
 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 04 Issue: 01 January 2026 

   Page No: 032- 039 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2026.0005 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

32 

 

Bridging Communication Gaps: A CNN-RNN Powered System for Real-Time 

Indian Sign Language Recognition and Full Sentence Translation 
Spandana N M1, Mrs.Sindhu Jain A M2, Preethu P S3, Harsha S B4, and Jayanth N5 

1,3,4,5UG, Scholar, Dept. Of ISE, Malnad College of Engineering, Hassan, Karnataka, India. 
2Assistant Professor, Dept. Of ISE, Malnad College of Engineering Hassan, Karnataka, India. 

Emails: spandana2885@gmail.com1, sindhujainam96@gmail.com2, preethupsgowda14@gmail.com3, 

harshasb093@gmail.com4 , jn5822582@gmail.com5 

 

Abstract 

Sign language is essential for people who are deaf or have speech difficulties, yet the shortage of interpreters 

often leaves them isolated in education, work, and social life. This study introduces a fast, reliable deep-

learning system for recognizing and translating Indian Sign Language (ISL) in real time. Using Google 

Mediapipe, we extract stable three-dimensional hand landmarks from video frames. The resulting sequences 

of keypoints are fed into a hybrid model that combines a Convolutional Neural Network (CNN) for spatial 

feature extraction with a Gated Recurrent Unit (GRU) for temporal dynamics. Our custom dataset contains 

3000+ video clips of 65 ISL sentences spoken by 11 different signers. The network, with only 1.5 million 

parameters, reaches 93.64% accuracy while maintaining a low computational cost and real-time inference 

speed. 

Keywords: Indian Sign Language, CNN, GRU, Deep Learning, Mediapipe, Spatiotemporal Recognition, 

Lightweight Architecture. 

 

1. Introduction

For millions globally, sign language is the core 

vehicle of thought and expression. Yet, 

communication barriers between the hearing-

impaired community and non-signers remain one of 

the most significant challenges to achieving truly 

inclusive societies. Effective communication hinges 

on the presence of skilled human interpreters, 

professionals who are, unfortunately, often scarce. 

This pervasive absence limits engagement in critical 

sectors—from educational institutions and hospitals 

to professional workplaces—fostering significant 

social, educational, and professional isolation. The 

need for accessible, readily available technological 

solutions is therefore not just an academic goal but a 

societal imperative.  In recent years, rapid progress in 

computer-vision techniques and deep-learning 

models has sparked a boom in automated sign-

language recognition (SLR). These systems aim to 

decode the fluid movements of hands, arms, and body 

automatically, turning visual gestures into 

understandable language. By providing real-time 

translation, SLR technologies can give deaf users 

greater independence and direct access to essential 

services, narrowing the communication divide that 

has long separated them from the hearing world. The 

progress made in automated sign-language 

recognition often highlights languages such as 

American or British Sign Language, which enjoy 

large, well-curated datasets and clear standards. 

Indian Sign Language, on the other hand, has fallen 

behind. Two main reasons explain this gap: first, 

there are very few publicly available, comprehensive 

datasets for ISL, and second, the language itself 

carries unique grammatical nuances that add extra 

complexity. Because of these challenges, ISL is 

treated as a low-resource language in the deep-

learning community. One of the biggest technical 

challenges for researchers working on Indian Sign 

Language is moving beyond the detection of single, 

static signs—such as individual letters—to the ability 

to translate continuous, full-sentence gestures. 

Recognizing whole sentences means the system must 

pick up on the subtle ways in which one sign flows 

into the next (coarticulation) and faithfully capture 

the long-range timing relationships and grammatical 

order that give the language its meaning. Achieving 

this calls for advanced spatiotemporal models that 

can track both space and time, yet these models also 
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need to stay lightweight enough to run efficiently in 

everyday settings. Our main goal is to design, build, 

and thoroughly test a strong yet lightweight deep-

learning system that can recognize complete Indian 

Sign Language sentences in real time and convert 

them into text. Rather than relying on heavy, pixel-by 

pixel processing such as 3D convolutional networks, 

we concentrate on a more efficient strategy that 

extracts and analyzes skeletal keypoints to capture 

the essential motion patterns. We believe that a mixed 

architecture—pairing a Convolutional Neural 

Network with a Gated Recurrent Unit—trained 

carefully on clean, wrist-aligned 3D keypoint 

sequences can capture the intricate space–time 

patterns of moving ISL signs. In addition, we argue 

that this lean setup can reach performance levels 

similar to much larger, more complicated models 

while staying far more efficient computationally, 

making it suitable for everyday use on ordinary 

consumer devices [1]. 

2. Key Technical Contributions 

 A streamlined CNN-GRU model built for 

skeletal keypoints We designed a data-

efficient hybrid network that works directly 

with 3D joint coordinates, reaching a 

classification accuracy of about 93.6%. 

 A robust four-step preprocessing routine The 

pipeline smooths the raw motion with 

Gaussian filtering to reduce jitter and then 

converts all coordinates to a wrist-centered 

frame, making the system tolerant to different 

signers and backgrounds. 

 High performance with minimal resources 

The model contains only roughly 1.5 million 

trainable parameters and can be trained in 

under three hours, yet it still outperforms 

larger LSTM-based approaches while 

keeping the same level of accuracy. 

3. Related Work: The Evolution of Gesture 

Recognition 

3.1 Evolution of SLR Systems: From Sensors to 

Vision 

The field of sign language recognition systems has 

seen two major paradigm shifts. The early research 

period mostly relied on sensor-based techniques, 

which employed pricy and intrusive hardware such as 

data gloves, inertial measurement units (IMUs), or 

infrared sensors, to capture fine-grained movements 

of the fingers and wrists. These systems were 

inherently limited by their high cost, reliance on 

specialied tools, and incapacity to scale in the real 

world, even though they were incredibly accurate. 

The subsequent development of widely accessible 

camera technology, coupled with the power of deep 

learning, established the dominance of vision-based 

recognition systems. These sensorless systems 

analyze regular video streams. While previous vision 

techniques relied on manually created features, 

Convolutional Neural Networks (CNNs) transformed 

the field by enabling automated, high-fidelity 

extraction of complex spatial patterns like hand shape 

[2], [3]. In order to handle the dynamic, sequential 

nature of signs, CNNs were rapidly coupled with 

Recurrent Neural Networks (RNNs) and their 

derivatives, particularly Long Short-Term Memory 

(LSTM) models, to capture temporal aspects. 

3.2 Deep Spatiotemporal Modeling Techniques 

Capturing the spatial features (hand shape at a single 

moment) and the temporal features (motion sequence 

and trajectory over time) are the two challenges that 

dynamic sign recognition must overcome. 

 CNNs for 1D Spatial Feature Extraction: 
CNNs are applied across the high-

dimensional feature vector (126 coordinates) 

in a single frame in skeleton-based techniques 

like ours. Through this process, unprocessed 

coordinate data is efficiently transformed into 

abstract representations of hand geometry and 

form, including the crucial angular 

relationships between joints. 

 Benefits of GRU for Temporal Modelling: 
Even though LSTMs are excellent at 

simulating long-term dependencies, their 

complexity results in a large number of 

parameters and lengthy training times. With 

just two gates (reset and update), Gated 

Recurrent Units (GRUs) are a deliberate 

simplification. With significantly fewer 

parameters and faster convergence, GRUs 

enable comparable performance with less 
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computation 

4. System Methodology and Data Pipeline Design 

4.1 End-to-End System Overview  

The transition from a user’s hand to a translated 

sentence is managed by our five-stage sequential 

framework. The process’s initial step, video 

acquisition, records the ISL gesture. Next is Feature 

Extraction, which locates 3D hand landmarks using 

the Google Mediapipe framework. These raw 

features then undergo a comprehensive preprocessing 

step that involves denoising, normalization, and 

alignment. In the Model Training phase, the CNN–

GRU hybrid uses the cleaned, standardized sequence 

to learn the spatiotemporal patterns. The identified 

class is ultimately resolved and shown as text during 

the Text Translation stage. The system architecture is 

shown in Figure 1. 

 

 
Figure 1 System Architecture Diagram. Shows 

pipeline from raw video input to feature 

extraction, CNN– GRU classification, and text 

output 

 

4.2 ISL Video Corpus and Feature Vector 

Initialization 

We used recordings from multiple participants to 

build an ISL corpus. Each of the 65 unique ISL 

sentences in the final corpus was purposefully 

recorded ten times by various signers, producing a 

total of 3000+ videos. The corpus was sourced from 

recordings from 11 different signers to ensure signer 

independence. Approximately 700 videos were 

derived from the publicly available ISL-CSLTR 

dataset, and the remainder were our own recorded 

videos to meet the required vocabulary scope. 

Mediapipe Hands provides 21 keypoints per hand, 

producing up to 126 features per frame when both 

hands are present [4][5]. 

4.3  Feature Vector Construction 

The input feature vector at time t is D=21*2*3=126 

dimensions per frame. This large dimensionality 

arises from extracting 21 3D keypoints (x, y, z 

coordinates) from up to two hands. These numerical 

time-series sequences capture finger curvature and 

hand orientation crucial for ISL. Specifically, the 

keypoint sequence represents the dynamic, skeletal 

geometry of the signing process over time. The 

coordinates are then normalized to ensure the feature 

vector is invariant to the signer's position and scale in 

the camera frame. Figure 2 illustrates sample 

keypoint extraction. 

 

 
Figure 2 Sample Keypoint Extraction from ISL 

Gesture 

 

5.  Robust Preprocessing for Signer and 

Environment Invariance 

5.1  Temporal Noise Mitigation: Gaussian 

Smoothing 

To minimize high-frequency temporal noise, or 

“jitter,” we applied Gaussian smoothing across the 

time axis to all 126 feature trajectories. The standard 

deviation parameter σ of the Gaussian kernel 

controls the smoothing strength. 
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5.2 Wrist-Relative Normalization for Scale and 

Position Invariance 

We set the origin of coordinates at the Mediapipe 

wrist keypoint and subtract it from all joint 

coordinates, then scale by a reference distance to 

achieve scale invariance. This wrist-relative 

normalization is critical for signer-independent 

generalization. The essential role of normalization is 

quantitatively affirmed by the 3.54% drop in 

accuracy observed when this step is removed during 

ablation testing (Table 2). This performance 

degradation demonstrates that normalization is the 

key mechanism for achieving true signer-

independent generalization in this skeletal-based 

approach. All input sequences are aligned to a fixed 

length T=40 frames. Shorter sequences are zero-

padded; longer sequences are trimmed or uniformly 

sampled. Silence removal (low-motion frames) is 

applied to focus on meaningful action segmentsc [6]. 

 

 
Figure 3 Preprocessing Pipeline Flowchart Shows 

Denoising, Normalization, and Sequence 

Standardization Steps 

 

6. Hybrid Cnn–Gru Model Architecture 

The architecture begins with 1D Convolutional layers 

Conv1D operating exclusively over the 126-

dimensional coordinate vector per frame. The 

purpose of this initial network is to automatically 

extract abstract, geometric features of the hands at 

every moment. Conv1D with a small kernel size of 

K=3 captures localized spatial relationships, such as 

the angular relationships between adjacent joints, 

converting raw coordinates into a richer 

representation of hand shape. Crucially, by operating 

on the 126-dimensional vector (which contains x, y, 

z for both hands), the Conv1D layers preserve the 

essential 3D spatial information captured by the 

Mediapipe framework. The feature sequence then 

passes through Batch Normalization for stabilization 

and the ReLU activation function to introduce non-

linearity. These operations result in a transformed 

sequence of 40 timesteps (frames), where each 

timestep is a 256-dimensional feature vector. This 40 

times 256 matrix, now encoding deep spatial 

characteristics, is passed directly to the Temporal 

Modeling Subsystem (GRU) for sequential analysis 

Shown in Table 1. 

 

Table 1 Detailed CNN–GRU Model Layer 

Specifications 

Layer 
Output 

Shape 
Params Activation 

Conv1D 

(128, K=3) 
38x128 48,768 ReLU 

BatchNorm 38x128 512 - 

Conv1D 

(256, K=3) 
36x256 98,560 ReLU 

GRU (256) 256 394,496 tanh 

Dense (65) 65 16,705 Softmax 

 

6.1 Temporal Modeling Subsystem: Gated 

Recurrent Units (GRU) 

The spatial features are then passed to GRU layers 

with 256 units. A dropout of 0.5 is applied before the 

final dense softmax classifier. 

 The Strategic Choice of GRU: The selection 

of GRU over the more complex LSTM 

network was a deliberate efficiency trade-off. 

GRUs offer faster training times and lower 

computational overhead due to their 

streamlined internal structure (using only 

reset and update gates, compared to LSTM’s 

three) [7]. This simplification allowed our 

model to reduce training time to 2.8 hours, 

achieving the required lightweight design 

without a significant loss in accuracy [2]. 

 GRU Mathematical Formulation: The 
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GRU efficiently models temporal dynamics 

by selectively managing information flow. 

 

Table 2 Comprehensive ablation study on model 

performance and efficiency. 

Model 
Prepr

oc 

Acc

. 

Time 

(hrs) 

Par

ams 

(M) 

CNN Only Full 
87.

2 
2.0 1.2 

CNN+LST

M 
Full 

91.

0 
3.5 1.8 

CNN+GR

U 

(Proposed) 

Full 
93.

6 
2.8 1.5 

No Norm. Partial 
90.

1 
2.8 1.5 

No 

Smooth. 
Partial 

91.

5 
2.9 1.5 

 

Given the spatial input xt (the spatial features from 

the CNN at time t) and the previous hidden state ht−1, 

the GRU determines the next hidden state (ht): 

Reset Gate (rt): Decides which parts of the past 

memory (ht−1) are irrelevant for the current step and 

should be forgotten. 

𝐫𝒕 =  𝝈(𝐖𝒓𝐱𝒕 +  𝐔𝒓𝐡𝒕 − 𝟏 +  𝐛𝒓) 

 

Update Gate (zt): Controls the balance between re- 

taining the old memory (ht−1) and integrating the 

new information (h˜t). 

𝒛𝒕 =  𝝈(𝑾𝒛𝒙𝒕 +  𝑼𝒛𝒉𝒕 − 𝟏 +  𝒃𝒛) 

 

Candidate Activation (h˜t): The potential new 

content for the hidden state. 

𝒉˜𝒕 =  𝒕𝒂𝒏𝒉(𝑾𝒉𝒙𝒕 +  𝑼𝒉(𝒓𝒕 ⊙  𝒉𝒕
− 𝟏) +  𝒃𝒉) 

 

Final Hidden State (ht): The new output state, 

blending old and new information via the update gate. 

𝒉𝒕 =  (𝟏 −  𝒛𝒕) ⊙  𝒉𝒕 − 𝟏 +  𝒛𝒕 ⊙  𝒉˜𝒕 
 

6.2 Real-time Latency and Efficiency Analysis 

To validate the system's real-time capability, we 

measured the inference time on the evaluation 

hardware (Intel i5 CPU). The average latency for 

feature extraction (Mediapipe) and model inference 

(CNN-GRU) for a single T=40 frame sequence was 

benchmarked. Based on the provided data, the system 

achieves an Average Inference Latency of 

approximately 85 ms (milliseconds) for a full 40-

frame sign language sequence, resulting in an 

Equivalent Frame Rate (FPS) of about 11.7 frames 

per second. This demonstrates that our lightweight 

CNN-GRU architecture, with only 1.5 million 

parameters, achieves the necessary computational 

efficiency for practical, real-time deployment on 

standard consumer devices, a key goal of this 

research 

7. Experimental Setup and Performance 

Evaluation 

Experiments were performed on an Intel i5 CPU (8 

GB RAM) using TensorFlow 2.15. Dataset split: 80% 

training and 20% testing with signer-independent 

validation. The system achieved the metrics shown in 

Table 3. Model performance was rigorously assessed 

across all 65 sentence classes using standard macro-

averaged metrics. 

 Accuracy: The overall percentage of correct 

classifications. 

 Precision: Measures the purity of the positive 

predictions 

 Recall: Measures the completeness of the 

detection (true positives captured). 

 F1-score: The harmonic mean, providing a 

balanced measure of consistency. 

Table 2 presents the core results. 

 

Table 3 Quantitative Evaluation Metrics 

Metric 
Value 

(%) 

Accuracy 93.64 

Precision 94.21 

Recall 93.64 

F1-score 93.63 

 

The close parity between Precision (94.21%) and 

Recall/F1- score (93.64%/93.63%) confirms the 
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model’s robust classification ability, showing 

minimal tendencies toward false positives or false 

negatives. The high F1-score across the entire 

vocabulary affirms its consistent performance across 

all classes. 

8. Results and Discussion 

Training and validation curves remained stable, 

showing no overfitting. Misclassifications were 

primarily between visually similar gestures. Figures 

3 to 5 show the architecture, training curves, and 

confusion matrix. 

8.1 Analysis of Training Dynamics and Model 

Stability 

The model's learning process is graphically tracked in 

Fig.5 The training and validation curves continue to 

be closely coupled, as evidenced by the quick and 

seamless convergence. Excellent stability and 

minimal overfitting are indicated by this tight 

alignment, which is crucial. The stability attests to the 

effectiveness of the extensive preprocessing pipeline 

as well as the built-in regularization offered by the 

Batch Normalization and Dropout layers. The 

training and validation performance's consistent 

learning trajectory and stable convergence across 

epochs are depicted by the model's accuracy and loss 

curves. 

 

 
Figure 4   CNN–GRU Model Architecture 

Diagram. 

 

8.2 Detailed Interpretation of the Confusion 

Matrix 

The majority of instances are concentrated along the 

main diagonal, demonstrating the matrix's strong 

classification performance. By concentrating on the 

off-diagonal points, error analysis shows that the few 

misclassifications usually happen between sentences 

that are kinematically and visually very similar (e.g., 

subtle differentiation between signs like “How are 

you?” and “Are you fine?”). This implies that the 

current limitation is the sole dependence on hand 

keypoints; these extremely similar signs probably 

rely on non-manual, subtle markers (mouth 

movements, facial expressions) for linguistic 

disambiguation, which the model has not yet been 

given. 

 

 
Figure 5 Training and Validation Accuracy 

Curves. 

 

Identifying slight misunderstandings betwee n 

visually similar gestures, the Confusion Matrix for 

Shown in Figure 6. 

 

 
Figure 6 Confusion Matrix for ISL Sentence 

Classification 

 

ISL Sentences visualises the true versus predicted 

classes. 

8.3 Comparative Architectural Ablation Study: 

The Case for Efficiency 

To quantitatively justify our architectural decisions, 

an ablation study benchmarked the proposed CNN–
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GRU model against two alternatives and evaluated 

the impact of the preprocessing strategy. 

8.4 Quantifying the Value of Efficiency and 

Preprocessing 

The ablation study confirms the deliberate strategic 

design: 

 GRU vs. LSTM Efficiency: In addition to 

cutting training time by 20% (from 3.5 to 2.8 

hours) and parameter count by 16% (from 1.8 

to 1.5 million), the CNN + GRU model 

outperformed the CNN + LSTM by 2.64% in 

accuracy. This confirmed that the GRU was 

the best choice for striking the right balance 

between efficiency and resource 

conservation. 

 Preprocessing Necessity: The preprocessing 

pipeline is necessary, not optional. The 

accuracy dropped significantly by 3.54% 

(93.64% to 90.1%) when the wrist-relative 

normalization was removed. Normalization is 

essential for achieving true signer-

independent generalization, as demonstrated 

quantitatively by this performance 

degradation [8]. In a similar vein, eliminating 

Gaussian smoothing led to a 2.14% decrease 

(93.64% to 91.5%), demonstrating its 

effectiveness in filtering temporal noise [10]. 

The fundamental idea that computational 

efficiency is best attained by engineering 

input invariance (preprocessing) rather than 

depending on large, deep models to implicitly 

learn these invariances from noisy data is 

confirmed by the significant cumulative 

performance drop (more than 5.6%) seen 

when preprocessing is removed. 

9. Ablation Study and Efficiency Analysis 

The ablation study in Table 2 shows the impact of 

preprocessing and architecture. Removing 

normalization or smoothing significantly reduces 

accuracy [9 – 17]. 

Conclusion and Future Research Directions 

This work demonstrates an efficient CNN–GRU-

based ISL recognition system with 93.64% accuracy. 

Future research will include multimodal cues (facial 

and body), vocabulary expansion, and edge-

optimized deployment using Tensor Flow Lite. 

Despite the high performance, the current system 

outlines clear avenues for future enhancement: 

 Vocabulary Scope Expansion: The current 

vocabulary is limited to 65 ISL sentences. 

Future efforts must focus on expanding this to 

a wider, standardized corpus to ensure greater 

linguistic utility in practical applications. 

 Multimodal Integration: The model’s 

occasional confusion between visually 

similar signs highlights the critical need to 

integrate non-manual markers—specifically, 

facial expressions, eye gaze, and body 

posture—which carry essential grammatical 

infor- mation (like negation and 

interrogation) in ISL [7]. 

 Continuous Sign Language Translation 

(CSLT): Moving beyond Isolated Sign 

Language Recognition (ISLR), future work 

must transition to CSLT, requir- ing the 

adoption of advanced sequence-to-sequence 

or Transformer-based architectures capable 

of contextualizing and translating long, 

continuous streams of signing [2], [11]. 
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