International Research Journal on Advanced Engineering Hub (IRJIAEH)
e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4399-4404

https://irjaeh.com
https://doi.org/10.47392/IRJAEH.2025.0646

IRJAEH

Performance Comparison of Yolo Versions for Small Object Detection on

UAV Images

V Nivashini!, Dr. G Rajesh?

Research Scholar, Dept. of IT, Anna University, MIT Campus, Chennai, Tamil Nadu, India.
2Associate Professor, Dept. of IT, Anna University, MIT Campus, Chennai, Tamil Nadu, India.
Emails: nivashinivenkatachalapathy@gmail.com?, raajiimegce@gmail.com?

Abstract

With the rapid advancement in YOLO (You Only Look Once) versions, object detection has become a crucial
task. In this article, the performance of three state-of-the-art YOLO versions: YOLOv8, YOLOv10, and
YOLOV11 is analyzed. Using the VisDrone dataset, which contains 10 classes; these models were evaluated
on metrics including precision, recall, F1 score, training time, and inference time. Based on the experiments,
YOLOV8 achieved higher precision, recall, F1 score, and mAP compared to YOLOv10 and YOLOv11. On the
other hand, YOLOv11 demonstrated reduced training time and inference time. Additionally, the performance
of these detectors was analyzed on the Jetson Nano edge platform. YOLOv8 achieved the highest precision,
recall, F1 score, and mAP on edge platforms as well. These experimental results provide valuable insights
into selecting the most suitable YOLO version for specific object detection tasks and can guide further

optimization efforts.
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1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVS)
have been used in various applications, such as
surveillance, agriculture, remote sensing, disaster
management, and rescue [1], [2]. Object detection in
UAV images poses significant challenges due to
several factors. The distance between the object and
the UAV causes scaling complexities. Target objects
are often densely accumulated, making detection
more complicated. Furthermore, images captured by
UAVs often have low resolution, which hinders
effective object detection. For instance, when an
image has dimensions smaller than 32x32 pixels, it
becomes challenging even for humans to identify the
target. Objects in images with resolutions below
32x32 pixels are categorized as tiny objects. Many
traditional algorithms struggle to detect such small
objects due to these difficulties [3], [4]. Therefore,
improving and optimizing conventional algorithms to
extract crucial features related to small objects in
aerial images is a critical problem [5], [6]. The main
contributions of this work are:

e The performance of different YOLO models is
evaluated using the VisDrone dataset, providing
insights into their effectiveness for UAV-based
detection tasks. Various metrics and comparison
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criteria are used to benchmark the models. This
analysis ensures that the models are suitable for
real-world applications.

e Pretrained YOLO models are optimized for
compatibility with the Jetson Nano, ensuring
smooth deployment on edge devices. The
optimization process involves fine- tuning
model parameters to enhance performance
without sacrificing accuracy. This enables
efficient operation on the limited resources of
the Jetson Nano.

e The performance of the optimized models is
compared on the Jetson Nano, demonstrating
promising results that are comparable to those
obtained using a local PC with a GPU. The
evaluation showcases the Jetson Nano’s
potential for edge-based detection tasks. This
confirms that the Nano can deliver high
performance in UAV-based rescue applications.

This paper is structured as follows: Section Il
presents the literature review. Section Il explains the
methodology, including the dataset description and
evaluation metrics. Section IV discusses the results
and analysis. Finally, Section V presents the
conclusion.
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2. Literature Review

Recent advancements in object detection have
extensively utilized deep learning architectures,
particularly the YOLO series, for real-time
applications in UAVs. YOLOv8, an enhanced
version of the YOLO framework, has demonstrated
superior performance in detecting a wide range of
objects in complex environments, including aerial
views [7]. In contrast, MFFCI-YOLOV8 offers a
lightweight design that incorporates multiscale
feature fusion and context information, which
enhances detection performance in remote sensing
applications [8]. Additionally, the study on the
“Improved Deformable Convolution Method for
Aircraft Object Detection in Flight Based on Feature
Separation in Remote Sensing Images” presents a
novel approach to aircraft detection, leveraging
deformable convolution techniques to address the
challenges of handling complex aerial imagery [9].
Despite these advancements, challenges remain in
optimizing these models for edge devices with
limited resources, such as the Jetson Nano, while
ensuring high detection accuracy. The MSFE-YOLO
approach aims to improve YOLOvV8’s efficiency by
integrating innovative techniques that better manage
aerial perspectives, resulting in enhanced detection
speed and precision for UAV- based applications.
The VisDrone dataset, which consists of UAV
captured images, has proven highly beneficial for
various computer vision tasks, such as object
detection. However, small object detection using the
VisDrone dataset presents significant challenges due
to the low resolution of the images and the dense
distribution of target objects. Reference [10]
introduced a large-scale UAV-captured dataset,
designed for tasks like object detection and tracking,
which is applicable across various environmental
conditions. The study also emphasized the challenges
encountered during the dataset’s collection. A
proposed improvement to the YOLOV8 algorithm for
object detection was presented in [11], where the
authors modified the original YOLOV8 architecture
by replacing the detection head with a Convolutional
Block Attention Module (CBAM) spatial attention
mechanism, resulting in an 11% increase in detection
accuracy. Additionally, a cross-domain fusion
attention mechanism and a feature fusion model were
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integrated into YOLOVS8, further enhancing multi-
scale detection accuracy. As a result, [12] achieved a
39.2% mAP@O0.5 on the VisDrone2019 dataset.
Furthermore, [13] reviewed existing datasets that
contain aerial images and highlighted their
applications  in  classification,  segmentation,
detection, and tracking, shown in Figure 1.

3. Methodology

Object Detector

YOLOv8

Dataset |

YOLOV10 |

YOLOv1I1

Edge

Figure 1 Pipeline for UAV Object Detection and
Edge Deployment

The process begins with the preparation of the
VisDrone dataset, which is split into training,
validation, and test sets, followed by pre-processing
and augmentation. Three YOLO models (YOLOVS,
YOLOV9, YOLOV10) are trained using the training
set and fine-tuned on the validation set, adjusting
hyperparameters to optimize accuracy, precision, and
recall. The fine-tuned models are then evaluated on
the test set, com- paring performance metrics. These
models are benchmarked on a discrete PC for
inference speed and efficiency, and then optimized
for edge deployment through techniques such as
quantization and pruning to reduce model size and
improve performance. Finally, the optimized models
are deployed on a Jetson Nano running L4T 32.7.6,
and their performance is evaluated.

3.1. Dataset Description

The VisDrone dataset [11], developed by the
AISKYEYE team at Tianjin University in China, is a
comprehensive benchmark for UAV-based object
detection. It is collected from multiple drone
platforms across various real-world scenarios,
incorporating  diverse  weather and lighting
conditions. The dataset is manually annotated with

4400


https://irjaeh.com/

IRJAEH

over 2.6 million bounding boxes, covering 10 distinct
classes: pedestrian, people, bicycle, car, van, truck,
tricycle, awning-tricycle, bus, and motor. Table 1
outlines the division of the dataset into training,
validation, and test sets, providing a balanced
distribution of data for effective model training and
evaluation. This rich annotation enables accurate
object detection and supports the development of
robust models for UAV-based applications.

3.2. Experimental Setup

In this work, the performance of YOLOVS,
YOLOvV10, and YOLOvV11 object detection on the
VisDrone dataset are analyzed by setting the
hyperparameters shown in TABLE 2. Both the
training and validation performance are compared
using precision, recall, and mAP. The goal of training
these models with the same hyperparameters is to
ensure a precise and effective comparison of the
performance of YOLOVS, YOLOV9, and YOLOvV10
models.

Table 1 Division of the VisDrone Dataset
into Training, Validation and Testing Sets

NO. OF
CATEGORY IMC,)A(_SES PERCENTAGE
Training 6,469 75%
Validation 547 6%
Testing 1,610 19%
Total 8,626 100%

Table 2 Values of Hyperparameters

Hyperparameters Values
Input Image size 640*640
Optimizer AdamwW
Epoch 50
Batch size 16
Learning rate 0.01
Momentum 0.937
Decay 0.005

In the experimental setup, the AdamW optimizer is
employed, a variant of the Adam algorithm that
decouples weight decay from the gradient update,
enhancing regularization and improving training
performance. The models are trained for 50 epochs
with a batch size of 16 and an image size of 640x640.
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The learning rate is set to 0.01, a value known to
facilitate stable and relatively fast convergence by
controlling the magnitude of weight updates. The
momentum is set to 0.937, which helps speed up
convergence by incorporating past gradients,
reducing oscillations in the optimization process.
Additionally, a weight decay of 0.0005 is applied to
penalize large weights, promoting generalization and
reducing the risk of overfitting, shown in Table 3,
Figure 2.

Table 3 System Specifications

Parameters Jetson Nano
Type Embedded GPU
Architecture Maxwell
GPU 128-core
Memory 4GB

3.3. Evaluation Metrics

The evaluation metrics used for comparative analysis
are precision, recall, F1 score, inference time, and
training time. Precision measures the rate of true
positive predictions among all positive predictions
made by the model. Recall measures the rate of true
positive predictions among all actual positives. A
high F1 score indicates a balanced distribution of
classes. The overall performance of object detection
can be evaluated by Mean Average Precision (mAP),
which measures the average precision for all classes.
Inference time is the amount of time the model takes
to analyze new data and make predictions. Training
time is the amount of time the model takes to train.
4. Results and Discussion

4.1. Discrete GPU-based Detection

From Figure 3 YOLOvV8 achieves the highest
precision, particularly excelling in Bicycle (0.641)
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and Car (0.679), demonstrating its superior detection
accuracy. YOLOv10 shows competitive precision,
with its best performance in Car (0.6), but overall
precision remains lower than YOLOv8. YOLOv11
slightly outperforms YOLOV10 in certain classes,
such as Car (0.62), but is generally less accurate than
YOLOV8. YOLOVS is the best choice for precision-
critical tasks, while YOLOv10 and YOLOv11 offer
acceptable accuracy with potentially better
computational efficiency. This demonstrates a trade-
off between detection accuracy and resource
efficiency across the models. YOLOV8 achieves the
highest recall across most classes, particularly
excelling in Car (0.736) and Bi- cycle (0.596),
showcasing its superior sensitivity in object detection.
YOLOV10 and YOLOv11 perform comparably, with
YOLOV11 slightly surpassing YOLOv10 in specific
classes like Bicycle (0.567). Despite their lower recall,
YOLOvV10 and YOLOv11 may still be viable options
for scenarios prioritizing computational efficiency.
Overall, YOLOVS is the most suitable model for tasks
demanding high recall, which is illustrated in Figure 4.

Precision comparisan fer YOLOVB, YOLOV10, YOLOV11

Figure 3 Precision Comparison Across YOLO
Models

Recall comparison for YOLOYE, YOLOV1D, YOLOV11

Models
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Based on the mAP (50-90) results, YOLOVS8
outperforms both YOLOv10 and YOLOvV11 across
most classes, with higher values in precision and
detection performance, particularly in challenging
scenarios like ’pedestrian’ and ’tricycle’. YOLOv10
shows the lowest mAP, indicating weaker
performance in detecting objects across the board,
particularly for smaller and more complex objects.
YOLOvV11 performs slightly better than YOLOV10,
offering a balanced trade-off between accuracy and
speed, but still falls short of YOLOVS’s detection
capability. Therefore, YOLOVS is the most reliable for
accuracy, as shown in figure 5, making it the top
choice for tasks requiring high detection precision,
Table 4.

Table 4 Comparison of Performance on
VisDrone Dataset

» F1
Model Precisio | Recal scor mAP(50
n I o -90)
YOLOVS | 488 | 374 | 424 | 228
Yo'ao"l 433 | 331 | 374 | 186
YOI10v1 436 | 335 | 378 | 192

mAP (50-90] Comparisen for YOLOV, YOLOW0, YOLOV11

\,f\j p Jpﬂ E) & & .@‘\‘ yﬁl & &
Figure 5 mAP (50-903mComparison AcCross
YOLO Models

Based on the comparison of YOLOV8, YOLOV10,
and YOLOv11, YOLOv8 outperforms the others in
terms of detection accuracy, as it has the highest
precision, recall, F-1 score, and mAP (50-90), making
it the most balanced model for object detection, as
shown in Table 4 and 5. This highlights YOLOvV8’s
superior ability to detect and classify objects with
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high precision while maintaining an efficient balance
between detection performance and recall, shown in
Table 5.

Table 5 Time Based Comparison

Inference time | Training
Model (ms) time (hrs)
YOLOvVS 2.3 3.667
YOLOv10 3.3 3.215 Figure 7 Detected Output
YOLOv11 2.0 2.778

Conclusion

4.2. Edge Based Detection The experimental results demonstrate a clear

UAV applications where computational resources
are limited. When deploying the optimized
YOLOvV8 model on the Jetson Nano, the model
demonstrates  efficient ~ object  detection
performance despite the constraints of edge
hardware. Techniques such as model quantization,
pruning, and conversion to TensorRT format
significantly reduce the model size and inference
time, making it well-suited for low-power,
embedded platforms like the Jetson Nano. The
results from edge-based detection show that
YOLOV8 retains its high precision, recall, and F1-
score, even with the reduced computational
resources. This makes YOLOv8 an excellent
choice for UAV-based rescue missions, where
real-time decision-making is crucial. The
combination of high detection accuracy and
optimized inference time on the Jetson Nano
ensures that UAVs can perform reliable and fast
object detection even in resource- constrained
environments. Figure 6 & 7 illustrates the
detection result, confirming the effectiveness of
YOLOV8 for real-time, edge-based detection in
UAYV systems [13-16].

trade- off between detection performance and
computational  efficiency across YOLOVS,
YOLOvV10, and YOLOv11. YOLOvVS achieves the
highest precision, recall, and F1-score, with
improvements of up to 11 % in precision and 4.9
% in F1- score compared to YOLOv10 and
YOLOvl11. These metrics highlight YOLOVS8’s
effectiveness in scenarios demanding high
detection accuracy. On the other hand, YOLOv11
excels in computational efficiency, offering
reduced training and inference times compared to
YOLOV8 and YOLOV10. In this experiment the
performance of detector models are compared with
Jetson Nano platform and found that YOLOvVS8
achieved better performance than others. Future
research can focus on optimizing YOLOv8 for
better computational efficiency and high detection
accuracy.
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