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Abstract 

This study presents “Smart Agro AI”, an intelligent decision-support system for precision agriculture that 

integrates deep learning, satellite-based vegetation indices, and farmer knowledge fusion to enhance crop 

recommendation and yield prediction. The system leverages Google Earth Engine (GEE) and Copernicus 

Sentinel-2 satellite imagery to extract live Normalized Difference Vegetation Index (NDVI) and Soil Adjusted 

Vegetation Index (SAVI) values, providing real-time insights into field health and crop conditions. Static soil 

and weather parameters obtained from Kaggle datasets complement these dynamic satellite inputs to form a 

comprehensive feature set. The backend employs a Deep Neural Network (DNN) for crop recommendation 

and a regression-based DNN model for yield prediction, both trained using scaled and encoded datasets. A 

knowledge integration layer fuses AI predictions with farmer survey data through a weighted approach (70% 

AI, 30% farmer), ensuring that recommendations are both accurate and contextually relevant. The frontend, 

built with Streamlit, offers an interactive and explainable interface, enabling users to input parameters, 

visualize predictions, and download detailed field health reports in PDF format. This integrated framework 

bridges the gap between machine intelligence and local expertise, enhancing decision-making in sustainable 

agriculture while promoting transparency, adaptability, and user trust. 
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1. Introduction  

Agricultural productivity is increasingly challenged 

by climate variability, soil degradation, and the 

limitations of traditional decision-making 

approaches, which often rely on farmer experience 

rather than data-driven insights. Recent advances in 

artificial intelligence and remote sensing have 

opened new possibilities for precision agriculture by 

enabling the integration of multispectral satellite 

data, weather information, and soil parameters into 

predictive models [1][2]. However, many existing 

systems focus on either crop recommendation or 

yield prediction independently, and very few utilize 

farmer knowledge in combination with AI to 

improve practical relevance. To address these gaps, 

this study proposes a unified Smart Agro AI 

framework that employs deep neural networks for 

crop recommendation and yield prediction while 

integrating vegetation indices such as NDVI derived 

from Sentinel-2 satellite imagery.  The objective of 

this work is to develop a reliable, scalable, and 

farmer-centric decision support system capable of 

generating real-time recommendations using live 

weather data and historical agricultural datasets. The 

novelty of this research lies in its weighted fusion 

methodology, where AI-based predictions are 

contextually refined using localized farmer 

knowledge, enhancing both accuracy and field-level 

applicability. This approach advances the current 

state of the art by combining machine intelligence 

with human-domain expertise, ensuring that 

recommendations remain consistent with real 

agronomic practices while leveraging the strengths 

of deep learning models. 

1.1.  Need for Intelligent Decision Support 

Agriculture requires timely and context-aware 

recommendations. Crop suitability depends on 

factors including soil nutrients, climatic conditions, 

vegetation activity, and irrigation potential. Live 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 02 Issue: 12 December 2025 

Page No: 4516-4521  

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0663 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

4517 

 

satellite indices such as Normalized Difference 

Vegetation Index (NDVI) and Soil Adjusted 

Vegetation Index (SAVI) provide valuable insights 

into crop vigor, biomass, and land condition. By 

combining these indices with weather data and AI-

based prediction models, more accurate and 

dynamically updated decisions can be provided to 

farmers. 

2. Literature Review 

The integration of artificial intelligence and satellite-

driven analytics in agriculture has been an active 

research direction aimed at enhancing decision-

making in crop planning and yield optimization. 

Existing studies demonstrate significant progress in 

predictive modeling, yet reveal notable gaps in 

contextual adaptability, real-time environmental 

learning, and integration of local farming wisdom. 

K.N. Vhatkar et al. proposed an Iterative 

Partitioning-Ensemble Filter (IP-EF) method to 

enhance crop yield prediction by optimizing soil 

health attributes, demonstrating the effectiveness of 

machine learning in linking nutrient conditions with 

crop performance, though the model lacked 

integration of farmer knowledge and real-time 

decision support [3]. Similarly, S. Shastri developed 

a nutrient- and weather-based supervised learning 

crop recommendation system that accurately 

captured nutrient–climate–crop relationships but did 

not incorporate satellite-derived vegetation indices 

or historical farming patterns [4]. In another study, 

N. Aijaz emphasized AI-driven crop management 

for automating irrigation, crop selection, and 

fertilizer planning, yet the work remained largely 

conceptual without a deployable implementation 

framework [5]. Aarthi and Manimegalai further 

highlighted the value of soil and climate alignment 

in crop recommendation using machine learning, 

though the absence of localized knowledge and 

adaptive learning limited usability in diverse 

farming communities [6]. Meanwhile, M. Baishya 

demonstrated Tiny ML models for low-resource 

devices to support rural deployment, but the system 

lacked strong interpretability features for farmer-

friendly decision support [7]. Finally, Akkem and 

Biswas presented an explainable cascaded deep 

learning model with heuristic attention that 

improved soil-specific interpretability but did not 

integrate real-time vegetation indices such as NDVI 

or SAVI for monitoring crop stress [8]. 

3. System Architecture 

3.1. Overall System Design 

The proposed Smart Agro AI system follows a 

modular, data-driven architecture designed to 

integrate satellite observations, environmental 

parameters, machine-learning inference, and farmer-

centric knowledge fusion into a unified decision-

support workflow. The architecture consists of four 

major layers: (i) Data Acquisition Layer, which 

gathers Sentinel-2 imagery, OpenWeather API data, 

and static soil–nutrient datasets; (ii) Preprocessing 

Layer, responsible for geocoding, NDVI/SAVI 

computation, feature normalization, and structured 

dataset preparation; (iii) AI Modeling Layer, where a 

Convolutional Neural Network (CNN) is used for 

vegetation-feature extraction and two Deep Neural 

Network (DNN) models perform crop 

recommendation and yield prediction; and (iv) 

Knowledge Integration & Decision Layer, where 

weighted fusion combines AI predictions with 

empirically collected farmer-survey responses to 

ensure regionally grounded recommendations. These 

components interact through a streamlined backend 

pipeline deployed in Python and made accessible to 

end-users through a Streamlit-based web interface. 

The modular nature of the architecture enables 

scalability, interoperability with additional sensors or 

datasets, and real-time processing of field-level 

information, thereby offering an intelligent and  

adaptive framework for precision agriculture. 

 

              
              Figure 1 System Architecture 
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3.2. Data Acquisition Layer 

The Data Acquisition Layer collects both static and 

dynamic inputs essential for crop recommendation 

and yield estimation. Static inputs such as soil 

nutrients (N, P, K), irrigation level, and land size are 

provided by the user. Dynamic environmental data is 

gathered from external APIs and satellite services. 

The OpenWeather API supplies temperature, 

humidity, wind speed, and rainfall, while Sentinel-2 

imagery accessed via Google Earth Engine provides 

vegetation indices such as NDVI and SAVI. Together, 

these data sources ensure that recommendations are 

both context-aware and environmentally adaptive. 

3.3. Data Processing and Feature Preparation 

Layer 

This layer focuses on cleaning, normalizing, and 

formatting the collected data to match model 

requirements. StandardScaler is used to scale 

numerical features, reducing bias and improving 

generalization of the Neural Network models. 

LabelEncoder converts crop names into numerical 

labels for efficient processing. This layer ensures all 

input attributes are consistent with the feature 

distribution of the models during training, enabling 

accurate and stable prediction performance. 

3.4. Deep Learning Inference Layer 

This layer houses two pre-trained deep learning 

models: the Crop Recommendation Model and the 

Yield Prediction Model. The crop model is 

implemented as a Dense Neural Network that 

generates top crop suggestions based on soil 

conditions, vegetative health, and climatic influence. 

The yield model is a regression-based network that 

estimates crop productivity for the selected crop. 

Both models operate in real-time and are optimized 

for computational efficiency, allowing deployment 

on low-cost systems. 

3.5. Knowledge Integration Layer 

The Knowledge Integration Layer performs a 

weighted fusion of AI-generated recommendations 

and regional farmer experience data collected 

through structured surveys. The fusion mechanism 

applies a weight of 70% to the AI model’s 

recommendation and 30% to the local farmer-

preferred crop patterns. This hybrid approach ensures 

that decisions are not purely data-driven but 

grounded in practical regional knowledge, improving 

acceptance, trustworthiness, and cultural alignment 

of the system. 

3.6. User Interface and Output Layer 

The final layer consists of the Streamlit-based user 

interface that presents results clearly and interactively. 

The interface displays real-time NDVI and weather 

conditions, top recommended crops with confidence 

scores, and predicted yield values. It also provides 

visual explanations that communicate the reasoning 

behind choices and allows users to export the Field 

Health Report in PDF format. This layer ensures user 

accessibility, decision transparency, and operational 

simplicity for farmers and agricultural advisors. 

4. Methodology 

The methodology adopted in this study integrates 

deep learning, satellite-based vegetation monitoring, 

and knowledge-driven fusion techniques to develop 

an improved crop recommendation and yield 

prediction system. The workflow consists of five 

major components: research framework, data sources, 

CNN-based feature extraction, DNN model 

architecture, and knowledge integration framework.     

4.1. Research Framework  

 

 
Figure 2 Flow Diagram  

 

The overall research framework combines 

environmental sensing, multispectral vegetation 

analysis, and supervised learning to generate reliable 

agricultural insights. Live weather variables were 

collected through OpenWeather API, while 

NDVI/SAVI vegetation indices were extracted from 
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Sentinel-2 imagery following established remote 

sensing procedures [9]. These dynamic parameters 

were integrated with static agronomic datasets to 

create a unified feature space. The system was 

designed to generate two complementary outputs—

crop recommendation and yield prediction—using 

separate but interconnected deep learning pipelines. 

4.2. Data Sources 

This work utilizes a hybrid dataset consisting of:  

 Satellite-derived features: NDVI and SAVI 

values obtained from the Copernicus Sentinel-2 

archive following standard atmospheric-

correction and pixel-level computation methods 

described in prior studies [10]. 

 Static agronomic data: soil nutrients (N-P-K), soil 

type, pH, and historical crop performance, 

weather data - temperature, humidity, wind 

speed, and rainfall obtained from curated Kaggle 

repositories. 

All datasets were cleaned, normalized, and aligned to 

ensure compatibility with downstream neural 

architectures. 

4.3. CNN for Feature Extraction 

A lightweight Convolutional Neural Network (CNN) 

was implemented to extract vegetation features from 

Sentinel-2 multispectral inputs. The architecture 

includes two convolutional blocks (Conv–ReLU–

MaxPool) followed by a flattening layer, consistent 

with common remote sensing CNN configurations 

[11]. The CNN outputs high-level spectral signatures 

that are concatenated with soil, weather, and nutrient 

parameters for model training. Only the customized 

fusion mechanism is new; the CNN structure follows 

standard procedures and is cited accordingly.  

4.4. DNN Model Architecture 

Two Deep Neural Network (DNN) models were 

constructed: one for crop recommendation (multi-

class classification) and one for yield prediction 

(regression). Both models follow established dense-

layer architectures commonly used in agricultural 

prediction studies [12]. Each network consists of an 

input layer aligned with the unified feature vector, 

three hidden layers with ReLU activations, and an 

output layer configured according to the task. 

Pseudo-code for crop recommendation DNN: 

Input: Feature vector F   

Normalize F using MinMaxScaler   

Dense (128, ReLU)   

Dense (64, ReLU)     

Dense (32, ReLU)   

Output: Softmax(num_crops) 

Pseudo-code for yield prediction DNN: 

Input: Feature vector F   

Normalize F using StandardScaler   

Dense (128, ReLU)   

Dense (64, ReLU)   

Dense (32, ReLU)   

Output: Linear(1) 

4.5. Knowledge Integration Framework 

To improve real-world applicability, a weighted 

fusion mechanism was implemented to combine AI 

predictions with aggregated farmer-survey 

knowledge. Instead of rule-based overrides, the 

framework assigns confidence weights to AI outputs 

and farmer-derived crop suitability. These weights 

are computed using local similarity factors such as 

soil type, irrigation level, and geographical proximity. 

The final recommendation is obtained using: 

Cropfinal=argmax (WAI⋅PAI+WFK⋅PFK) 

Where WAI and WFK are normalized weights, and PAI 

and PFK represent AI-based and farmer-knowledge 

probabilities. This approach ensures that the system 

remains both data-driven and regionally grounded. 

 

 
Figure 3 Implementation Workflow 

 

5. Results and Discussion  

5.1.  Results  

The proposed Smart Agro AI system was evaluated 

using integrated datasets consisting of soil nutrients, 

static climate attributes, and satellite-derived NDVI 

values. The crop recommendation DNN achieved 

strong predictive performance, with the model 
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correctly identifying the optimal crop in the top-3 

rank for more than 92% of the test samples. The yield 

prediction model demonstrated a high degree of 

accuracy, producing an MAE of 0.0889%, indicating 

stable generalization. The weighted fusion approach 

that integrates farmer knowledge with AI outputs 

improved final crop selection accuracy by 11% 

compared to using AI alone. Visualizations of 

predicted–versus–actual yield trends showed 

minimal deviation, while NDVI-based vegetation 

assessments provided reliable field-level insights. 

The system successfully delivered end-to-end 

predictions—crop, yield, weather status, and 

vegetation index—in real time, validating its 

efficiency and usability for real-world deployment.       

5.2.  Discussion  

The results highlight the effectiveness of combining 

deep learning, environmental sensing, and localized 

knowledge fusion to produce reliable agricultural 

recommendations. While the DNN models 

independently offer high prediction accuracy, 

integrating farmer survey data through a weighted 

fusion mechanism significantly enhances contextual 

relevance, especially in regions where micro- 

climatic variation and traditional practices influence 

crop performance. The strong correlation between 

predicted and observed yields demonstrates the 

advantage of using NDVI and weather-driven 

features, confirming previous findings that 

multispectral vegetation indicators capture early 

signs of crop stress more effectively than soil 

parameters alone. The system’s real-time inference 

capability through Streamlit ensures practical 

usability for farmers, extension officers, and agritech 

organizations. However, minor fluctuations in yield 

prediction during low-NDVI conditions suggest the 

need for additional temporal satellite layers and finer-

resolution soil parameters. Overall, the discussion 

reinforces the system’s potential as a scalable 

decision-support tool tailored for precision 

agriculture.  

Conclusion  

This project successfully integrates satellite-based 

vegetation monitoring, deep learning-based crop 

recommendation and yield prediction, and farmer 

knowledge fusion into a unified agricultural decision 

support system. By utilizing Sentinel-2 NDVI and 

SAVI indices along with weather and soil parameters, 

the system provides accurate and context-aware crop 

suitability predictions, while the weighted knowledge 

integration layer ensures that recommendations 

remain aligned with local cultivation practices and 

field-level expertise. The deep learning models used 

demonstrate strong predictive capability, and the 

user-friendly interface enables farmers to access 

insights in real time. Although the current 

implementation depends on static soil datasets and 

cloud-free satellite imagery, the framework 

establishes a robust foundation for advancing 

precision agriculture. 

 

. 

Figure 4 User Interface 
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