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Abstract 

With the rapid advancement in YOLO (You Only Look Once) versions, object detection has become a crucial 

task. In this article, the performance of three state-of-the-art YOLO versions: YOLOv8, YOLOv10, and 

YOLOv11 is analyzed. Using the VisDrone dataset, which contains 10 classes; these models were evaluated 

on metrics including precision, recall, F1 score, training time, and inference time. Based on the experiments, 

YOLOv8 achieved higher precision, recall, F1 score, and mAP compared to YOLOv10 and YOLOv11. On the 

other hand, YOLOv11 demonstrated reduced training time and inference time. Additionally, the performance 

of these detectors was analyzed on the Jetson Nano edge platform. YOLOv8 achieved the highest precision, 

recall, F1 score, and mAP on edge platforms as well. These experimental results provide valuable insights 

into selecting the most suitable YOLO version for specific object detection tasks and can guide further 

optimization efforts. 
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1. Introduction  

In recent years, Unmanned Aerial Vehicles (UAVs) 

have been used in various applications, such as 

surveillance, agriculture, remote sensing, disaster 

management, and rescue [1], [2]. Object detection in 

UAV images poses significant challenges due to 

several factors. The distance between the object and 

the UAV causes scaling complexities. Target objects 

are often densely accumulated, making detection 

more complicated. Furthermore, images captured by 

UAVs often have low resolution, which hinders 

effective object detection. For instance, when an 

image has dimensions smaller than 32x32 pixels, it 

becomes challenging even for humans to identify the 

target. Objects in images with resolutions below 

32x32 pixels are categorized as tiny objects. Many 

traditional algorithms struggle to detect such small 

objects due to these difficulties [3], [4]. Therefore, 

improving and optimizing conventional algorithms to 

extract crucial features related to small objects in 

aerial images is a critical problem [5], [6]. The main 

contributions of this work are: 

 The performance of different YOLO models is 

evaluated using the VisDrone dataset, providing 

insights into their effectiveness for UAV-based 

detection tasks. Various metrics and comparison 

criteria are used to benchmark the models. This 

analysis ensures that the models are suitable for 

real-world applications. 

 Pretrained YOLO models are optimized for 

compatibility with the Jetson Nano, ensuring 

smooth deployment on edge devices. The 

optimization process involves fine- tuning 

model parameters to enhance performance 

without sacrificing accuracy. This enables 

efficient operation on the limited resources of 

the Jetson Nano. 

 The performance of the optimized models is 

compared on the Jetson Nano, demonstrating 

promising results that are comparable to those 

obtained using a local PC with a GPU. The 

evaluation showcases the Jetson Nano’s 

potential for edge-based detection tasks. This 

confirms that the Nano can deliver high 

performance in UAV-based rescue applications. 

This paper is structured as follows: Section II 

presents the literature review. Section III explains the 

methodology, including the dataset description and 

evaluation metrics. Section IV discusses the results 

and analysis. Finally, Section V presents the 

conclusion. 
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2. Literature Review 

Recent advancements in object detection have 

extensively utilized deep learning architectures, 

particularly the YOLO series, for real-time 

applications in UAVs. YOLOv8, an enhanced 

version of the YOLO framework, has demonstrated 

superior performance in detecting a wide range of 

objects in complex environments, including aerial 

views [7]. In contrast, MFFCI–YOLOv8 offers a 

lightweight design that incorporates multiscale 

feature fusion and context information, which 

enhances detection performance in remote sensing 

applications [8]. Additionally, the study on the 

”Improved Deformable Convolution Method for 

Aircraft Object Detection in Flight Based on Feature 

Separation in Remote Sensing Images” presents a 

novel approach to aircraft detection, leveraging 

deformable convolution techniques to address the 

challenges of handling complex aerial imagery [9]. 

Despite these advancements, challenges remain in 

optimizing these models for edge devices with 

limited resources, such as the Jetson Nano, while 

ensuring high detection accuracy. The MSFE-YOLO 

approach aims to improve YOLOv8’s efficiency by 

integrating innovative techniques that better manage 

aerial perspectives, resulting in enhanced detection 

speed and precision for UAV- based applications. 

The VisDrone dataset, which consists of UAV 

captured images, has proven highly beneficial for 

various computer vision tasks, such as object 

detection. However, small object detection using the 

VisDrone dataset presents significant challenges due 

to the low resolution of the images and the dense 

distribution of target objects. Reference [10] 

introduced a large-scale UAV-captured dataset, 

designed for tasks like object detection and tracking, 

which is applicable across various environmental 

conditions. The study also emphasized the challenges 

encountered during the dataset’s collection. A 

proposed improvement to the YOLOv8 algorithm for 

object detection was presented in [11], where the 

authors modified the original YOLOv8 architecture 

by replacing the detection head with a Convolutional 

Block Attention Module (CBAM) spatial attention 

mechanism, resulting in an 11% increase in detection 

accuracy. Additionally, a cross-domain fusion 

attention mechanism and a feature fusion model were 

integrated into YOLOv8, further enhancing multi-

scale detection accuracy. As a result, [12] achieved a 

39.2% mAP@0.5 on the VisDrone2019 dataset. 

Furthermore, [13] reviewed existing datasets that 

contain aerial images and highlighted their 

applications in classification, segmentation, 

detection, and tracking,  shown in Figure 1. 

3. Methodology 

 

 
Figure 1 Pipeline for UAV Object Detection and 

Edge Deployment 
 

The process begins with the preparation of the 

VisDrone dataset, which is split into training, 

validation, and test sets, followed by pre-processing 

and augmentation. Three YOLO models (YOLOv8, 

YOLOv9, YOLOv10) are trained using the training 

set and fine-tuned on the validation set, adjusting 

hyperparameters to optimize accuracy, precision, and 

recall. The fine-tuned models are then evaluated on 

the test set, com- paring performance metrics. These 

models are benchmarked on a discrete PC for 

inference speed and efficiency, and then optimized 

for edge deployment through techniques such as 

quantization and pruning to reduce model size and 

improve performance. Finally, the optimized models 

are deployed on a Jetson Nano running L4T 32.7.6, 

and their performance is evaluated. 

3.1. Dataset Description 

The VisDrone dataset [11], developed by the 

AISKYEYE team at Tianjin University in China, is a 

comprehensive benchmark for UAV-based object 

detection. It is collected from multiple drone 

platforms across various real-world scenarios, 

incorporating diverse weather and lighting 

conditions. The dataset is manually annotated with 
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over 2.6 million bounding boxes, covering 10 distinct 

classes: pedestrian, people, bicycle, car, van, truck, 

tricycle, awning-tricycle, bus, and motor. Table 1 

outlines the division of the dataset into training, 

validation, and test sets, providing a balanced 

distribution of data for effective model training and 

evaluation. This rich annotation enables accurate 

object detection and supports the development of 

robust models for UAV-based applications. 

3.2. Experimental Setup 

In this work, the performance of YOLOv8, 

YOLOv10, and YOLOv11 object detection on the 

VisDrone dataset are analyzed by setting the 

hyperparameters shown in TABLE 2. Both the 

training and validation performance are compared 

using precision, recall, and mAP. The goal of training 

these models with the same hyperparameters is to 

ensure a precise and effective comparison of the 

performance of YOLOv8, YOLOv9, and YOLOv10 

models.  

 

Table 1 Division of the VisDrone Dataset 

into Training, Validation and Testing Sets 

CATEGORY 
NO. OF 

IMAGES 
PERCENTAGE 

Training 6,469 75% 

Validation 547 6% 

Testing 1,610 19% 

Total 8,626 100% 

 

Table 2 Values of Hyperparameters 

Hyperparameters Values 

Input Image size 640*640 

Optimizer AdamW 

Epoch 50 

Batch size 16 

Learning rate 0.01 

Momentum 0.937 

Decay 0.005 

 

In the experimental setup, the AdamW optimizer is 

employed, a variant of the Adam algorithm that 

decouples weight decay from the gradient update, 

enhancing regularization and improving training 

performance. The models are trained for 50 epochs 

with a batch size of 16 and an image size of 640x640. 

The learning rate is set to 0.01, a value known to 

facilitate stable and relatively fast convergence by 

controlling the magnitude of weight updates. The 

momentum is set to 0.937, which helps speed up 

convergence by incorporating past gradients, 

reducing oscillations in the optimization process. 

Additionally, a weight decay of 0.0005 is applied to 

penalize large weights, promoting generalization and 

reducing the risk of overfitting, shown in Table 3, 

Figure 2. 

 

 
Figure 2 Edge Implementation Setup 

 

Table 3 System Specifications 

Parameters Jetson Nano 

Type Embedded GPU 

Architecture Maxwell 

GPU 128-core 

Memory 4GB 

 

3.3. Evaluation Metrics 

The evaluation metrics used for comparative analysis 

are precision, recall, F1 score, inference time, and 

training time. Precision measures the rate of true 

positive predictions among all positive predictions 

made by the model. Recall measures the rate of true 

positive predictions among all actual positives. A 

high F1 score indicates a balanced distribution of 

classes. The overall performance of object detection 

can be evaluated by Mean Average Precision (mAP), 

which measures the average precision for all classes. 

Inference time is the amount of time the model takes 

to analyze new data and make predictions. Training 

time is the amount of time the model takes to train. 

4. Results and Discussion  

4.1. Discrete GPU-based Detection 

From Figure 3 YOLOv8 achieves the highest 

precision, particularly excelling in Bicycle (0.641) 

https://irjaeh.com/
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and Car (0.679), demonstrating its superior detection 

accuracy. YOLOv10 shows competitive precision, 

with its best performance in Car (0.6), but overall 

precision remains lower than YOLOv8. YOLOv11 

slightly outperforms YOLOv10 in certain classes, 

such as Car (0.62), but is generally less accurate than 

YOLOv8. YOLOv8 is the best choice for precision-

critical tasks, while YOLOv10 and YOLOv11 offer 

acceptable accuracy with potentially better 

computational efficiency. This demonstrates a trade-

off between detection accuracy and resource 

efficiency across the models. YOLOv8 achieves the 

highest recall across most classes, particularly 

excelling in Car (0.736) and Bi- cycle (0.596), 

showcasing its superior sensitivity in object detection. 

YOLOv10 and YOLOv11 perform comparably, with 

YOLOv11 slightly surpassing YOLOv10 in specific 

classes like Bicycle (0.567). Despite their lower recall, 

YOLOv10 and YOLOv11 may still be viable options 

for scenarios prioritizing computational efficiency. 

Overall, YOLOv8 is the most suitable model for tasks 

demanding high recall, which is illustrated in Figure 4. 

 

 
Figure 3 Precision Comparison Across YOLO 

Models 

 

. 

Figure 4 Recall Comparison Across YOLO 

Models 

 

Based on the mAP (50-90) results, YOLOv8 

outperforms both YOLOv10 and YOLOv11 across 

most classes, with higher values in precision and 

detection performance, particularly in challenging 

scenarios like ’pedestrian’ and ’tricycle’. YOLOv10 

shows the lowest mAP, indicating weaker 

performance in detecting objects across the board, 

particularly for smaller and more complex objects. 

YOLOv11 performs slightly better than YOLOv10, 

offering a balanced trade-off between accuracy and 

speed, but still falls short of YOLOv8’s detection 

capability. Therefore, YOLOv8 is the most reliable for 

accuracy, as shown in figure 5, making it the top 

choice for tasks requiring high detection precision, 

Table 4. 

 

Table 4 Comparison of Performance on 

VisDrone Dataset 

Model 
Precisio

n 

Recal

l 

F1 

scor

e 

mAP(50

-90) 

YOLOv8 48.8 37.4 42.4 22.8 

YOLOv1

0 
43.3 33.1 37.4 18.6 

YOLOv1

1 
43.6 33.5 37.8 19.2 

 

 
Figure 5 mAP (50-90) Comparison Across 

YOLO Models 

 

Based on the comparison of YOLOv8, YOLOv10, 

and YOLOv11, YOLOv8 outperforms the others in 

terms of detection accuracy, as it has the highest 

precision, recall, F-1 score, and mAP (50-90), making 

it the most balanced model for object detection, as 

shown in Table 4 and 5. This highlights YOLOv8’s 

superior ability to detect and classify objects with 

https://irjaeh.com/
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high precision while maintaining an efficient balance 

between detection performance and recall, shown in 

Table 5. 

 

Table 5 Time Based Comparison 

Model 
Inference time 

(ms) 

Training 

time (hrs) 

YOLOv8 2.3 3.667 

YOLOv10 3.3 3.275 

YOLOv11 2.0 2.778 

 

4.2. Edge Based Detection 

UAV applications where computational resources 

are limited. When deploying the optimized 

YOLOv8 model on the Jetson Nano, the model 

demonstrates efficient object detection 

performance despite the constraints of edge 

hardware. Techniques such as model quantization, 

pruning, and conversion to TensorRT format 

significantly reduce the model size and inference 

time, making it well-suited for low-power, 

embedded platforms like the Jetson Nano. The 

results from edge-based detection show that 

YOLOv8 retains its high precision, recall, and F1-

score, even with the reduced computational 

resources. This makes YOLOv8 an excellent 

choice for UAV-based rescue missions, where 

real-time decision-making is crucial. The 

combination of high detection accuracy and 

optimized inference time on the Jetson Nano 

ensures that UAVs can perform reliable and fast 

object detection even in resource- constrained 

environments. Figure 6 & 7 illustrates the 

detection result, confirming the effectiveness of 

YOLOv8 for real-time, edge-based detection in 

UAV systems [13-16]. 

 

 

Figure 6 Visualization Result Input Image 

 

 

Figure 7 Detected Output 

 

Conclusion 
The experimental results demonstrate a clear 

trade- off between detection performance and 

computational efficiency across YOLOv8, 

YOLOv10, and YOLOv11. YOLOv8 achieves the 

highest precision, recall, and F1-score, with 

improvements of up to 11 % in precision and 4.9 

% in F1- score compared to YOLOv10 and 

YOLOv11. These metrics highlight YOLOv8’s 

effectiveness in scenarios demanding high 

detection accuracy. On the other hand, YOLOv11 

excels in computational efficiency, offering 

reduced training and inference times compared to 

YOLOv8 and YOLOv10. In this experiment the 

performance of detector models are compared with 

Jetson Nano platform and found that YOLOv8 

achieved better performance than others. Future 

research can focus on optimizing YOLOv8 for 

better computational efficiency and high detection 

accuracy. 
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