clear avenues for future enhancement:

e Vocabulary Scope Expansion: The current
vocabulary is limited to 65 ISL sentences.
Future efforts must focus on expanding this to
a wider, standardized corpus to ensure greater
linguistic utility in practical applications.

e Multimodal Integration: The model’s
occasional confusion between visually
similar signs highlights the critical need to
integrate non-manual markers—specifically,
facial expressions, eye gaze, and body
posture—which carry essential grammatical
infor-  mation  (like negation and
interrogation) in ISL [7].

e Continuous Sign Language Translation
(CSLT): Moving beyond Isolated Sign
Language Recognition (ISLR), future work
must transition to CSLT, requir- ing the
adoption of advanced sequence-to-sequence
or Transformer-based architectures capable
of contextualizing and translating long,
continuous streams of signing [2], [11].
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